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Abstract
Recently, Recurrent Neural Network (RNN) solu-
tions for recommender systems (RS) are becoming
increasingly popular. The insight is that, there ex-
ist some intrinsic patterns in the sequence of users’
actions, and RNN has been proved to perform ex-
cellently when modeling sequential data. In tradi-
tional tasks such as language modeling, RNN so-
lutions usually only consider the sequential order
of objects without the notion of interval. However,
in RS, time intervals between users’ actions are of
significant importance in capturing the relations of
users’ actions and the traditional RNN architectures
are not good at modeling them. In this paper, we
propose a new LSTM variant, i.e. Time-LSTM,
to model users’ sequential actions. Time-LSTM
equips LSTM with time gates to model time inter-
vals. These time gates are specifically designed,
so that compared to the traditional RNN solutions,
Time-LSTM better captures both of users’ short-
term and long-term interests, so as to improve the
recommendation performance. Experimental re-
sults on two real-world datasets show the superi-
ority of the recommendation method using Time-
LSTM over the traditional methods.

1 Introduction
Recurrent Neural Network (RNN) solutions have become
state-of-the-art methods on modeling sequential data. They
are applied to a variety of domains, ranging from language
modeling to machine translation to image captioning. With
remarkable success achieved when RNN is applied to afore-
mentioned domains, there is an increasing number of works
trying to find RNN solutions in the area of recommender sys-
tems (RS). [Hidasi et al., 2016a; Tan et al., 2016; Hidasi et al.,
2016b] focus on RNN solutions in one certain type of recom-
mendation task, i.e. session-based recommendations, where
no user id exists and recommendations are based on previous
consumed items within the same session. [Yu et al., 2016]
points out that RNN is able to capture users’ general inter-
est and sequential actions in RS and designs a RNN method
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Figure 1: wm in (a) represents the m-th word. In (b), im represents
the m-th consumed item and 4tm is the time interval between the
time when im and im+1 are consumed.

for the next-basket recommendations. The insight that RNN
works well in the above recommendation tasks is that, there
exist some intrinsic patterns in the sequence of users’ actions,
e.g. once a man buys a badminton racket, he tends to buy
some badmintons later, and RNN has been proved to perform
excellently when modeling this type of patterns.

However, none of the above RNN solutions in RS consid-
ers the time interval between users’ neighbour actions, while
these time intervals are important to capture the relations of
users’ actions, e.g. two actions within a short time tend to be
related and actions with a large time interval may aim at dif-
ferent goals. Therefore, it is important to exploit the time in-
formation when modeling users’ behaviors, so as to improve
the recommendation performance. We use Figure 1 to show
what the time interval is and how it makes RS different from
the traditional domains such as language modeling. Specifi-
cally, there is no notion of interval between neighbour words
(e.g. no interval between w1 and w2) in language modeling,
while there are time intervals between neighbor actions (e.g.
4t1 between i1 and i2) in RS. Traditional RNN architectures
are good at modeling the order information of sequential data
as in Figure 1 (a), but they cannot well model time intervals
in Figure 1 (b). Therefore, new models need to be proposed
to address this problem.

A recently proposed model, i.e. Phased LSTM [Neil et al.,
2016], tries to model the time information by adding one time
gate to LSTM [Hochreiter and Schmidhuber, 1997], where
LSTM is an important ingredient of RNN architectures. In
this model, the timestamp is the input of the time gate which
controls the update of the cell state, the hidden state and
thus the final output. Meanwhile, only samples lying in the
model’s active state are utilized, resulting in sparse updates
during training. Thus, Phased LSTM can obtain a rather fast
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learning convergence in the training phase. However, there
exist several challenges preventing Phased LSTM from be-
coming the best fit for recommendation tasks.

First of all, Phased LSTM models the timestamp, which is
the characteristic of one single action, rather than the time in-
terval between two actions. Hence, Phased LSTM may fail
to properly model actions’ relations. Secondly, users’ action
data is usually very sparse in most RS and Phased LSTM
would ignore users’ actions in its inactive state, which can-
not make full use of behaviors’ information for recommen-
dations. Thirdly, previous studies [Jannach et al., 2015] have
pointed out that both of users’ short-term and long-term in-
terests are of great importance for recommendations, but tra-
ditional RNN architectures (including Phased LSTM) are not
designed to distinguish and exploit these two types of inter-
ests simultaneously. Here, the short-term interest means that,
the recommended items should depend on recently consumed
items. For example, if a user just buys a Nikon camera, he is
very likely to pick-up a memory card, lenses and protection
cases in the near future. The long-term interest means that
the recommended items should also be influenced by users’
past actions, which reflect users’ general interest.

To cope with the above challenges, we propose Time-
LSTM, with three versions, to model users’ sequential actions
in RS. Actions’ time intervals are modeled by time gates in
Time-LSTM to capture actions’ relations. The first version
has only one time gate, which exploits time intervals to si-
multaneously capture the short-term and long-term interests.
There are two time gates in our second version. One is de-
signed to exploit time intervals to capture the short-term in-
terest for current item recommendations and the other is to
save time intervals to model the long-term interest for later
recommendations. In the third version, we use coupled in-
put and forget gates [Greff et al., 2016] to reduce the num-
ber of parameters, making our model more concise. Time-
LSTM with these time gates well captures users’ short-term
and long-term interests at the same time, so as to improve the
recommendation performance. In addition, Time-LSTM has
no inactive state to ignore actions, so that compared to Phased
LSTM, it can make better use of behaviors’ information. Our
experimental results demonstrate the effectiveness of Time-
LSTM. The contributions of this paper are as follows:

• Our proposed model, Time-LSTM, equips LSTM with
carefully designed time gates, so that it is not only good
at modeling the order information in sequential data,
but can also well capture the interval information be-
tween objects. This is a general idea (not limited to RS)
and other variants of Time-LSTM could be developed to
model the event-based sequential data [Neil et al., 2016]
in other tasks. Note that different from Phased LSTM,
which considers the timestamp and may implicitly cap-
ture the interval information, we explicitly model time
intervals. In addition, compared to Phased LSTM, Time-
LSTM exploits the information of more samples.

• We propose three versions of Time-LSTM. Compared to
existing RNN solutions, these Time-LSTM versions can
better capture users’ short-term and long-term interests
at the same time, so as to improve the recommendation

performance.
• Our proposed models are evaluated on two real-world

datasets, and the experimental results show the superi-
ority of the recommendation method using Time-LSTM
over traditional methods.

2 Ralated Work
2.1 LSTM and Its Variants
LSTM: The commonly-used update equations [Graves, 2013]
of LSTM are as follows:

im = σi(xmWxi + hm−1Whi + wci � cm−1 + bi), (1)
fm = σf (xmWxf + hm−1Whf + wcf � cm−1 + bf ), (2)
cm = fm � cm−1

+ im � σc(xmWxc + hm−1Whc + bc), (3)
om = σo(xmWxo + hm−1Who + wco � cm + bo), (4)
hm = om � σh(cm), (5)

where im, fm, om represent the input, forget and output
gates of the m-th object respectively. cm is the cell activation
vector. xm and hm represent the input feature vector and the
hidden output vector respectively. Typically, σi, σf , σo are
sigmoidal nonlinearities and σc, σh are tanh nonlinearities.
Weight parametersWhi,Whf ,Who,Wxi,Wxf andWxo con-
nect different inputs and gates with memory cells and outputs.
bi, bf and bo are corresponding biases. The update equation
of cm has two parts, one is a fraction of the previous cell state
cm−1 that is controlled by fm, and the other is a new input
state created from the element-wise (Hadamard) product, de-
noted by �, of im and the output of the nonlinearity σc. The
operation of input, forget and output gates can be further in-
fluenced by optional peephole [Gers and Schmidhuber, 2000]
connection weights wci, wcf , wco.
Coupled input and forget gates: One variant of LSTM is to
use coupled input and forget gates [Greff et al., 2016] instead
of separately deciding what to forget and what new informa-
tion to add. It drops Eq. (2) and modifies Eq. (3) to:

cm = (1− im)� cm−1
+ im � σc(xmWxc + hm−1Whc + bc). (6)

Phased LSTM: Phased LSTM [Neil et al., 2016] is a state-of-
the-art RNN architecture for modeling event-based sequential
data. It extends LSTM by adding the time gate km. km is con-
trolled by three parameters: τ , ron and s, where τ represents
the total period of the model, s represents the phase shift and
ron is the ratio of the open period to the total period. τ , ron
and s are learned by training. km is formally defined as:

φm =
(tm − s)mod τ

τ
,

km =


2φm

ron
, if φm < 1

2ron,

2− 2φm

ron
, if 1

2ron < φm < ron,

αφm, otherwise,

(7)

where tm is the timestamp and φm is an auxiliary variable.
The gate km has three phases: km rises from 0 to 1 in the first
phase and drops from 1 to 0 in the second phase (active state).
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During the third phase, the model is in the inactive state. The
leak rate α (close to 0 in training and equal to 0 in testing) is
to propagate gradient information [He et al., 2015]. Updates
to cm and hm are permitted only in the active state. It rewrites
Eq. (3) and Eq. (5) in LSTM to:

c̃m = fm � cm−1
+ im � σc(xmWxc + hm−1Whc + bc), (8)

cm = km � c̃m + (1− km)� cm−1, (9)

h̃m = om � σh(c̃m), (10)

hm = km � h̃m + (1− km)� hm−1. (11)
Due to the setting of inactive state, Phased LSTM cannot
make full use of users’ actions when applied to RS.

2.2 RNN Solutions in RS
[Hidasi et al., 2016a; Tan et al., 2016; Hidasi et al., 2016b]
focus on RNN solutions in session-based recommendations.
[Hidasi et al., 2016a] trains RNN with a ranking loss on one-
hot representations of item-IDs in old sessions. The RNN is
then used to provide recommendations on new user sessions.
[Tan et al., 2016] is an extension to [Hidasi et al., 2016a],
where it proposes two techniques, i.e. data augmentation and
a method to account for shifts in the input data distribution, to
improve the model performance. [Hidasi et al., 2016b] con-
siders a slightly different setting, where items’ rich features
exist. It introduces parallel RNN architectures to model clicks
and items’ features. [Yu et al., 2016] designs a RNN method
for the next-basket recommendations.

In this paper, we explore RNN solutions with a more com-
mon setting in the RS community, where we know the user id,
but no session information is known. [Yu et al., 2016] directly
applies RNN to RS, without considering time intervals, while
we add time gates to LSTM, which can exploit time intervals
to improve the recommendation performance.

2.3 The Short-term and Long-term Interests
Most existing algorithms in RS, e.g. BPR (Bayesian Person-
alized Ranking) [Rendle et al., 2009], matrix factorization
[Koren et al., 2009], tensor models [Zhao et al., 2015], focus
on modeling users’ long-term interest, while the short-term
interest seems to play a minor role in RS research. [Liu et al.,
2010] adapts a collaborative filtering approach to the user’s
current interest mined by content-based methods. Some ap-
proaches, e.g. [Aghabozorgi and Wah, 2009], [AlMurtadha
et al., 2010], apply collaborative filtering and association
rules to match users’ recent actions. [Jannach et al., 2015]
proposes that both of users’ short-term and long-term inter-
ests are important in online shopping scenarios and quantifies
several combining strategies. Semi-Markov Process (SMP)
and Markov Renewal Process (MRP) [Janssen and Limnios,
2013] also aim at modeling sequential processes with time
intervals. However, SMP and MRP cannot capture the long-
term interest in our task, due to their Markov property.

3 Task Definition and Models’ Adaptations
3.1 Task Definition
Let U = {u1, u2, · · · } be a set of users and I = {i1, i2, · · · }
be a set of items. For each user u, his consuming history Hu

is given by Hu := [(iu1 , t
u
1 ), (i

u
2 , t

u
2 ), · · · , (iunu

, tunu
)], where

(ium, t
u
m) means that u consumes hism-th item ium at time tum.

Our task is to provide a list of recommended items Il ⊆ I
given a certain user up at a certain time tq .

3.2 Adaptations of LSTM and Phased LSTM
We adapt LSTM to our task in two ways. The first way is that,
we simply record the sequence of items, regardless of the time
information. Thus xm in Eq. (1) is equivalent to ium in our
task. The second way considers the time information. We first
transform Hu to [(iu1 , t

u
2 − tu1 ), (iu2 , tu3 − tu2 ), · · · , (iunu

, tq −
tunu

)]. Then xm is equivalent to (ium, t
u
m+1 − tum) in our task.

For adaptations of LSTM and all its variants, the model’s out-
put is a probability distribution over all items calculated by
hm. The loss is based on the output and ium+1. We use one-
hot representations for ium and one entry for tum+1 − tum.

For Phased LSTM’s adaptation, xm in Eq. (1) is equivalent
to ium in our task. tm in Eq. (7) is equivalent to tum+1.

4 Time-LSTM
When applying LSTM and its variants to RS, xm in Eq. (3)
contains the information of the last item that a user consumed.
Since this is the user’s most recent action, we can exploit
xm to learn his/her current short-term interest. On the other
hand, cm−1 contains the information of this user’s previous
actions, thus cm−1 reflects his/her long-term interest. How-
ever, to what extent xm reflects current short-term interest
varies in different situations, e.g. if xm is consumed long
time ago, it can hardly reflect current consuming goal. In
Time-LSTM, we use time gates to control the influence of
the last consumed item (xm) on current recommendations.
In addition, these time gates help to store time intervals in
cm, cm+1 · · · , which reflect users’ long-term interest in later
recommendations. Therefore, not only previously consumed
items, but also corresponding time intervals are considered
when modeling users’ long-term interest. Three versions of
Time-LSTM are designed as follows.

4.1 Time-LSTM 1
This version adds one time gate Tm to LSTM, which is shown
in Fig. 2 (a). Based on the update equations (Eq. (1)∼(5)) of
LSTM, we add one update equation for Tm as:

Tm = σt(xmWxt + σ4t(4tmWtt) + bt). (12)

We then modify Eq. (3) and Eq. (4) to:

cm = fm � cm−1
+ im � Tm � σc(xmWxc + hm−1Whc + bc), (13)

om = σo(xmWxo

+4tmWto + hm−1Who + wco � cm + bo). (14)

4tm is the time interval and σ4t is a sigmoid function. Tm
is helpful in two ways. As shown in Eq. (13), on one hand,
σc(xmWxc+hm−1Whc+ bc) is filtered by not only the input
gate im, but also the time gate Tm. So Tm can control the
influence of xm on current recommendations. On the other
hand,4tm is firstly stored in Tm, then transferred to cm, and
would be transferred to cm+1, cm+2 · · · . Thus Tm helps to
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Figure 2: Model architectures of (a) Time-LSTM 1, (b) Time-LSTM 2 and (c) Time-LSTM 3. Time-LSTM 1 has one time gate Tm, which
is mainly controlled by the time interval 4tm instead of the timestamp tm. Time-LSTM 2 has two time gates, i.e. T1m and T2m, where
T1m is designed to exploit time intervals for current item recommendations and T2m is to store time intervals for later recommendations.
Time-LSTM 3 uses coupled input and forget gates.

store 4tm to model users’ long-term interest (cm, cm+1 · · · )
for later recommendations. Note that, in a similar way, we
are able to generalize Tm to other RNN architectures, such as
GRU [Cho et al., 2014].
Tm is fully learned from data. However, as a priori knowl-

edge, we know that given a certain last consumed item, if it is
more recently consumed, it should have a larger influence on
current recommendations. We want to incorporate this priori
knowledge into the design of the time gate.

4.2 Time-LSTM 2
Two time gates, i.e. T1m and T2m, are designed in this ver-
sion. T1m is to control the influence of the last consumed
item on current item recommendations, and T2m is to store
time intervals to model users’ long-term interest for later rec-
ommendations. The architecture is shown in Fig. 2 (b).
Based on the update equations of LSTM, we first add two
update equations for T1m and T2m as:

T1m = σ1(xmWx1 + σ4t(4tmWt1) + b1),

s.t. Wt1 ≤ 0, (15)
T2m = σ2(xmWx2 + σ4t(4tmWt2) + b2). (16)

We then modify Eq. (3)∼(5) to:

c̃m = fm � cm−1
+ im � T1m � σc(xmWxc + hm−1Whc + bc), (17)

cm = fm � cm−1
+ im � T2m � σc(xmWxc + hm−1Whc + bc), (18)

om = σo(xmWxo

+4tmWto + hm−1Who + wco � c̃m + bo), (19)
hm = om � σh(c̃m). (20)

Just as the input gate im in Eq. (17), T1m can be regarded
as another filter, so that σc(xmWxc + hm−1Whc + bc) is fil-
tered by not only im but also T1m. We use a new cell state
c̃m to store the result, which is then transferred to the out-
put gate om, the hidden state hm and finally influences cur-
rent item recommendations. T2m firstly stores 4tm, then
transfers it to cm, and would transfer it to cm+1, cm+2 · · ·
to model users’ long-term interest for later recommenda-
tions. Thus in Eq. (18), T2m acts more as the role of
σc(xmWxc + hm−1Whc + bc).

Through the constraint Wt1 ≤ 0 in Eq. (15), T1m can
exploit the priori knowledge described in section 4.1 to con-
trol the influence of xm on current item recommendations.
Specifically, if 4tm is smaller, according to Eq. (15), T1m
would be larger. Then according to Eq. (17), xm would have
a larger influence on current item recommendations (i.e. xm
better reflects the short-term interest, thus we increase its in-
fluence). On the other hand, if 4tm is larger, with a similar
analysis, xm would have a smaller influence and correspond-
ingly cm−1 would more significantly affect current recom-
mendations (i.e. we are more uncertain about the short-term
interest, thus we increase the influence of the long-term inter-
est). For T2m, however, it doesn’t make sense to impose such
constraint on Wt2 in Eq. (16) in terms of modeling users’
long-term interest for later recommendations. This also ex-
plains why we design two time gates in this version, i.e. to
distinguish and customize the role for current recommenda-
tions and the role for later recommendations.

4.3 Time-LSTM 3
Inspired by [Greff et al., 2016], this version (Fig. 2 (c)) uses
coupled input and forget gates. Specifically, based on Time-
LSTM 2, we remove the forget gate, and modify Eq. (17) and
Eq. (18) to:

c̃m = (1− im � T1m)� cm−1
+ im � T1m � σc(xmWxc + hm−1Whc + bc), (21)

cm = (1− im)� cm−1
+ im � T2m � σc(xmWxc + hm−1Whc + bc). (22)

Since T1m is regarded as a filter (similar to im), thus we re-
place the forget gate with (1−im�T1m) in Eq. (21). T2m is
to store time intervals (similar to σc(xmWxc + hm−1Whc +
bc)), thus we use (1−im) in Eq. (22). The difference between
Time-LSTM 3 and [Greff et al., 2016] lies in that (1) time
gates exist in Time-LSTM 3 but not in [Greff et al., 2016]
and, (2) Time-LSTM 3 has one additional coupled gate and
one additional cell state.

The way we adapt Time-LSTM to our task is similar to
the second way of LSTM’s adaptations. Firstly, we transform
Hu to [(iu1 , t

u
2 − tu1 ), (iu2 , tu3 − tu2 ), · · · , (iunu

, tq− tunu
)]. Then

xm in Time-LSTM is equivalent to ium in our task. 4tm is
equivalent to tum+1 − tum.
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4.4 Training
The parameters in Time-LSTM models are optimized by
AdaGrad [Duchi et al., 2011], a variant of Stochastic Gra-
dient Descent (SGD). For the constraint Wt1 ≤ 0 in Eq. (15),
we use the projection operator described in [Rakhlin et al.,
2012] to handle it, i.e. if we have Wt1 > 0 during training
iterations, we reset Wt1 = 0.

In real-world applications, users’ new consuming actions
are continually generated. Other users’ consuming histo-
ries help to provide “collaborative information” for the tar-
get user’s recommendations. Meanwhile, this user’s previous
consuming history can provide “personalized information”
for his later recommendations. Thus we want to make use of
all available consuming histories (including newly generated
actions) for recommendations, i.e. an online learning setting
[Zhao et al., 2016]. To achieve this, we adapt the dynamic up-
dated model in [Mikolov et al., 2010] to our task as follows.
Step one, our model is trained on users’ existing consuming
histories until convergence. Step two, we repeat following
procedure: After n (increase n for efficiency) new actions
being generated, we update previous parameters once by ap-
plying AdaGrad to users’ updated consuming histories. We
may repeat above two steps periodically. The period can be
tuned considering both of the recommendation performance
and computational cost.

5 Experiments
5.1 Datasets and Experiment Settings
Our proposed algorithm is evaluated on two datasets,
LastFM1 and CiteULike2. For the LastFM dataset, we ex-
tract tuples <user id, song id, timestamp>, where each rep-
resents the action that user user id listens to song song id at
time timestamp. For the CiteULike dataset, one user anno-
tating one research paper at a certain time may have several
records, in order to distinguish different tags. We merge them
as one record and extract tuples <user id, paper id, times-
tamp>. Note that different from works such as [Zhu et al.,
2016], tags are not exploited for recommendations in this pa-
per. Users and items with few interactions are filtered. These
tuples are organized by user id and ordered by timestamp.
Table 1 shows their statistics.

For each dataset, 80% users are randomly selected as train-
ing users and their tuples are used for training. The remaining
users are test users. For each test user u, its ordered tuples
Tu := [(u, iu1 , t

u
1 ), (u, i

u
2 , t

u
2 ), · · · , (u, iun′

u
, tun′

u
)] would gen-

erate n′u − 1 test cases, where the k-th test case is to perform
recommendations at time tuk+1 given u’s consuming history
[(iu1 , t

u
1 ), (i

u
2 , t

u
2 ), · · · , (iuk , tuk)] with the ground truth iuk+1.

5.2 Compared Methods
We compare Time-LSTM to the following methods. The
method in [Yu et al., 2016] is not compared, because its set-
ting is different from ours and some techniques, e.g. pooling
operations, cannot be applied to our task.

1http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset
/lastfm-1K.html

2http://www.citeulike.org/faq/data.adp

Table 1: Statistics of Two Datasets
LastFM CiteULike

Number of Users 987 1625
Number of Items 5000 5000

Number of Actions 818767 35934

CoOccur+BPR: This is a combining strategy proposed in
[Jannach et al., 2015], where CoOccur is to capture the short-
term interest and BPR is to capture the long-term interest.
Specifically, CoOccur ranks items by the conditional prob-
ability of item co-occurring in users’ sessions (association
rules). Other items are appended to the recommendation list
(if it is not filled up yet) ranked by BPR. We do not use Fea-
tureMatching and RecentlyViewed in [Jannach et al., 2015].
The reason is that, FeatureMatching requires items’ attribute
information, which is not available in our task. Recent-
lyViewed simply recommends recently viewed items. How-
ever, in most cases, we want the RS to provide us with favor-
able items that we ignore, since even without the help of RS,
we can still find items that we are familiar with (e.g. items
that we recently viewed or comsumed). This method needs
the session information. We use a commonly used approach,
timeout [Huang et al., 2004], to identify sessions in users’
consuming histories.
Session-RNN: This method [Hidasi et al., 2016a] uses RNN
to capture the short-term interest based on items within a ses-
sion in session-based recommendations. The long-term in-
terest is not considered. The session information is extracted
as described in CoOccur+BPR. We use the publicly available
python implementation3 of Session-RNN.
LSTM: The first way of LSTM’s adaptation in section 3.2.
LSTM+time: The second way of LSTM’s adaptation in sec-
tion 3.2.
Phased LSTM: Phased LSTM’s adaptation in section 3.2.

The dynamic updated model described in section 4.4 is ap-
plied to LSTM and its variants, where the tuples of training
users are used to train the model for step one. A similar updat-
ing strategy is applied to CoOccur+BPR and Session-RNN to
ensure fair comparisons. The number of units is set to 512
for LSTM and its variants. The other hyperparameters in all
methods are tuned via cross-validation or set as in the original
paper. Our code is publicly available4.

5.3 Evaluations
Recall@10: Each target item ig (ground truth) is combined
with 100 other random items. These 101 items are then
ranked by the method and the top 10 items form the recom-
mendation list. Recall@10 is defined as:

Recall@10 =
nhit

ntestcase
. (23)

nhit is the number of test cases where ig is in the recommen-
dation list and ntestcase is the number of all test cases.
MRR@10 (Mean Reciprocal Rank): This is the average of
reciprocal ranks of ig in the recommendation list. The recip-
rocal rank is set to 0 if the rank is above 10. MRR@10 takes
into account the rank of the item.

3https://github.com/hidasib/GRU4Rec
4https://github.com/DarryO/time lstm
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Each metric is evaluated 10 times and averaged. These two
metrics are also used in [Jannach et al., 2015].

5.4 Results and Discussions
Method Comparison: As shown in Table 2, Time-LSTM
models generally outperform other baselines. Time-LSTM 2
and Time-LSTM 3 have better performance than Time-LSTM
1, which demonstrates the effectiveness of using two time
gates instead of one time gate. T1m = 1 and T2m = 1 are the
results when we rewrite Eq. (15) to T1m = 1 and Eq. (16) to
T2m = 1, respectively. They perform worse than the original
version, which indicates that using our designed T1m to filter
the input and T2m to store time intervals can both improve
the performance. LSTM+time performs slightly worse than
LSTM in CiteULike, which may be due to the usually large
time intervals in CiteULike (after normalization, its perfor-
mance improves, but is still worse than Time-LSTM models).
Performance on Cold and Warm Users: We regard users
as cold if they have consumed few items and warm if the op-
posite. Due to space limitation, we only show the results of
Recall@10 in LastFM. As shown in Figure 3, the index k
in the x-axis represents the k-th test cases, where we predict
test users’ (k + 1)-th actions given all the actions of training
users and the first k actions of test users. (a) demonstrates that
Time-LSTM performs better for warm users (larger indexes
indicate that users have consumed more items). The reason
is that with more actions contained in cm−1, Time-LSTM can
better model the long-term interest for recommendations. For
cold users, the performance of Time-LSTM is comparable to
that of Session-RNN. This is because that although with few
consuming actions, Time-LSTM can still well perform rec-
ommendations by capturing the short-term interest. The per-
formance in (b) is better than that in (a), which proves the ef-
fectiveness of the dynamic updated model. The performance
improvement from (a) to (b) is more remarkable for warm
users, because the model is updated more times when users
are warm than when they are cold.
Number of Units and Efficiency: We vary the number of
units (nu) to see how the performance and training time
change. The training time is evaluated on a GeForce GTX
Titan Black GPU. Due to space limitation, we only show the
results of Recall@10 and the training time in LastFM. As
shown in Figure 4 (a), increasing nu can improve Recall@10,
but the improvement slows down or it even deteriorates when
nu is larger than 128. On the other hand, as shown in Fig-
ure 4 (b), the training time is continually increasing when nu
varies, and it is expensive to move from 512 units to 1024.
Thus it is appropriate to assign [128, 512] to nu. Time-LSTM
3 always has a less training time than Time-LSTM 2 when nu
varies. The reason is that the coupled input and forget gates
in Time-LSTM 3 reduce the number of parameters and speed
up the training process.

6 Conclusions
We propose Time-LSTM to model users’ sequential actions
in RS, where time intervals between neighbour actions are
modeled by time gates in Time-LSTM. We design three ver-
sions of Time-LSTM, which well capture users’ short-term

Table 2: Method Comparison
LastFM CiteULike

Recall@10 MRR@10 Recall@10 MRR@10
CoOccur+BPR 0.3217 0.1401 0.6954 0.2901
Session-RNN 0.3405 0.1573 0.7129 0.2997

LSTM 0.2451 0.0892 0.6824 0.2889
LSTM+time 0.2628 0.0977 0.6655 0.2831

Phased LSTM 0.2360 0.0859 0.6087 0.2539
Time-LSTM 1 0.3566 0.1853 0.7428 0.3179

Time-LSTM 2
original 0.3909 0.2250 0.7476 0.3377

T1m = 1 0.3236 0.1812 0.7058 0.3044
T2m = 1 0.3643 0.2073 0.7014 0.3105

Time-LSTM 3
original 0.3990 0.2657 0.7585 0.3660

T1m = 1 0.3742 0.2212 0.6874 0.3046
T2m = 1 0.3677 0.2249 0.7128 0.3232
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Figure 3: Recall@10 evaluated on different indexes of users’ test
cases in LastFM. The dynamic updated model is applied in (b), but
not in (a).
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Figure 4: (a) and (b) show how Recall@10 and the training time
change when we vary the number of units in LastFM.

and long-term interests at the same time, so as to improve
the recommendation performance. Experimental results on
two real-world datasets also show the effectiveness of Time-
LSTM. In future work, we would design new versions of
Time-LSTM to simultaneously model different types of be-
haviors in other application scenarios, e.g. click/collect/add-
to-cart/pay-for in e-commerce platforms. In addition, our
method cannot generate recommendations for users who have
no actions. Inspired by [Wang et al., 2016a; 2016b], we will
explore the active learning solutions to this issue.
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