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Abstract

Visual emotion recognition aims to associate im-
ages with appropriate emotions. There are differ-
ent visual stimuli that can affect human emotion
from low-level to high-level, such as color, texture,
part, object, etc. However, most existing methods
treat different levels of features as independent en-
tity without having effective method for feature fu-
sion. In this paper, we propose a unified CNN-
RNN model to predict the emotion based on the
fused features from different levels by exploiting
the dependency among them. Our proposed ar-
chitecture leverages convolutional neural network
(CNN) with multiple layers to extract different lev-
els of features within a multi-task learning frame-
work, in which two related loss functions are in-
troduced to learn the feature representation. Con-
sidering the dependencies within the low-level and
high-level features, a bidirectional recurrent neural
network (RNN) is proposed to integrate the learned
features from different layers in the CNN model.
Extensive experiments on both Internet images and
art photo datasets demonstrate that our method out-
performs the state-of-the-art methods with at least
7% performance improvement.

1 Introduction
Emotion recognition is a crucial part of visual understand-
ing as it can benefit a broad range of applications, such
as recommendation, advertisement and option mining. Re-
cently, predicting the emotion from visual content has at-
tracted increasing attention [Machajdik and Hanbury, 2010;
Sartori et al., 2015; Rao et al., 2016b] . However, un-
like object recognition, understanding emotions from images
often goes beyond the recognition of individual objects as
emotion recognition needs to bridge the “affective gap” be-
tween low-level visual features and high-level emotional re-
actions. Therefore, emotion recognition is more difficult, due
to the complexity and subjectivity of emotions [Machajdik
and Hanbury, 2010].
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Figure 1: The same emotion can be evoked from different emotion
stimuli. The top three images are from “Contentment”, and the bot-
tom images are from “Fear”. We can find image emotion is related
to many factors, such as low-level features (e.g. color (a)), middle-
level features, (e.g. composition (b)), and high-level features, (e.g.
semantic content (c)). Best viewed in color.

Many studies have already proven that human’s emo-
tions are related to many factors from low-level to high-
level [Lang, 1979]. As shown in Fig. 1, the same emo-
tion can be evoked from different visual stimuli. Low-
level visual features, such as color (Fig.1 (a)), and shape,
were first used to classify emotions [Wang and He, 2008;
Kang, 2003]. Then, some studies utilized middle-level visual
features, such as composition (Fig.1 (b)), texture and empha-
sis, for emotion recognition [Joshi et al., 2011; Sartori et al.,
2015]. Moreover, the work [Machajdik and Hanbury, 2010]
indicated that high-level semantic content (Fig.1 (c)) of the
image, has significant impact for recognizing emotions from
pictures. However, most existing methods treat different lev-
els of features as independent cues, which degrades their per-
formances.

As deep convolutional neural networks (CNN) have shown
great success in semantic content recognition [Szegedy et al.,
2015; He et al., 2015], more and more works started to em-
ploy the CNNs for emotion recognition [You et al., 2016]. In
[Rao et al., 2016b], they designed three networks to repre-
sent different levels of features and integrated all three lev-
els of features to classify the emotions. In fact, a CNN
model itself can support recognition at several levels of ab-
straction (e.g., colors, edges, and objects). Many works have
been proposed to understand the representations learned by
CNNs and justify the assumption in [Zeiler and Fergus, 2014;
Zhou et al., 2014]. In which, they showed that different lay-
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Figure 2: Our unified CNN-RNN framework for visual emotion recognition. We first extract different levels of features from multiple
branches in the CNN model, which include low-level features (e.g. color, edge), middle-level features (e.g. texture) and high-level features
(e.g. part, object). Then different levels of features flow into our newly proposed Bidirectional GRU model to integrate these features and
exploit their dependencies. Two features generated from our Bi-GRU model are concatenated as the final features to predict the emotion from
images. (Best viewed in color.)

ers from each network prefer different parts of the image. For
instance, the earlier layers prefer low-level features, such as
color, line, and shape, while the later layers tend to be at-
tracted by the object parts and semantic content.

How to integrate different levels of features is crucial in
some existing methods as these methods aim to exploit mul-
tiple levels of representations. Many previous methods per-
formed feature fusion by using dimensionality reduction on
the feature vectors [Machajdik and Hanbury, 2010], or using
the max and avg aggregation function [Rao et al., 2016b].
However, existing fusion methods do not consider the depen-
dencies among different levels of features. We assume there
is a strong correlation among different levels of features. For
example, for middle-level features, such as textures, it is com-
posed of low-level features, such as lines, and meanwhile it
leads to high-level features, such as the parts of object. Such
dependency among different levels of features benefits visual
emotion recognition because we need to consider different
types of emotion stimuli in this task. To this end, we propose
a new bidirectional model for feature fusion by exploiting the
dependency among different levels of features. Experimental
results justify and demonstrate the effectiveness of our newly
proposed RNN method for feature fusion.

Specifically, we propose a unified CNN-RNN framework
for visual emotion recognition, which effectively learns dif-
ferent levels of features and integrates them by exploring the
dependencies. As shown in Fig. 2, the total framework con-
sists of two parts, i.e., feature extraction and feature fusion.
The image features are extracted from multiple branches in
CNN, which can represent different levels of features from
the local view to global view. When training the CNN, we
introduce the multi-task losses in order to learn more discrim-
inative representation, in which the classification loss aims to

classify the emotion while the contrastive loss aims to sat-
isfy the contrastive objective. Considering the dependencies
among different levels of features, a bidirectional RNNmodel
consisting of gated recurrent unit is proposed to capture this
relationship and integrate different levels of features together.
Finally, we concatenate the fused features extracted from our
RNN model to predict the emotion.

The main contributions are summarized as follows.

• We propose a CNN model with branches to extract
different levels of features, in which we introduce the
multi-task losses to satisfy the classification objective
and contrastive objective simultaneously.

• To our best knowledge, it is the first time to propose
the the bidirectional RNN model for feature fusion by
exploring the dependency among different levels of fea-
tures in this task. Extensive experiments demonstrate the
effectiveness of our bidirectional RNN model in combi-
nation with the CNN model.

• Experiments conducted on Internet image and Art photo
datasets demonstrate that our proposed method achieves
much better performance when compared with the state-
of-the-art methods.

The rest of this paper is organized as follows. We present
the related work in Section 2 and introduce our proposed
CNN-RNN model in Section 3. Experimental results are re-
ported in Section 4, followed by conclusion in Section 5.

2 Related Work
Previous researches on visual emotion recognition can be
roughly grouped into two categories, i.e., single-level feature-
based approaches and multi-level feature-based approaches.
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Pool1 Pool2 Pool3

Figure 3: The receptive fields of 3 samples of pool1, pool2, and
pool3 respectively. These image patches are the top activation re-
gions inside the receptive fields.

Many previous works utilized single-level emotion-related
features including Gabor andWiccest features [Yanulevskaya
et al., 2008], color-based features [Solli and Lenz, 2009],
global and local RGB histogram [Siersdorfer et al., 2010] and
so on. Due to the complexity of emotions, more and more
works were proposed to exploit multiple levels of features. In
[Machajdik and Hanbury, 2010], inspired by art and psychol-
ogy theory, authors designed a series of hand-crafted features
including color variance, balance, composition, and seman-
tic content. The work in [Zhao et al., 2014] investigated the
concept of principles-of-art and designed robust and invari-
ant visual features according to these principles. CNN based
features have also been employed in this task. In [Rao et
al., 2016b], authors utilized three different networks to cap-
ture different levels of visual features with high expense of
parameters. However, the previous works did not explicitly
exploit the dependency between low-level features and high-
level features and most of these works lack of effective fusion
methods for different levels of features.

Recurrent neural networks can effectively model the long-
term dependency in sequential data. It has been widely ap-
plied in many tasks including machine translation [Sutskever
et al., 2014], sequential modeling [Chung et al., 2015], and so
on. In this work, we show that the RNN can also exploit the
relation between low-level features and high-level features.

In multi-task learning, multiple related tasks are solved at
the same time by exploiting commonalities and differences
across tasks [Caruana, 1998]. Multi-task learning performs
well because what is learned for each task can help other
tasks be learned better. It has been successfully applied in
machine translation [Luong et al., 2015] and visual recogni-
tion [Donahue et al., 2014]. When training the CNN model,
we also employ the multi-task learning to predict the emotion
and learn the contrastive objective simultaneously.

3 CNN-RNN for Visual Emotion Recognition
As shown in Fig. 2, our proposed method mainly consists
of two components, CNN feature extractor and Bidirectional-
GRU (Bi-GRU) feature fusion. The input image is first fed to
the CNN model to extract multiple levels of features at differ-
ent branches. These features from different layers represent
different parts of images, such as line, color, texture, and ob-
ject, which characterize different levels of features from the
local view to global view. Our Bi-GRU model aims to inte-

FC

FC_1

Contrastive Loss Classification Loss

…

Layer

Channels

Kernel
Stride

conv11conv12 pool1 conv21 conv22 pool2 conv31 conv32 pool3 conv41 conv42 pool4

128

11x11
4

128 128

1x1
1

3x3
2

256 256 256

1x1
1

5x5
1

3x3
2

384 384 384

1x1
1

5x5
1

3x3
2

512 512 512

1x1
1

5x5
1

3x3
2

Branch 1

Branch1
conv

Branch2
conv

128

1x1
1

128

1x1
1

Branch3
conv

128

1x1
1

Branch4
conv

128

1x1
1

Receptive
Field

11 11 19 19 51 51 67 67 131 131 163 163 291 291 355 355

128

11
 X

 1
1

1X
1

128

3 
X 

3

128

128
1X1

Figure 4: Top table: the parameters of the main architecture of CNN.
Bottom panel: the pipeline for training CNN with multi-task learn-
ing, the first branch is taken as an example.

grate the different levels of features by exploiting the depen-
dency between low-level and high-level features. The inte-
grated features from our Bi-GRU model are concatenated for
visual emotion classification.

3.1 CNN with Multiple Branches
Compared with the top layer, the bottom layer and the
intermediate layer can provide complementary informa-
tion, including low-level features and middle-level features.
Based on the additional information, many methods achieved
promising performance [Yue-Hei Ng et al., 2015; Li et al.,
2012]. As shown in Fig. 2, we design four branches and one
main branch to learn different levels of features from the local
view to global view. The detailed architecture of our CNN is
summarized in the top table of Fig. 4. Motivated by the aux-
iliary classifier in GoogleNet [Szegedy et al., 2015], we gen-
erate different branches from each pooling layer by inserting
1×1 convolution layer and fully connected layer. The 1×1
convolution layer with 128 filters is used for dimension re-
duction and rectified linear activation. Furthermore, the main
branch integrates features from different layers to provide the
global representation.

To intuitively illustrate the features extracted from differ-
ent layers, we visualize the receptive fields for 3 channels
from different pooling layers in Fig. 3 according to [Zhou et
al., 2014]. We observe that, as the layers go deeper, the re-
ceptive fields with top activation are becoming more seman-
tically meaningful and more discriminative. There are five
branches from the pooling layers and different levels of fea-
tures extracted from multiple branches will be fed into our
new Bi-GRU model as the inputs of different time steps.

3.2 Multi-Stage Multi-Task Learning for CNN
Inspired by the training method in [Liu et al., 2015], our
model is trained in an incremental manner. Given a limited
number of training images, the multi-stage training strategy
can achieve better performance because it introduces much
less parameters at each stage. The details for the training pro-
cess are described in Section 4.1.
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Considering some emotions are with subtle differences and
it is thus difficult to use the traditional loss function to distin-
guish some images from those similar emotion categories. In
this work, we propose to use an additional contrastive loss
function to enforce the feature vectors extracted from each
pair of images from the same category to be close to each
other, and enforce the feature vectors extracted from each pair
of images from different categories to be far away with each
other. With this new contrastive loss function, we can better
classify the images from those similar emotion categories.

As shown in Fig. 4, when training the CNN model, a pair
of images a and b are fed to the CNN model to extract the vi-
sual featuresVa andVb. We predict the emotion category by
using the softmax function for each image, which is defined
as follows:

P (z = c|V) =
exp(WcV)∑
k exp(WkV)

(1)

where z is the emotion of the image andW is the weight ma-
trix with Wc and Wk representing its cth and kth column.
We employ the negative log-likelihood (NLL) function to de-
fine the classification loss:

Lcls(V) = − log(P (z = c|V)) (2)

Next, the contrastive objective is learned from the new max-
margin loss. If a pair of images are from the same category,
we use the L2 norm to penalize this pair of images with large
distance.

L(Va,Vb)
+ = ∥Va −Vb∥22 (3)

If a pair of images are from two different categories, we set
a margin µ to penalize the negative pair which is closer than
the margin.

L(Va,Vb)
− = max{0, µ− ∥Va −Vb∥22} (4)

Given a pair of images, the total loss can be defined as the
sum of classification loss and contrastive loss.

L = Lcls(Va) + Lcls(Vb) + [l = 1]L(Va,Vb)
+

+ [l = −1]L(Va,Vb)
− (5)

where l = 1 if a pair of images are from the same category
while l = −1 if they are from two different categories. The
total loss can be optimized in an end-to-end manner using
back propagation. After we finish training the CNN model,
we discard the total loss function and directly apply the fea-
tures extracted from the fully connected layer as the inputs to
our new Bi-GRU model.

3.3 Bi-GRU
In order to exploit the dependency among different levels of
features, we treat the features from the lower level to the
higher level and from the higher level to the lower level as
two sets of sequential data, and propose a new RNN based
approach with bidirectional connections to better model such
dependencies. Specifically, we propose a new bidirectional
GRU model to integrate the features from different levels as
our comprehensive experiments on the benchmark datasets
show that the GRU method can achieve better performance
than the LSTM method for visual emotion recognition.

outputoutput
reset gate

update gate update gate

Input: VV
+

Rhh h̃̃h

Backward GRU Forward GRU

reset gate

1� z1� zzz +

hhh̃̃h R

zz1� z1� z

Figure 5: The information flow of bidirectional gate recurrent unit.
The bidirectional GRU consists of a forward GRU (right) and a
backward GRU (left).

We use Vt to represent the visual features extracted from
the branch at the time step t. Then the total pipeline in a
GRU (illustrated in Fig. 5) at the time step t can be presented
as follows:

rt = σ(WvrVt +Whrht−1 + br) (6)
zt = σ(WvzVt +Whzht−1 + bz) (7)

h̃t = tanh(Wvh̃Vt +Whh̃(rt ⊙ ht−1 + bh̃)) (8)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (9)

where rt, zt, h̃t, ht are the reset gate, update gate, hidden
candidate, and hidden state respectively. W[·][·] are the weight
matrices and b[·] are the bias terms. In addition, σ stands
for the sigmoid function in our Bi-GRU and ⊙ represents the
element-wise multiplication. These gate mechanisms allow
the GRU to capture information from local to global view
and produce the output based on different levels of features.

Since the dependencies among different levels of features
can be estimated from both local to global view and global
to local view, we utilize the bidirectional GRUs that consist
of a forward GRU and a backward GRU (illustrated in Fig.
5) to model the relationships from two different views, which
follows the practical intuition. The final hidden states from
our bidirectional GRUs model are concatenated to be fed into
the softmax classifier.

H = [
→
hT ,

←
hT ] (10)

We also use the same loss, i.e. negative log-likelihood(NLL)
function, to train our Bi-GRU model.

L = Lcls(H) + λ∥θ∥2 (11)

where λ is the weight factor and θ represents the weight pa-
rameters in Bi-GRU.

4 Experiments
4.1 Implementation Details
During the training process, we apply the multi-stage training
strategy. Specifically, if the first branch training is finished,
the second branch training will begin with the first branch
fixed, and so on. When the whole CNN training is finished,
the Bi-GRU training process will begin and the CNN part will
be fine-tuned with a relatively small learning rate. The de-
tailed architecture of CNN is presented in the Table in Fig. 4,
and the size of the input patches is cropped as 375× 375 from
the corners and the center. The three fully connected layers
from the top to the bottom in Fig. 2 contain 1,024, 512 and
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512 neurons, respectively. The Bi-GRU has 512 hidden units
and we apply the dropout on top of the output of Bi-GRU to
avoid overfitting. We set λ = 0.5 in E.q (11) to balance the
loss function and the regularization term, and set margin µ
= 1. The batch size is set to 64, and the CNN part is opti-
mized by using the SGD with learning rate = 0.001 and Bi-
GRU is optimized by using Rmsprop [Tieleman and Hinton,
2012] with the learning rate as 0.0001. In addition, a staircase
weight decay is applied after 10 epoches. The parameters in
these optimizers are initialized by using the default setting.
Our model is implemented by using Torch7 [Collobert et al.,
2011] on one Nvidia GTX Titan X. Our model and results are
available online1.

4.2 Compared Methods
We compare our model with the following baseline methods.

• Machajdik [Machajdik and Hanbury, 2010]: It explores
the psychology and art theory to extract features that are
specific to the domain of artworks.

• ResNet-101 [He et al., 2015]: It is pre-trained based on
the ImageNet and fine-tunes by using emotion dataset.

• AlexNet+SVM [You et al., 2016]: It extracts the fea-
tures from AlexNet and uses SVM to classify emotions.

• Zhao [Zhao et al., 2014]: It uses hand-crafted
principles-of-art-based features to classify the emotions.

• Rao [Rao et al., 2016a]: It uses the hand-crafted
multiple-level features extracted from different image
patches.

• MldrNet [Rao et al., 2016b]: It uses multiple levels of
features extracted from three different networks.

To verify the contributions of different components in our
model, we design different variants of our model as follows:

• CNN+Without Branch+Softmax: It only uses the
main architecture of the CNN part to extract features and
classifies emotions with the softmax function.

• CNN+5 Branches+Ensemble: It uses five branches
(i.e. four branches and one main branch) to train five
classifiers respectively, then predicts emotions accord-
ing to the average category scores from five classifiers.

• CNN+5 Branches+LSTM: It uses five branches to ex-
tract the features at different levels, and utilizes a unidi-
rectional LSTM to integrate these features.

• CNN+5 Branches+GRU: It uses five branches to ex-
tract the features at different levels, and utilizes a unidi-
rectional GRU model to integrate these features.

• CNN+4/6 Branches+Bi-GRU: It uses four or six
branches (i.e. 3/5 branches and 1 main branch) to extract
the features, and utilizes our bidirectional GRUmodel to
integrate these features.

• CNN+5 Branches+Bi-GRU: It uses five branches to ex-
tract the features at different levels, and utilizes our bidi-
rectional GRU model to integrate these features.

Methods Accuracy
Zhao 46.52%
Rao 51.67%
AlexNet+SVM 57.89%
ResNet-101 60.82%
MldrNet 65.23%

CNN+W/O Branch+Softmax 59.61%
CNN+5 Branches+Ensemble 66.78%
CNN+5 Branches+LSTM 70.52%
CNN+5 Branches+Bi-LSTM 72.24%
CNN+5 Branches+GRU 71.33%
CNN+4 Branches+Bi-GRU 69.75%
CNN+6 Branches+Bi-GRU 72.97%
CNN+5 Branches+Bi-GRU 73.03%

Table 1: Emotion classification accuracy of different methods on the
large scale emotion dataset.
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Figure 6: The confusion matrix of MldrNet (left) and our model
(right).

4.3 Experiments on Large Scale Emotion Dataset
The large scale emotion dataset is recently published in [You
et al., 2016], which contains 8 different emotion categories
including positive emotions: Amusement, Awe, Contentment
and Excitement and negative emotions: Anger, Disgust, Fear
and Sad. The original dataset consists of 90,000 noisy images
collected from Instagram and Flicker by searching the emo-
tion keywords. They further labeled them by using Amazon
Mechanical Turk. Finally, there are 23,308 labeled images
for emotion recognition 2. We use the labeled dataset and the
same training/testing split as in [Rao et al., 2016b] to evaluate
these methods. Specifically, the dataset is randomly split into
a training set (80%, 18,532 images), a testing set (15%, 3,474
images) and a validation set (5%, 1,158 images).

We compare our proposed model and its variants with these
baseline methods on the large scale emotion dataset. The re-
sults are shown in Table 1. We have the following obser-
vations. First, the methods using deep representation out-
perform the methods using the hand-crafted features. Then
these models based on different levels of features (MldrNet
and ours) outperform the methods using single-level features

1https://github.com/WERush/Unified_CNN_RNN
2We can only download 23,164 images with accurate labels as

some images do not exist in the Internet now.
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Figure 7: Performance evaluation on the ArtPhoto dataset.

(ResNet and AlexNet). Moreover, our feature fusion meth-
ods using the RNN (LSTM/GRU) significantly outperform
all baseline methods. More specifically, our methods with
bidirectional GRU achieve better performance than methods
using LSTM or unidirectional GRU, which demonstrates the
bidirectional GRU approach plays a crucial role in our model.
The model with 4 branches performs worse than the five
branches due to the lack of high-level features, and the model
with 6 branches achieves comparable performance with the
five branches but with more parameters.

To further compare our method with MldrNet [Rao et al.,
2016b], we report the confusion matrix for each emotion. Ml-
drNet also utilizes the features from different levels to pre-
dict the emotions, however, it does not utilize the RNN based
feature fusion approach. As shown in Fig. 6, our method
achieves a more balanced performance, especially for some
negative emotions, such as anger and fear.

4.4 Experiments on Two Small Scale Datasets
Two small scale datasets including ArtPhoto and IAPS are
also widely used in previous works. The ArtPhoto dataset
[Machajdik and Hanbury, 2010] consists of 806 photos and
all images are collected from art sharing sites. In [Mikels et
al., 2005], 395 images are collected from the standard IAPS
dataset and labeled with arousal and valence values, which
formed the IAPS-Subset dataset.

For fair comparison, we follow the pervious work [Macha-
jdik and Hanbury, 2010] to evaluate different methods on the
small scale emotion datasets, in which the same “one against
all” strategy is used to train the emotion classifier. In addition,
we pre-train our model using the large scale emotion dataset
and fine-tune the last fully connected layer by using the small
scale emotion datasets. We separate the dataset into the train-
ing and testing sets with K-fold cross validation (K=5). The
true positive rate per class is reported to evaluate different
methods. Note that there are only eight images in the cate-
gory anger in the IAPS-Subset dataset, so we are unable to
train a classifier for this category, and we only report the re-
sults over seven categories for this dataset.

We compare our method with five baseline methods men-
tioned in section 4.2 on the two small scale datasets. The
results on the Artphoto dataset is presented in Fig. 7. We
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Figure 8: Performance evaluation on the IAPS-Subset dataset.

report not only the true positive rate per class but also the av-
erage true positive rate over all emotion categories in the last
column. According to the results, our model is better on aver-
age than other methods, especially for some difficult emotion
categories including Fear and Sad.

Fig. 8 shows the performances on the IAPS-Subset dataset.
From the results, we observe that the deep learning meth-
ods outperform methods using the hand-crafted features. The
methods based on multiple levels of features (MldrNet and
ours) generally outperform the methods which only utilize
the high-level features (AlexNet). Furthermore, although our
method does not achieve the best results in all emotion cat-
egories due to the limited number of training images, on av-
erage our method still achieves the best performance because
we exploit the dependency for feature fusion.

5 Conclusions
In this paper, we have proposed a unified CNN-RNN model
for visual emotion recognition. Our model leverages different
levels of features from multiple branches in CNN and effec-
tively integrates these features by exploiting the dependen-
cies among them with the bidirectional GRU approach. The
proposed method achieves much better performance than the
state-of-the-art methods. To the best of our knowledge, our
work is the first to utilize Bi-GRU for feature fusion, and the
in-depth studies demonstrate that our Bi-GRUmodel plays an
important role for performance improvement.

Acknowledgments
This work was supported in part by National Natural Sci-
ence Foundation of China (NSFC): 61332016, 61402431,
61620106009, U1636214 and 61650202, in part by Na-
tional Basic Research Program of China (973 Program):
2015CB351800, in part by Key Research Program of Fron-
tier Sciences, CAS: QYZDJ-SSW-SYS013. We also wish to
thank Yuexin Ma for discussion and anonymous reviewers for
their valueable comments.

References
[Caruana, 1998] Rich Caruana. Multitask learning. In

Learning to learn, pages 95–133. Springer, 1998.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3600



[Chung et al., 2015] Junyoung Chung, Kyle Kastner, Lau-
rent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A recurrent latent variable model for sequential
data. In NIPS, pages 2980–2988, 2015.

[Collobert et al., 2011] Ronan Collobert, Koray
Kavukcuoglu, and Clément Farabet. Torch7: A matlab-
like environment for machine learning. In BigLearn, NIPS
Workshop, number EPFL-CONF-192376, 2011.

[Donahue et al., 2014] Jeff Donahue, Yangqing Jia, Oriol
Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. Decaf: A deep convolutional activation
feature for generic visual recognition. In ICML, pages
647–655, 2014.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv:1512.03385, 2015.

[Joshi et al., 2011] Dhiraj Joshi, Ritendra Datta, Elena Fe-
dorovskaya, Quang-Tuan Luong, James Z Wang, Jia Li,
and Jiebo Luo. Aesthetics and emotions in images. IEEE
Signal Processing Magazine, 28(5):94–115, 2011.

[Kang, 2003] Hang-Bong Kang. Affective content detection
using hmms. In ACM MM, pages 259–262. ACM, 2003.

[Lang, 1979] Peter J Lang. A bio-informational theory of
emotional imagery. Psychophysiology, 16(6):495–512,
1979.

[Li et al., 2012] Liang. Li, Shuqiang. Jiang, and Qingming.
Huang. Learning hierarchical semantic description via
mixed-norm regularization for image understanding. IEEE
Trans. on Multimedia, 14(5), 2012.

[Liu et al., 2015] Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen-
Change Loy, and Xiaoou Tang. Semantic image segmenta-
tion via deep parsing network. In ICCV, pages 1377–1385,
2015.

[Luong et al., 2015] Minh-Thang Luong, Quoc V Le, Ilya
Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task
sequence to sequence learning. arXiv:1511.06114, 2015.

[Machajdik and Hanbury, 2010] Jana Machajdik and Allan
Hanbury. Affective image classification using features in-
spired by psychology and art theory. In ACM MM, pages
83–92. ACM, 2010.

[Mikels et al., 2005] Joseph A Mikels, Barbara L Fredrick-
son, Gregory R Larkin, Casey M Lindberg, Sam J Maglio,
and Patricia A Reuter-Lorenz. Emotional category data
on images from the international affective picture system.
Behavior research methods, 37(4):626–630, 2005.

[Rao et al., 2016a] Tianrong Rao, Min Xu, Huiying Liu, Jin-
qiao Wang, and Ian Burnett. Multi-scale blocks based im-
age emotion classification using multiple instance learn-
ing. In ICIP 2016, pages 634–638. IEEE, 2016.

[Rao et al., 2016b] Tianrong Rao, Min Xu, and Dong Xu.
Learning multi-level deep representations for image emo-
tion classification. arXiv:1611.07145, 2016.

[Sartori et al., 2015] Andreza Sartori, Dubravko Culibrk,
Yan Yan, and Nicu Sebe. Who’s afraid of itten: Using

the art theory of color combination to analyze emotions in
abstract paintings. In ACM MM, pages 311–320. ACM,
2015.

[Siersdorfer et al., 2010] Stefan Siersdorfer, Enrico Minack,
Fan Deng, and Jonathon Hare. Analyzing and predicting
sentiment of images on the social web. In ACMMM, pages
715–718. ACM, 2010.

[Solli and Lenz, 2009] Martin Solli and Reiner Lenz. Color
based bags-of-emotions. In International Conference on
Computer Analysis of Images and Patterns, pages 573–
580. Springer, 2009.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. Sequence to sequence learning with neural
networks. In NIPS, pages 3104–3112, 2014.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing
Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In CVPR, pages
1–9, 2015.

[Tieleman and Hinton, 2012] Tijmen Tieleman and Geoffrey
Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 4(2), 2012.

[Wang and He, 2008] Weining Wang and Qianhua He. A
survey on emotional semantic image retrieval. In ICIP,
pages 117–120, 2008.

[Yanulevskaya et al., 2008] Victoria Yanulevskaya,
JC Van Gemert, Katharina Roth, Ann-Katrin Her-
bold, Nicu Sebe, and Jan-Mark Geusebroek. Emotional
valence categorization using holistic image features. In
ICIP, pages 101–104. IEEE, 2008.

[You et al., 2016] Quanzeng You, Jiebo Luo, Hailin Jin, and
Jianchao Yang. Building a large scale dataset for image
emotion recognition: The fine print and the benchmark.
arXiv:1605.02677, 2016.

[Yue-Hei Ng et al., 2015] Joe Yue-Hei Ng, Fan Yang, and
Larry S Davis. Exploiting local features from deep net-
works for image retrieval. In CVPR Workshops, pages 53–
61, 2015.

[Zeiler and Fergus, 2014] Matthew D Zeiler and Rob Fergus.
Visualizing and understanding convolutional networks. In
ECCV, pages 818–833. Springer, 2014.

[Zhao et al., 2014] Sicheng Zhao, Yue Gao, Xiaolei Jiang,
Hongxun Yao, Tat-Seng Chua, and Xiaoshuai Sun. Ex-
ploring principles-of-art features for image emotion recog-
nition. In ACM MM, pages 47–56. ACM, 2014.

[Zhou et al., 2014] Bolei Zhou, Aditya Khosla, Agata
Lapedriza, Aude Oliva, and Antonio Torralba. Object
detectors emerge in deep scene cnns. arXiv:1412.6856,
2014.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3601


