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Abstract

In this paper, we propose a new unsupervised fea-
ture selection method to jointly learn the similar-
ity matrix and conduct both subspace learning (via
learning a dynamic hypergraph) and feature selec-
tion (via a sparsity constraint). As a result, we re-
duce the feature dimensions using different meth-
ods (i.e., subspace learning and feature selection)
from different feature spaces, and thus makes our
method select the informative features effectively
and robustly. Experimental results show that our
proposed method outperforms all the comparison
methods in terms of clustering tasks.

1 Introduction

With the rapid growth of contemporary information technol-
ogy, high-dimensional data becomes very common for rep-
resenting the data. Due to the challenges such as the curse
of dimensionality, storage and computation costs, it is an ur-
gent problem to deal with high-dimensional data in practi-
cal applications. Feature selection, which selects the infor-
mative features from high-dimensional data, has been be-
coming a popular solution for solving the problem of high-
dimensional data [Chang er al., 2014; Zhu et al., 2013;
Gao et al., 2013; Zhu et al., 2014]. In particular, unsuper-
vised feature selection (UFS) without using the label infor-
mation is attracting a lot of interests since it is difficult to
obtain the labels in practical applications [Zhu et al., 2017,
Chang et al., 2016].

Current UFS methods include three types, i.e., filter
method [He et al., 2005], wrapper method [Chang er al.,
2017; Tabakhi et al., 2014], and embedded method [Zhu et
al., 2016b]. The embedded method constructs a learning
model to output a subset of the features which achieves the
best accuracy of the model, and has been shown superior both
filter method and wrapper method [Morchid ef al., 2014].
Many embedded methods first construct a similarity matrix
measuring the pair-wise relation among the training data via
a simple graph to preserve either the local or global structures
of the training data, and then use the resulting graph regu-
larizer plus the sparsity constraint (e.g., an ¢;-norm regular-
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izer or an {5 1-norm regularizer) to select informative features
[Zhao et al., 2013; Zhu et al., 2016b].

Current embedded methods still have limitations to be ad-
dressed. First, the two-step strategy (i.e., learning similar-
ity matrix and conducting feature selection) of the embedded
methods possibly degrades the performance of feature selec-
tion as the similarity matrix learning aims at achieving an op-
timal similarity relation, instead of the feature selection re-
sults. Second, current embedded methods construct the sim-
ilarity matrix from the original data which usually contain
redundant and irrelevant features, and thus may select unin-
formative features. Third, the similarity matrix is constructed
via a simple graph, which measures the pair-wise relations of
the training data, instead of considering their high-order rela-
tions, so that not sufficient to capture the complex structures
in the training data.

To address the above issues, in this paper, we propose
a new unsupervised embedded feature selection method,
namely Adaptively Hypergraph Learning for Feature Selec-
tion (AHLFS), involving three components: 1) constructing
the similarity matrix from the low-dimensional space of the
original training data (i.e., the low-dimensional training data)
using a hypergraph to preserve their high-order local struc-
tures, 2) penalizing an orthogonal constraint on the covari-
ance matrix of the low-dimensional training data to preserve
their global structures, and 3) using an /5 j-norm sparsity
constraint, to reduce the dimensions of the features. We fur-
ther propose a new alternative optimization method to adap-
tively adjust each of these components, so that learning the
similarity matrix from the low-dimensional training data and
outputting reliable and informative features.

Compared with the current feature selection methods, the
proposed AHLFS has the following contributions:

e Propose a novel UFS method via jointly conducting
subspace learning and feature selection in a framework
since our first two components actually conduct sub-
space learning by preserving the local and global struc-
tures of the low-dimensional training data. Our method
enables to reduce the feature dimensions via different
modes (i.e., subspace learning and features selection)
from different spaces, i.e., the low-dimensional feature
space of the training data preserves two complementary
structures and the original feature space removes the re-
dundant/irrelevant features.
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Figure 1: The difference between a simple graph (left) and a hyper-
graph (right), where the black dots, the black lines, and the black
dot lines, respectively, indicate the authors, the relations between
two authors, and the relations among no less than two authors.

e Propose reasonable constraints. We embed subspace
learning to the feature selection model for strengthen-
ing the discriminative ability of feature selection to re-
move the redundant/irrelevant features. Moreover, the
proposed alternative optimization method adaptively ad-
justs them to achieves their individual optimizations.
Experimental results on benchmark datasets show that
our method outperforms the state-of-the-art methods in
clustering tasks using the selected features. This further
verifies the effectiveness and robustness of the designed
constraints in the proposed method.

2 Approach

This paper denotes matrices as boldface uppercase letters,
vectors as boldface lowercase letters, and scalars as normal
italic letters, also denotes the i-th row and j-th column of
a matrix X = [z;;] as x’ and x;, and its Frobenius norm

and fz 1-norm as || X|[|p = />3, > a7, and [[X][|21 =

> Zj xf o and further denotes the transpose, the trace,

and the inverse, of a matrix X, as X7, t7(X), and X1,

2.1 Hypergraph Learning

The traditional graph methods use the pair-wise relations
among the training data to preserve the geometric structures
of the training data. This usually is insufficient to capture
the complex relations in the training data. Give an illustra-
tion on the author-paper relation in Figure 1. The left sub-
figure of Figure 1 uses a simple graph to describe the author-
paper relations, e.g., a; vs. asy (i.e., a; and ao are the au-
thors of a paper), as vs. as, and as vs. a4, but cannot im-
ply the relations we may really focus on, e.g., the first paper
has three authors (i.e., a1, ag, and a3) and the second pa-
per has two authors (i.e., as and a4). The right sub-figure
of Figure 1 easily indicates these two types of relations via
constructing a hypergraph. Hence, this paper focuses on us-
ing a hypergraph to preserve the local structures of the train-
ing data as a hypergraph may capture more complex relations
than a simple graph [Zhou er al., 2006; Somu et al., 2016;
Gao et al., 2014].

By denoting a hypergraph as G = (V, E, w), where V =
[v;] and E = [e;], respectively, are the set of the vertexes

3582

and the hyperedges, and w = [w;] is the weight of the hy-
peredges, the construction of a hypergraph includes three se-
quential steps: 1) the incidence matrix H representing the bi-
nary vertex-edge relation, where each element is defined as:

1, if v; €ej,
H(vi, e5) = { 0, otherwisé. 1)
2) the weight vector w measuring the importance of hyper-
edges; and 3) the hypergraph Laplacian L, i.e., the normal-
ized Laplacian matrix of the resulting hypergraph.

Different from the simple graph where each edge repre-
sents the vertex-to-vertex relation, the incidence matrix H of
a hypergraph describes the vertex-to-hyperedge relation. To
achieve this, first, given the training data X € R®*" where
c and n, respectively, indicate the numbers of the features
and the samples, we regard each sample as one vertex and
try to generate a hyperedge for each vertex' by following the
method in [Zhou et al., 2006]. More specifically, we generate
the hyperedge e; by the following formulation:

€, = {'l)jw(Xi,Xj) SOlO’l},Z,] = 1,...,n (2)
where 6(x;,x;) indicates a similarity measurement between
x; and x; (e.g., Buclidean distance on a Gaussian kernel func-
tion in this paper) and o; is the average similarity between x;
and each of the other samples. Such a threshold method is
very popular for the construction of the hyperedges [Somu
et al., 2016; Gao et al., 2012; Peng et al., 2016a] and obvi-
ously results in that different samples have different numbers
of nearest neighbors, instead of the previous methods [Elham-
ifar et al., 2016; Peng er al., 2016b] which set the same num-
ber of nearest neighbors to all the samples.

Second, we use the resulting incidence matrix H and
the training data to learn the importance of each hyper-
edge, i.e., w. After this, we further obtain d(e;) (i.e., the
degree of a hyperedge e; via d(e;) = Zu,-eE h(vj,e;))
and d(v;) (i.e, the degree of a vertex v; via d(v;) =

vj€e;,e;€F ’LU(ei)h(Uj, el>)

Third, we obtain the hypergraph Laplacian matrix as:

L-1-D,*HWD:'H’D,* 3)
where I € R™*™ is an identity matrix, D., D,,, and W, re-
spectively, are the diagonal matrices of § = [d(e;)], d =

[d(v;)], and w = [w(e;)].

If we want to use a hypergraph to preserve the local struc-
tures of the training data, we follow the literatures [Zhou et
al., 2006; Zhang et al., 2016; Peng et al., 2017] to have the
following objective function:

STx; STx;
min A - — N A
where A = w and S € R°*¢ is the weight
matrix. Obviously, Eq. (4) is equivalent to:

i tr(STXLXTS
sy i ) ®)

'Tt is noteworthy that the rank of the incidence matrix H is no
larger than the value of min{|V|,|E|}, where |V| and | E|, respec-
tively, are the number of the vertexes and the hyperedges. Therefore,
many previous methods set |V'| = | E| for computational efficiency.
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where the orthogonal constraint on the covariance matrix of
X (i.e., STXX"S = I) can be regarded to implicitly con-
duct subspace learning, i.e., PCA, which preserves the global
structures of the training data [Morchid ez al., 2014].

2.2 Proposed Method

The three components for the construction of a hypergraph
in Section 2.1 are sequential. Thus the quality of either W
or L depends on H. However, H is learnt from the original
training data, which usually contain redundant and irrelevant
features. Thus the low-quality H is not able to output the
high-quality L so that forbidding to effectively remove the
noisy/redundant features via Eq. (4). In this paper, we cou-
ple the learning of the incidence matrix H with the learning
of the similarity matrix S in a formulation. We expect to it-
eratively update each of them by fixing the others, so that
they are updated adaptively to output the optimal H and S.
We thus design the final objective function for our AHLFS
method as follows:

min Al STy _ 8T B
SHD:.D,W ccpixev Vi)  Vdix) 2 ©
+ Wl + B[S]l2.1

st, wll=1, w; >0, STXXTS =1

where W = diag(w) and wj is the i-th element of the vector
w. Eq. (6) can directly be changed to:
i tr(STXLXTS W3 S
G )+ all W + 8ISz
s, wll=1,w; >0,8TXXTS =1

where « and § are two tuning parameters, 1 is a vector whose
elements are 1. The /5 ;-norm on S pushes to produce the row
sparsity on S to select the informative features, while the con-
straint STXXTS = 1 actually conducts subspace learning
(i.e., PCA) to make the feature selection discriminative [Ang
et al.,2016]. Thus the variable S is used to simultaneously se-
lect the informative features (via the sparsity constraint) and
conduct subspace learning (i.e., preserving the local struc-
tures via the first term of Eq. (7) and the global structures
via the orthogonal constraint) in the low-dimensional train-
ing data.

2.3 Optimization

Eq. (6) is not jointly convex to all five variables (i.e., W, S,
D., D,, and H), but is convex for each variable while fix-
ing the others. Thus we employ the alternative optimization
strategy to optimize Eq. (6), i.e., iteratively optimizing each
variable while fixing the others until the algorithm converges.

Update S by fixing other variables
After fixing the other variables, the objective function with
respect to S becomes:

min tr(STXLXTS) + B|S||2.1 s.t., STXXTS =1 (8)

Since the ¢5 ;-norm regularizer is convex and non-smooth, we
employ the framework of iteratively reweighted least squares
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(IRLS) [Wolke and Schwetlick, 1988] to optimize S, via
changing Eq. (8) to:

i tr(STXLXTS + 8STPS
sraiPs_y T +OSTPS) 9

where P is a diagonal matrix, which element is defined as:
Diji = m,i:Lm,c. (10)

In Eq. (9), both P and S are unknown. Moreover, P de-
pends on S. According to the IRLS framework, we design an
iterative algorithm to solve problem Eq. (9) by two sequential
steps until the algorithm converges: 1) By fixing S, we obtain
the P by Eq. (10); 2) By fixing P, Eq. (9) is changed to an
eigen-decomposition problem with respect to S, i.e.,

i tr(ST(XLXT + BP)S 11
groin  tr(S7( + SP)S) (1D
The optimal solution S in Eq. (11) is the eigenvectors of
(XXT + eI)"Y(XLXT + BP) since XX + €l is invert-
ible, where € is a very small positive value.

Update H and D, by fixing other variables

According to Eq. (2) in Section 2.1, the hyperedges are gener-
ated from the original training data and thus may result in an
inaccurate hypergraph. To do this, we design to learn the hy-
peredges from low-dimensional training data, whose redun-
dant and irrelevant features have been removed as much as
possible. Thus we use the following formulation to construct
the set of the hyperedges:

e; = {v;10(8"x;,87x;) <0.16,},i,5 =1,..,n (12

where &; is the average similarity between S7x; and each of
other low-dimensional training data.

Eq. (12) indicates that the proposed method learns: 1)
the incidence matrix H from the low-dimensional feature
space; 2) different numbers of the neighbors for different
samples. By contrast, both the previous simple graph meth-
ods [Nie et al., 2016; Hu er al., 2017; Zhang et al., 2017a]
and the previous hypegraph methods [Somu er al., 2016;
Raman et al., 2016; Zhang et al., 2017b] learn the graphs
from the original data as well as assume the same number
of neighbors for all the samples. Obviously, our method is
more flexible and robust than the previous methods in practi-
cal applications. This may be the first work to learn a dynamic
hypergraph from the low-dimensional training data for simul-
taneously conducting subspace learning and feature selection
in a formulation.

After yielding the incidence matrix H, it is easy to work
out D, via the following formulation:

5(61) = ZUJ'EE h(vjaei)7i7j = 17 sy (13)
D. = diag(9)

Update W and D,, by fixing other variables
By fixing other variables, we obtain the objective function on
the variable W as follows:

min ¢r(STX(I - D, *HWD_'H”D, *)X”S)

(14
+a|W|%, sit., wil=1 w; >0
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Table 1: The summarization of the used datasets.

Datasets | #(Samples) | #(Features) | #(Classes)
Pcmac 1943 3289 2
Madelon 2000 500 2
Cll 111 11340 3
Yeast 1484 1470 10
Usps 1854 256 10
Mnist 3495 784 10

1 1

By letting Q = DngTDv 2XSSTXTD, ?H and q=
diag(Q), according to that W is a diagonal matrix, Eq. (14)
is changed to the following formulation:

II‘lAi,n —qw + al|w|3, s.t., wIl=1, w; >0 (15)
We further change Eq. (15) into the following:
rr\lﬂiln ||lw — iq”%, stowll=1,w; >0 (16)
We use the lagrangian function to change Eq. (16) to:

1
L(w,n,7) = [w = 5-all3 - nwl—1)—yw (17)

where 7 > 0 and v > 0 are the lagrangian multipliers. Based
on the Karush—Kuhn-Tucker conditions, we can obtain the
close-form solution for w;(i = 1, ..., n), as:

1 .

w; = (%qi—kn)_ﬁ i=1,...,n (18)
where the values of a and 7 are obtained in Section 2.3. After
receiving w, we further obtain W = diag(w), and D,, via
the following formulation:

d(vz) = Evieei,eiGE w(ei)h<via ej)7i7j = 17 ey N (19)
D, = diag(d)

3 Experiment Analysis

In this section, we evaluate our proposed AHLFS with the
comparison methods in terms of the clustering accuracy of
the clustering tasks, on eight public UCI datasets [Frank et
al., 2010], whose detail is listed in Table 1.

The comparison methods include Laplacian Score (LS)
[He et al., 20051, Minimize the feature Redundancy for spec-
tral Feature Selection (MRFS) [Zhao et al., 2013], Struc-
tured Optimal Graph Feature Selection (SOGFS) [Nie et
al., 2016], Coupled Dictionary Learning Feature Selection
(CDLEFS) [Zhu et al., 2016al, Joint Hypergraph Learning and
Sparse Regression (JHLSR) [Zhang er al., 2016], and Base-
line which uses all features to conduct k means clustering.

In our experiments, we set the parameters’ range as
{1073,1072, ..., 103} where all the methods can achieve their
best results. We first use all the feature selection methods to
select the features (i.e., {20%, 30%, ...,80%} of all the fea-
tures) and then conduct k means clustering on the selected
features. We repeat k means clustering 20 times to report their
average results. Finally, we employ the clustering accuracy to
evaluate the clustering performance of all the methods.
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3.1 Cluster Accuracy

We list the clustering accuracy of all the methods with differ-
ent numbers of selected features in Figure 2.

Our proposed AHLFS achieves the best clustering perfor-
mance, followed by JHLSR, CDLFS, SOGFS, MRFS, LS,
and Baseline. For example, our method on average improves
by 6.0% and 4.9%, compared to Baseline (the worst compari-
son method) and JHLSR (the best comparison methods). The
reason may be that our method 1) conducts subspace learning
and feature selection in a framework, and 2) learns the hy-
pergraph from the low-dimensional training data. Moreover,
in the comparison methods, the methods (such as JHLSR
and SOGFS) satisfying one of these benefits outperform LS
which only conducts feature selection without considering
any relation among the data.

In Figure 2, two observations show that there are redun-
dant and irrelative features in the original training data and it
is necessary to conduct dimensionality reduction before con-
ducting cluster tasks. First, all the feature selection methods
outperform Baseline. For example, LS (the worst feature se-
lection method) on average improves by 3.7%, than Baseline,
on all the datasets in our experiments. Second, the clustering
accuracy of all feature selection methods first increases with
the increase of the dimensions. After reaching to a peak, the
clustering accuracy of these methods begins to decrease or
even unstable. This trend indicates that a small number of the
features cannot explain the samples well so that outputting
bad clustering performance, while the excessively large num-
ber of the features may add redundant features to degrade the
clustering performance.

3.2 Parameters Sensitivity and Convergence

Our objective function has two tuning parameters, i.e., & and
B. We fix the value of « in section 2.3. In Eq. (7), (3 is de-
signed to adjust the sparsity of weight matrix S, the larger the
value of (3, the more the sparsity of S (i.e., the less features
are selected to conduct the clustering tasks). Figure 3 demon-
strates the variation of the clustering accuracy with respect
to B on four datasets?. From Figure 3, our method achieved
the best clustering performance on some values of 3, which
produce sparsity, i.e., selecting a subset of the features. This
verified our conclusion again, i.e., it is necessary to conduct
dimensionality reduction on high-dimensional data. For ex-
ample, on the dataset Mnist, the best range of the values of 3
is [1073,107], which corresponds to keep around 30% di-
mensions of all the features, as in Figure 2.

Figure 4 shows the variation of the objective values in Eq.
(7), which shows that our proposed optimization method is
very efficient, i.e., converging within about 10 iterations.

4 Conclusion

This paper has proposed a novel unsupervised feature selec-
tion method by coupling the hypergraph learning and fea-
ture selection in an iteration way. In this way, the hyper-
graph is constructed to capture the complex structures of the

2QOther datasets have similar trends for the variation of 8 and we
did not report them due to the limited space.
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Figure 2: Clustering accuracy of all the methods on eight different datasets.
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Figure 4: The convergence of the objective function in Eq. (6) on four datasets.

low-dimensional training data without the impact of redun-
dant and irrelevant features. This makes our method reduce
the feature dimensions using different methods (i.e., subspace
learning and feature selection), and thus resulting in an effec-
tive and robust feature selection model. Experiment results on
benchmark datasets verified the effectiveness and the robust-
ness of the proposed method, compared to the state-of-the-art
feature selection method, in terms of clustering accuracy.
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