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Abstract

Technologies are increasingly taking advantage of
the explosion in the amount of data generated by
social multimedia (e.g., web searches, ad targeting,
and urban computing). In this paper, we propose
a multi-view learning framework for presenting the
construction of a new urban movement knowledge
graph, which could greatly facilitate the research
domains mentioned above. In particular, by view-
ing GPS trajectory data from temporal, spatial,
and spatiotemporal points of view, we construct
a knowledge graph of which nodes and edges are
their locations and relations, respectively. On the
knowledge graph, both nodes and edges are repre-
sented in latent semantic space. We verify its util-
ity by subsequently applying the knowledge graph
to predict the extent of user attention (high or low)
paid to different locations in a city. Experimen-
tal evaluations and analysis of a real-world dataset
show significant improvements in comparison to
state-of-the-art methods.

1 Introduction

With the development of mobile devices, the global position-
ing system (GPS), and Web 2.0 technologies, the explosion
of social networking services (SNSs) has led to a wealth of
research based on the use of social media content and vari-
ous social graphs. For example, major search engines, such
as Google, Bing, and Yahoo, now incorporate user generated
content (UGC) and trend analysis in their results.

One problem of significant interest is that of predicting user
attention to locations in a city. As one instance of this prob-
lem, point-of-interest (POI) recommendation systems have
emerged recently [Bao er al., 2015]. Unlike conventional rec-
ommendation systems that generally require users to express
their preferences by explicitly providing ratings for items
(e.g., books or movies), POl recommendation systems always
observe implicit user-location feedback matrices. In addition,
the sparsity of a user-location matrix is much higher than that
of a traditional user-item rating matrix. For example, the spar-
sity of the Netflix dataset [Salakhutdinov and Mnih, 2007] is
around 99%, whereas the sparsity of the Gowalla dataset [Cho
et al.,2011] is about 99.98%.
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In related studies, these problems were addressed, in ap-
proximate terms, by considering three key relations: (1) user-
location relation; (2) user-user relation; and (3) location-
location relation. In terms of the user-location relation, users’
travel histories (e.g., check-in behavior) have been well inves-
tigated to predict their preferences [Liu er al., 2016b] [Wang
et al., 2015]. For the user-user relation, the physical distances
between users or friendship relations (e.g., online social net-
works) are considered, e.g., [Yang et al., 2013] [Jamali and
Ester, 2010]. However, few studies have comprehensively
taken the location-location relation into consideration.

The relations among locations can be explained in different
ways. In [Yang et al., 2013], the authors first propose a POI
recommendation method by constructing a location similarity
network. The state-of-the-art recommendation method [Lian
et al., 2014] incorporated the physical distances between lo-
cations to significantly improve performance. However, con-
sidering only the similarity and physical distance is insuffi-
cient. For example, the typical home <> work relation [Cho
et al., 2011] would be filtered out because of a relatively long
distance. Even worse, a user living in residential location A
would rarely pay attention to a similar residential location B.
As a result, in addition to learning user preferences [Liu et
al., 2016b] [Wang er al., 20151, a well-structured location-
location graph is necessary.

In this paper, a matrix-factorization-based framework is
proposed to construct a comprehensive urban movement
knowledge graph for embedding the location-location rela-
tions. Our method analyzes the observed GPS points from
temporal, spatial, and temporal-spatio views to jointly learn
the latent representations of locations (nodes on the graph)
and relations (edges on the graph). Furthermore, to extract
meaningful relations (lifestyles), two new unsupervised re-
lation extraction methods are proposed. The utility of our
knowledge graph is verified by introducing an application to
predict user attention to locations on a real-world dataset. An
encouraging result is obtained, thereby indicating our graph
encodes deep insight into the location-location relation.

Overall, the main contributions are summarized as follows:

1. From an application standpoint, we construct a com-
prehensive location-location knowledge graph for urban
computing (Section 3). In Section 3.4, we verify its util-
ity by applying it to predict user attention to locations in
a city. Encouraging results are obtained in Section 4.
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2. From a theoretical standpoint, two new unsupervised re-
lation extraction methods are devised in Section 3.3. For
label-free learning tasks, we proposed a new way for en-
coding multi-view prior knowledge into loss functions.

2 Preliminary

We first define the input (7rs) and output (G) of our problem,
and then provide an overview of our work.

Definition 1 (GPS trajectory): A trajectory T'r is a sequence
of GPS points, i.e., p1 — p2 — ... = pn. Each point p
consists of {id, datetime stamp, longitude, and latitude}.

Definition 2 (Urban movement knowledge graph): The
knowledge graph is denoted as G(V, R), where V is the loca-
tion set of v;, and R is the set of relations r(v;,v;) between
v; and v;. After learning, each v and r are represented in a
vector format.

From the GIS standpoint, a location v is a polygon, which is a
closed shape defined by a connected sequence of {longitude,
latitude} coordinate pairs. Therefore, “location” could be a
landmark, Point of Interest (POI), small spot, large area, etc.
Unlike the conventional supervised relation prediction on
existing knowledge graphs (e.g., Freebase) [Nickel et al.,
2016], we face a new challenge of extracting location-
location relations in an unsupervised manner. To solve this
problem, in Sections 3.1 and 3.2, we first mine relations’ con-
text knowledge from temporal and spatial views, respectively.
Then, in Section 3.3, by jointly considering the spatiotempo-
ral context knowledge, we proposed two novel methods for
unsupervised relation extraction. In Section 3.4, an applica-
tion is further introduced for the graph’s utility verification.

3 Knowledge Graph Construction

3.1 Temporal View-based Construction

By mapping all the points p in T'rs to locations V', we could
easily obtain a time series matrix S € RIVI*", where |V| and
h are the number of locations and hours, respectively. When
h = 24 x 7, for each row of S, it aggregates the number of
visits to the target location (i.e., points in 7'rs) by hours of
the week. When h = 24 x 2, for each row of .S, it aggre-
gates the number of visits using workday hours and holiday
hours. These are the two main time windows used in urban
computing [Noulas et al., 2011] [Cho et al., 2011].

Figure 1 shows three rows of the normalized .S in our ex-
periment. The data points were calculated using taxi trajec-
tories. A residential location v; is easy to identify by rising
workday morning and evening visits. The number of visits to
a popular shopping location v increases at 9am and lasts until
midnight. The curve of a sightseeing location v even reveals
the hours during which it is open (between two daily peaks).
This observation is consistent with earlier research suggest-
ing that locations containing large dynamic populations are
readily visible in comparatively coarse wireless-traffic analy-
ses [Reades et al., 2007].

In accordance with the observation, to distinguish each lo-
cation v, we represent all the locations using k; common com-
ponents E € R¥*" (also known as bases in Nonnegative
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Figure 1: Visual representation of S. On the x-axis, [0 ~ 23] and
[24 ~ 47] are workday and holiday hours, respectively.

Matrix Factorization). As a result, the locations’ temporal
view-based latent representations V; € RIVI**t are learned
by the following Nonnegative Matrix Factorization:

. 2 2 2
pamin_ (IS = VB[P [IVIP+ 1BI7],

where ||-||* denotes the Frobenius norm. The latter two en-
tries of Eq. 1 are regularizers for penalizing the norms of V;
and E. After the first step, the knowledge graph G(V, R) is
represented as G(V;, R = @), where R is an empty set.

3.2 Spatial View-based Construction

We capture the spatial influence from 7'rs, in the second step,
by first creating a transition matrix 77 € RIVIXIVI " Similar
to the transition matrix defined in a Markov chain, an entry
T; ; denotes the probability of a transition (movement) from
location v; to v;. Creating such a matrix for T'rs is straight-
forward. For each Tr = p; — ps — ... = p,, using the
longitude and latitude information, we first map it to the lo-
cations: Tr = v1 — Uy — ... — vp,. Then, by aggregating
all thg T s, we obtain the initial transition matrix T/, the en-
try T} ; of which records the number of movements v; — v;.

Lastly, 7" is equal to the normalized T
Given the transition graph 7', for each location v, we em-
bed the structured information of 7" by a factorization of 7":

T~V,MVT, 2

where V, € RIVI¥Fs is the embedding matrix, M € RFs*ks
is the interaction matrix and k4 specifies the number of latent
features. Similar to Eq. 1, the latent matrices Vs and M are
computed by solving the following optimization function:

min_ (7 VaMVT| A (IR 4 P )
M>0,V,>0

Eq. 2 can be regarded as a model for embedding the graph
structure. Namely, the latent matrix Vj is an embedding of the
locations in a latent component space, where the similarity of
locations in this space reflects their similarity in the domain of
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graph T'. M models the interactions of the latent components
in this space.

After the second step, the knowledge graph G(V, R) is rep-
resented as G([V;; V], T'). The locations V' are described by
concatenating V; and V. For relations R, T is assigned indi-
cating the mutual dependencies among different locations.

3.3 Spatio-temporal View-based Construction

In the third step, we face the challenge of labeling edges on
the transition graph 7. Given the current knowledge graph
G([V4; V4], T), although we can observe which locations are
tightly related, we do not know why this occurs. In the final
step, we perform the relation extraction task in an unsuper-
vised manner. In other words, we try to divide the graph T’
into several sub-graphs, 77,75, ..., T}, each of which repre-
sents one kind of relation. The relations can be regarded as
different lifestyles (moving patterns) in a city.

Although relation extraction is a extensively investigated
research topic [Nickel et al., 2016], to the best of our knowl-
edge, few work have attempted to perform the extraction in
an unsupervised manner (i.e., without labeling any edges of
T). Two new methods are proposed in our framework.

(1) Selectional Preference-based Method

In natural language processing, the term selectional prefer-
ence denotes the tendency of a word to co-occur with words
that belong to certain lexical sets. For example, the adjective
delicious prefers to modify nouns that denote food. Accord-
ingly, we assume that relations Vr € (vp, r, v;) also have se-
lectional preferences. Intuitively, a relation r allows only cer-
tain location types in its head-argument slot and tail-argument
slot. As aresult, a selectional preference bridges the observed
time series matrix .S and transition graph 7'.

In this method, for each location, we draw a latent vector
v € R¥™Fkes For each relation, we draw a latent vector r €
R1xarity(r)*kes where function arity(r) returns the number
of argument slots of r. Since in our case r is a binary relation
(there is a head-argument slot for head location v, and a tail-
argument slot for tail location v;), arity(r) = 2. Hence, a
relation can be represented in a concatenating way: r =<
dp, dy >, where d € R1*¥ts denotes an argument slot.

As a result, measuring the compatibility of a tuple
(vp,r,v¢) (i.e., the edge weight of T') amounts to summing
up the compatibility between the representations of each lo-
cation (vp, v¢) and the corresponding argument slots (dp,, d;).
Then, we have the following objective function:

Objr = min [T~ (VD + Vi DD)[*, )

where V,, € RIVIXkts records all the locations v and D, €
RIVI*kes record all the argument slots dj,, dy, respectively.
By jointly considering the spatial and temporal influences,
i.e., Eq. 4 and Eq. 1, the selectional preference-based relation
extraction method minimizes the following function:

min  Obji 4\, ||S — Vi E|* +
E,Vis,D>0 )

A (VeI + I EI” + 1 Dall® + HDtHQ} :
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where V,, is shared in the first and second entries. After learn-
ing, a hierarchical clustering method is utilized for all candi-
date relations < dy,d; >,dn, € Dp;d; € D;. A cluster
corresponds to one kind of relation.

However, in the context of unsupervised learning, we find
that the current method is only suitable for 1-to-1 relations.
In other words, for an N-to-1 relation r of which the head
could be multiple instances, they most likely will be divided
into different clusters. Next, an improved method is devised.

(2) Neural Network (NN)-based Method

The most important advantage of this method is that, in ad-
dition to the latent variables, the neural network (NN)-based
method also learns the objective function rather than assum-
ing it to be fixed. Compared with the fixed Obj; in Eq. 4, we
define the NN-based objective function:

o _ B ,
Objz = min ST (T - fa(D)
Y (vp,rvi) ET
fo(t) = W Sigmoid(Wy 1)
= [on; 063 Lup rovy) (ResC)]

(6)

where V;, € RIVIXkts records all the locations; Ry, €
RIEIXEr records all the relations; I is a latent indexing ma-
trix; C' € R¥>*Fr is a constant sparsity matrix [Pascual-
Montano et al., 2006]; fs (f) denotes a feed-forward NN;
Wy € R™*(kesthr) and W, € R™*1, respectively, repre-
sent the weights of its first and second layers; n is the number
of hidden neurons; Sigmoid() is an element-wise sigmoid
function.

For each tuple (v, 7, v:), an indexing vector T, rve) €
Rl is introduced to specify a relation in R. The sparsity
of I(y, rv,) is increased as much as possible by introducing a
constant sparsity matrix C' = (1 — 6)eye(k,) + k%ones(krr)
[Pascual-Montano et al., 2006], where eye(k,.) is an identity
matrix of size k. x k,, ones(k,.) is a matrix of size k, x k.
with all entries of 1s, and @ is the sparsity parameter. When
we multiply C' with R, in Eq. 6, to compensate for the loss
of sparsity in Rys, Iy, r,v,) becomes sparse. An extreme ex-
ample is that, there is only one entry in I,, ,.,) close to 1,
whereas the other entries approximate 0. The introduction of
I allows a relation to have multiple head or tail instances. As
a result, this method can accommodate N-to-1, 1-to-N, and
N-to-N relations.

Thus, the NN fg has 2k;s + k, real-valued input units and
one real-valued output unit. The first 2k, inputs are head-
and tail-specific features, respectively, whereas the last k,. in-
puts are relation-specific features. As mentioned above, in
addition to learning the latent variables Vi, I, and Ry, this
method further learns the objective function, i.e., fs.

Similar to Eq. 5, the NN-based method is defined as:

min _ Objs + A S = Vis E||* +
E,Vis,I,Rts>0

(7
2 2 2 2
Ar | [Vasll™ + BN 4 [[Resl ™ + 117 -

According to the survey [Nickel ez al., 20161, feed-forward
NN have already been applied in state-of-the-art supervised
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relation extraction tasks (e.g., [Van de Cruys, 2014]) and the
KV project [Dong et al., 2014]. By observing the context in-
formation of head and tail locations (i.e., S), our work goes
further by applying an NN in an unsupervised relation extrac-
tion task. Because of the NN matrix factorization ensemble,
we refer to Eq. 7 as NN matrix factorization. Our method
is consistent with the proposal in [Stewart and Ermon, 2016].
That is, for a label-free learning task, we are leveraging prior
knowledge (S, T, and selectional preference) to restrict the
space of possible functions specifying the hypothesis class
(the NNs fg with different weights in our case). In this con-
text, our NN matrix factorization provides a new way for en-
coding prior knowledge into loss functions.

Intuitively, by proposing these two relation extraction
methods, two constraints are satisfied: (1) syntactic con-
straint (Eq. 4 and 6) for eliminating incoherent extrac-
tions and (2) lexical constraint (the second entries in Eq. 5
and 7) for constraining certain location types in a relation’s
head- and tail-argument slots. The final knowledge graph can
be represented as G(V;5(1), Ris(1)) and G(Vis(2), Res(2)),
which are learned by Eq. 5 and Eq. 7, respectively.

3.4 An Application

The introduction of this application is two-fold: first, to verify
the utility of the learned knowledge graph G's; and second, to
provide a quantitative analysis on Gs.

The application problem can be described as: by observ-
ing a part of the user-location attention matrix X °, we expect
to predict the unobserved attention matrix X ~° satisfactorily.
In our application, we partition a city into 50 x 50 = 2,500
grids. Therefore, each grid is a location. By collecting geo-
tagged check-ins, we first construct the user-grid attention
matrix X. An entry X; ; records the attention range (0 to
1) of user u; to a location v;. Detailed information about X
is presented in Section 4.

Similar to related work on collaborative filtering, e.g.,
[Salakhutdinov and Mnih, 2007] [Wang and Blei, 2011], as
shown in Algorithm 1, by placing Gaussian priors N (i, o?)
on latent feature vectors, we solve this prediction problem us-
ing a generative process.

Algorithm 1 Generative process for attention prediction.

—

for each user u; € U do
draw latent user vector w; ~ N (0, 0%1)
end for
for each location v; € V do > Stage 2
draw latent location offset vector 07 ~ N (0, 0% T)

> Stage 1

draw latent location vector v; = 0; + v}
end for
for each user-location pair (u;, v
draw the rating X; ; ~ N (4}
end for

”)GXdo > Stage 3
5o

0;,0%)

A A AN A

—

In stage 2, we enrich the latent feature vectors of locations
by embedding the knowledge graph. Namely, V*, Vv € V*
could be Vi, [Vi; Vi), Vis(1), or Vis(2). In the experiments, by

comparison, we discuss in detail why our knowledge graph G
can significantly improve such an application.

3.5 Latent Variable Learning

Since there is nothing new about the training processes in our
framework and application, we briefly describe the training
strategies used in the experiments.

We minimize the objective functions Eq. 1, Eq. 3, and Eq.
5 with a gradient decent approach by iteratively optimizing
the latent variables V;, E, Vi, M, Vis, Dy, and D;. For Eq.
7, we alternate between optimizing the NN weights (i.e., W}
and W5), while fixing the latent features, and optimizing the
latent features, while fixing the network weights. Optimiza-
tion is also carried out by gradient descent on the observed
datasets (i.e., S and 7).

For Algorithm 1, the optimization could be carried out by
maximizing the log-likelihood [Wang and Blei, 20111, mini-
mizing a sum-of-squared errors function [Salakhutdinov and
Mnih, 2007], or using Gibbs sampling. In our experiment,
we utilized a previously proposed method [Salakhutdinov and
Mnih, 2007] for consistency. Namely, all the learning tasks
are conducted in a matrix factorization manner.

4 Experiments

4.1 Dataset Preparation

Constructing S and 7. We used the public Beijing taxi tra-
jectory dataset [Yuan et al., 20111, which contains trajectories
of 10,357 taxis, to generate the S and 7. The total number of
GPS points p (see Definition 1) is approximately 15 million.
Figure 1 shows some examples of S. Figure 2a shows a taxi’s

Tr' (see Section 3.2) in one day on Google Maps. All the

Tr" are aggregated to obtain T’ € [R2500%2500 Although the
other edge weights are close to zero, 35,259 main edges are
detected in 7T'.

Constructing X. The user-grid attention matrix is con-
structed using geo-tagged check-ins collected from Sina
Weibo APIs '. In total, we obtained a raw dataset consist-
ing of 527,809 users and 1,729,998 check-ins in Beijing in
2015. Then, similar to the CCCF model [Wu et al., 2016], we
first conduct a preliminary task of user-region co-clustering to
discover like-minded user groups, each of whom has similar
interests (i.e., visiting similar regions). After clustering, we
calculate each observed entry X; ; based on the percentage of
numbers of check-ins that were uploaded by user group u; in
grid v;. Figure 2b shows the percentages of two X; ;s over
all the weeks in 2015. Unsurprisingly, because of anomalous
events, the percentages fluctuate over time. The value of each
observed X; ; is the average percentage of all the recorded
weeks. Finally, we obtain the X of 100 classified user groups
and 2,500 grids with 43,069 observed user-grid entries.

4.2 Evaluation Scheme

We randomly divide all the grids associated with each user
group into two chunks. One round of validation performs
training on one chunk and tests the trained model on the other
chunk. The utility of our knowledge graph is evaluated and

'http://open.weibo.com/wiki/API
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Figure 2: Dataset preparation

compared under both sparse (insufficient) and dense (suffi-
cient) training settings, i.e., z = 10%, 30% of the grids are
selected as the training chunk, respectively. For each value of
x, we repeat the validation five times with different randomly
selected training sets. Finally, the average performance is re-
ported for analysis.

Similar to [Wang and Blei, 2011], we used recall as the
performance measure because the rating information in X is
in the form of implicit feedback (high sparsity) [Hu et al.,
2008]. A zero entry in X may be due to the fact that the
user group either does not prefer the grid or does not know
about it. This complicates the precision of the computation.
Because recall only considers the nonzero entries, for each
user group we define recallQM as:

TPsQM

TPsQM + FNsQM’ ®
where T'PsQM (True Positives) is the number of grids to
which the user group pays attention in the top M, and
TPsQM + FNsQM (False Negatives) is the total number
of grids to which the user group pays attention. The reported
recall for the entire system is the average recall from all user
groups.

recallQM =

4.3 Baselines and Quantitative Comparison

We first list all models included in our comparison as well as
the values of their hyperparameters tuned by the grid search-
based method [Hsu et al., 2003]. We named Algorithm 1 the
Knowledge Graph based Probabilistic Matrix Factorization
(KGPMF).

¢ KGPMF-none, = KGPMF-V;, KGPMF-V;&V;,
KGPMF-V, (1), KGPMF-V,4(2). These five variants
are obtained when none, Vi, [Vi;Vs], and Vigs are
assigned to V* in Algorithm 1, respectively. When
learning the urban movement knowledge graph G, the
values of the hyperparameters are: k; = 20; ks = 20;
kis =105k, =5;n=20; A, =0.01; A\, = 1;6 =0.8.
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o GeoMF. A state-of-the-art method for location recom-
mendation [Lian ef al., 2014]. By using an influence
area vector, GeoMF takes the location-location spatial
information into consideration.

The experimental results are reported in Figure 3. Figure
3a shows the results under a dense setting (i.e., z = 30%),
whereas Figure 3b shows the results under a sparse setting
(i.e., z = 10%). Overall, the results show that our knowl-
edge graph greatly improves the prediction performance. The
details are as follows.

User attention prediction is a challenging problem. The
curve of KGPMF-none indicates, without introducing any
auxiliary information, that this method performs poorly, es-
pecially under a sparse setting.

The spatial information Vs is essential for the predic-
tion. A comparison of the curves of KGPMF-V; and
KGPMF-V, &V, shows that KGPMF-V, &V significantly
outperformed KGPMF-V; by an average margin of 3.4% in
the sparse setting and 5.8% in the dense setting. On the basis
of Eq. 8, when M is small (e.g., M = 10,...,100), a mar-
gin of 1% is a significant improvement. In conventional col-
laborative filtering-based recommendation (e.g., for movies),
if a user prefers sci-fi movies, given a new sci-fi movie, the
model would predict a high score for this user. However, this
assumption is not applicable in our case. That is, a user living
in residential area A (high attention) rarely pays attention to
another faraway residential area B. Hence, in addition to the
content features V; of the locations, the mutual dependencies
among them (i.e., V;) are essential for this type of prediction.

The POlI-influence-areas matrix proposed in GeoMF is in-
sufficient. A POl-influence-areas matrix was previously de-
fined [Lian et al., 2014]. For each POI (i.e., rows in the
matrix), they assumed the influence areas of the POI to be
fixed and have a normal distribution centered at this POL. As
a result, important spatial information is lost. For example, a
semantic work <+ home relation [Cho et al., 2011] cannot
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Figure 3: Performance comparison of our methods and baselines based on recall@ M (M = 10, 20, ..., 100).

be embedded when learning. By comparing GeoMF with the
other methods shown in Figure 3, it can be further improved.

KGPMF-V;5(1) and KGPMF-V;5(2) obtained the high-
est performance. Compared with KGPMF-V, &V that sep-
arately takes temporal and spatial information into consider-
ation, KGPMF-V;,(1) and KGPMF-V;,(2) jointly consider
both of them. Several latent semantic relations are de-
tected among the locations. We can regard these relations
as lifestyles in a city. For example, office workers may pay
more attention to the locations in the work <> home rela-
tions. Students may pay more attention to the locations in
the school <+ shopping relations. Consequently, when a
small training set is used (i.e., the sparse setting), KGPMF-
Vis(1) significantly outperforms KGPMF-V, &V, suggesting
that KGPMF-V;,(1) and KGPMF-V;,(2) provide two ways
to leverage GPS trajectories into a latent semantic space.

4.4 Knowledge Graph Visualization

Since KGPMF-V;4(2) obtains the best results in our experi-
ment, the Google Maps APIs are utilized on KGPMF-V(2)
to learn some relation instances, as shown in Figure 4.
Figure 4a shows a shopping like relation between red grids
(head) and blue grids (tail). By zooming in on the map, we
find that almost all the blue grids are shopping areas. More
specifically, Figure 4b shows that there is a shopping mall in
A, a plaza in B, a famous shopping street in C and the Times
Square in D. Although E is not as well known, we find it has
many bank ATMs suggesting it is also a shopping area.
Figure 4c and 4d present two other interesting relation in-
stances. In Figure 4c, our method detected an airport express-
way, because of the high similarity among head grids. Figure
4d shows an instance our method learned in the Zhongguan-
cun district. Although the grids in Zhongguancun very likely
play multi-roles (e.g., for working, education, shopping, and
residency ), a residency-to-education like relation is detected.
For example, H contains a university and some research in-
stitutes. However, we find that several large universities are
missing in this relation. Labeled by F, Tsinghua University is
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not included. One possible explanation is that, since most of
the students and teachers reside on campus (e.g., G, which has
many apartments and dormitories), they walk to their learning
places. The taxi trajectories cannot characterize such cases.
Although only GPS points are used in our framework, the
case studies show that our method performed well in terms of
learning semantic relations among locations.

5 Related Work

Enrichment of latent user features. A number of conven-
tional location recommendation models relying on users’ vis-
iting history, geographical influence, temporal influence, etc.,
have been proposed to infer users’ location preferences. For
instance, HMM [Kim and Cho, 2013], periodic GMM [Cho et
al.,2011], and BPP [Yuan et al., 2014] have been proposed to
model individual mobility behavior for preferences inferring.
A user preference prediction method investigating the con-
text of the location was proposed [Liu ef al., 2016b]. They
assumed a user’s visit to a location is not only influenced by
the set of locations they previously visited, but also by the
locations they subsequently visited. Recently, several studies
[Wang et al., 2015] [Liu et al., 2016a] focused on predicting
the places users are expected to visit next, based on their pre-
viously generated content. Nevertheless, these related studies
mainly focus on enriching the latent user features, i.e., stage
1 in our Algorithm 1.

Enrichment of latent location features. Few studies have
considered the enrichment of latent location features. One
reason may be that, in most of the aforementioned POI rec-
ommendation models based on the enrichment of latent user
features, they assumed that POI categories (i.e., V; in our
case) are observed. However, as mentioned in Section 4.3,
this is insufficient. Some initially believed [ Yang et al., 2013]
that location similarity can also influence recommendation.
They constructed a similarity network according to their geo-
distance and categories. Then, the GeoMF model [Lian et al.,
2014] defined a POI-influence-area matrix based on the geo-
distance. They assumed the influence areas of a POI to have
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Figure 4: Relation visualization. Red: heads; blue: tails.

a normal distribution centered at this POI. To the best of our
knowledge, the enrichment of latent location features has not
been well investigated yet. Our framework is among the first
of its kind to systematically construct a knowledge graph G
for location oriented enrichment. Not only the categories be-
longing to the location (i.e., nodes on G) but also the relations
among them (i.e., edges on ) are embedded.

Relation extraction. A survey [Nickel er al., 2016] re-
vealed that most of the methods attempting to use machine
learning (e.g., TranE [Bordes et al., 2013], TranH [Wang et
al., 2014], and TranR [Lin et al., 2015]) are trained on exist-
ing knowledge graphs (e.g., Freebase, Wikidata, and YAGO2)
in a supervised manner and then used to predict new edges
on those graphs. Similar to our methods, we list some latent
feature models for comparison. In [Nickel er al., 2012], a ten-
sor factorization based model, RESCAL, is proposed for de-
scribing the pairwise interactions of latent features. Recently,
several NN-based models were proposed, e.g., [Socher et al.,
2013] [Van de Cruys, 2014], to reduce the number of param-
eters used in RESCAL. NNs can learn to position semanti-
cally similar nodes close to each other even if they are not
explicitly trained to do this [Mikolov ef al., 2013]. For our
framework, which is an NN matrix factorization ensemble,
we devised a novel NN matrix factorization method for un-
supervised relational learning, rather than using supervised
graph completion.

6 Conclusion

In this paper, given GPS trajectories, we proposed a novel
framework for constructing an urban movement knowledge
graph that embeds temporal and spatial information. Two
new unsupervised relation extraction methods were devised
to learn the relations among nodes on this graph. An appli-
cation was proposed to present the utility of the knowledge
graph. An experiment on a real-world dataset showed sig-
nificant improvements compared with the baselines. In fu-
ture, by incorporating additional semantic information (e.g.,
location categories and city map information), we intend ex-
ploring ways to improve the expressiveness of the knowledge
graph.
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