
Playing Repeated Network Interdiction Games with Semi-Bandit Feedback

Qingyu Guo1, Bo An2, Long Tran-Thanh3

1Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly, NTU, Singapore
2School of Computer Science and Engineering, Nanyang Technological University, Singapore

3Electronics and Computer Science, University of Southampton, UK
1,2{qguo005,boan}@ntu.edu.sg,3ltt08r@ecs.soton.ac.uk

Abstract

We study repeated network interdiction games with
no prior knowledge of the adversary and the envi-
ronment, which can model many real world net-
work security domains. Existing works often re-
quire plenty of available information for the de-
fender and neglect the frequent interactions be-
tween both players, which are unrealistic and im-
practical, and thus, are not suitable for our set-
tings. As such, we provide the first defender strate-
gy, that enjoys nice theoretical and practical perfor-
mance guarantees, by applying the adversarial on-
line learning approach. In particular, we model the
repeated network interdiction game with no prior
knowledge as an online linear optimization prob-
lem, for which a novel and efficient online learning
algorithm, SBGA, is proposed, which exploits the
unique semi-bandit feedback in network security
domains. We prove that SBGA achieves sublinear
regret against adaptive adversary, compared with
both the best fixed strategy in hindsight and a near
optimal adaptive strategy. Extensive experiments
also show that SBGA significantly outperforms ex-
isting approaches with fast convergence rate.

1 Introduction
Many security domains involve interdiction of adversarial be-
haviors on networks, including infectious disease control, dis-
ruption of enemy’s supply chain, and prevention of illegal
drug smuggling [Assimakopoulos, 1987; Guo et al., 2016b;
Wood, 1993; Yin and An, 2016; Guo et al., 2016a; Wang et
al., 2016; 2017]. Checkpoints, such as physical roadblocks
and inspection stations, are placed on different positions in or-
der to defend the physical networks. In order to optimally u-
tilize limited security resources on checkpoints, earlier work-
s model network interdiction as a one-shot leader-follower
game, where the defender randomly allocates the resources
first and the adversary, knowing the defender strategy with
extensive surveillance, chooses an optimal action to respond.
However, such models cannot capture many realistic scenar-
ios, such as illegal drug interdiction, due to several unreason-
able assumptions. First, it is well understood that complete

rationality, unlimited observation and high level computation-
al ability are not ideal for modeling human adversaries [An
et al., 2013; Camerer, 2003]. Second, the defender’s prior
knowledge of the adversary and the environment is extremely
limited in practice, while existing works in network interdic-
tion assume full information on the defender side. Finally,
the one-shot game model neglects the repeated interactions
between the defender and the adversary, which are common
in many network interdiction domains. For example, it is re-
ported that over one thousand tons of drugs are seized on land
in 2009 within the United States [CTR., 2010], and the U.S.
border patrol agency has to alter the checkpoint operation pol-
icy frequently against unknown and fickle smugglers [Office,
2009].

Existing works typically deal with part of these challenges,
either the bounded rationality of the attacker or the repeated
interactions, as we discuss in the next section. We are the
first to study the network interdiction from a perspective that
aims to address all these challenges. In particular, inspired by
the work of Xu et al. [2016], we apply the adversarial online
learning approaches to tackle the network interdiction prob-
lem. However, we have to emphasize that this application
is in fact non-trivial, since the repeated network interdiction
problem is formulated as an online submodular maximization
problem due to the network structure, for which state-of-the-
art learning algorithms fail due to their poor performance. To
overcome this issue, we linearize our learning problem by
using a novel decision space transformation. The cost of this
linearization transformation, however, is the exponentially in-
creased size of the decision space. As such, a direct applica-
tion of existing online linear learning methods, such as ge-
ometric hedge [Bartlett et al., 2008], FPL [Neu and Bartók,
2015] and Exp3 [Auer et al., 2002], will fail, due to the large
decision space. Thus, we propose a new online linear learn-
ing algorithm, which exploits the semi-bandit style feedback
in the network interdiction domain, called Semi-Bandit style
Geometric decision algorithm against an Adaptive adversary
(SBGA) to provide online decisions for the defender. We for-
mally show that SBGA achieves O(T 2/3) regret bound a-
gainst adaptive adversary compared with the best fixed strat-
egy on hindsight, and a low regret compared with the near op-
timal adaptive defender strategy. Finally, extensive numerical
evaluations are conducted to demonstrate that our approach
outperforms existing online learning approaches significantly
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and achieves much faster convergence rate. In particular, SB-
GA requires significantly fewer rounds (typically 50 rounds)
to obtain satisfactory low average regret solution against var-
ious adversarial behavior models, and can efficiently scale up
to realistic sized game instances.

2 Related Work
Existing works in the security game literature typically focus
on bounded rationality of the attacker by following the con-
cept of Quantal Response [McFadden, 1976], in order to pre-
dict the future move of the attacker. Such models include, but
are not limited to, e.g., Subjective Utility Quantal Response
(SUQR) [Nguyen et al., 2013], Bayesian SUQR [Yang et al.,
2014] and Robust SUQR [Haskell et al., 2014]. However,
those models suffer from a number of limitations [Kar et al.,
2015]. In particular, they failed to capture the attacker’s adap-
tive behavior of changing the attacking strategy based on de-
fender’s past moves. Besides, all these approaches only focus
on simple target protection scenarios.

Another line of related work applies online learning ap-
proaches on repeated security games [Blum et al., 2014;
Xu et al., 2016]. Unfortunately, the scope of all these work-
s is limited to the target protection scenarios and cannot be
applied to the network security domain, where the defender
utility is a complex submodular function (we will show later).
The straightforward approaches for online submodular maxi-
mization have poor performance in network security domain.
In particular, the state-of-the-art algorithm for the online sub-
modular maximization problem is an online version of the
greedy algorithm [Streeter and Golovin, 2008], which only
achieves a low (1− 1

e )-regret and the performance guarantee
only holds for the oblivious adversary.

Although we provide a novel transformation from online
submodular maximization to online linear optimization, ex-
isting approaches for online linear optimization cannot ad-
dress all the brutal challenges that we face: scalability, lim-
ited feedback and adaptive adversary. Most works related to
online linear optimization typically focus on the oblivious ad-
versary [Kakade et al., 2009; Awerbuch and Kleinberg, 2004;
Abernethy et al., 2008]. Bartlett et al. [2008] provided the
Geometric Hedge algorithm withO(

√
T ) regret against adap-

tive adversary with high probability. However, their algo-
rithm needs to store and compute on the entire exponentially
large decision space. The most relevant approach is Bandit-
style Geometric decision algorithm against an Adaptive ad-
versary (BGA) which achieves sublinear regret against adap-
tive adversary with limited feedback [McMahan and Blum,
2004; Dani and Hayes, 2006]. However, the regret conver-
gence rate is extremely low in practice since BGA fails to
exploit the unique semi-bandit feedback in our problem.

3 Repeated Network Interdiction Game (NIG)
We first briefly describe the Network Interdiction Game
(NIG) model which is suitable for various security domain-
s, including escaping path interdiction [Jain et al., 2011] and
network flow interdiction [Guo et al., 2016b]. NIG models
an attacker and a defender who take actions on a capacitat-
ed graph G = (V, E), with node set V and edge set E , and

For all t=1,2,...,T, repeat 
1. The defender chooses an allocation  to play. 
2. The attacker chooses a network flow  to play. 
3. The defender observes the amount of interdicted flow at each 

operated checkpoint in  and receives the utility . 

Figure 1: The Repeated NIG Procedure.

a capacity vector c, where capacity ce represents the maxi-
mum amount of adversary flow passing through edge e. The
graph is assumed to have a unique source node s ∈ V and a u-
nique sink node t ∈ V . The unique source/sink assumption is
no loss of generality: a graph with multiple source nodes and
sink nodes can be transformed into a single-source-sink graph
by adding two new nodes s and t as the new unique source
and sink nodes respectively, connecting s to each source n-
ode and t to each sink node with proper capacitated edges.
Let P denote the set of candidate s-t paths in G for the at-
tacker, such as the eight drug transportation corridors in the
United States [CTR., 2010]. We denote by m the number of
candidate paths, i.e., m = |P|. Let I denote the set of all
inspection stations (checkpoints) and the defender can oper-
ate at most k inspection stations at same time due to limited
security resources. Let n denote the number of checkpoints,
i.e., n = |I|. Each station i ∈ I is characterized by a lo-
cation, either a node or an edge in the graph, and a constant
parameter τi ∈ [0, 1] denoting the proportion of adversary
flow interdicted at i when operated, i.e., inspection probabil-
ity1. We say i ∈ p if the location of checkpoint i is on path
p. We assume that the inspection probability can be estimat-
ed by the defender from historical data, which is reasonable
since the defender fully controls all inspection facilities [Of-
fice, 2009]. Let S = 〈Si〉 denote the allocation of k resources
for the defender, i.e.,

∑
i∈I Si = k, where Si ∈ {0, 1} and

Si = 1 indicates that the inspection station i is operated. The
set of all possible allocations is denoted by

S = {S ∈ {0, 1}|I| :
∑

i∈I
Si = k}.

With little abuse of notation, let S be exchangeable with the
set of operated allocations, i.e., S ⊆ I. The adversarial flow
is represented by f where fp denotes the amount of adversary
flow passing along path p ∈ P . Let F denote the set of all
feasible attacker strategies, i.e.,

F = {f ≥ 0 :
∑

p∈P:e∈p
fp ≤ ce, ∀e ∈ E ;

∑
p∈P

fp ≤ 1}

where, w.l.o.g., the total amount of network flow is upper
bounded by 1, for normalization reason. Given a defender
resource allocation S ∈ S and an adversarial flow f ∈ F ,
the defender’s utility is the sum of interdicted flows on al-
l paths, i.e., Ud(S, f) =

∑
p∈P(1 − Φ(S, p))fp, while the

attacker’s utility is the sum of successful flows on all paths,
i.e., Ua(S, f) =

∑
p∈P Φ(S, p)fp where Φ(S, p) represents

the proportion of adversary flow on path p not interdicted by

1Although we assume that the proportion τ of the flow is interdicted,
our approach and theoretical analysis also apply to the stochastic
interdiction where the flow is fully interdicted with probability τ .
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the operated inspection stations given S:

Φ(S, p) =
∏

i∈p
(1− τi)Si .

Semi-Bandit Feedback: In this paper, we study the repeated
NIG where the game is played for T rounds (see Figure 1).
Unlike existing works which assume plenty of available infor-
mation for both players, the defender in repeated NIG has no
prior knowledge of the adversarial behavior and only knows
P and a rough estimation of the upper bound of the adversar-
ial flow’s total amount. Regarding the feedback of past plays,
a natural assumption for the repeated NIG is that the defender
only knows the amount of flow interdicted by each operated
checkpoint. Such information on each operated checkpoint is
called the semi-bandit feedback. On the other side, the on-
ly requirement for the attacker is that he cannot observe the
real-time defense St before round t starts since the game is si-
multaneously played at each round. Furthermore, we assume
that the defender is an expected utility maximizer, while no
behavior model for the attacker is required. In other words,
the attacker could be an expected utility maximizer or irra-
tional to any extent; could be fully adversarial, or a random
player.

The above repeated NIG model is general for many real-
istic network security domains. For example, in the illegal
drug trafficking scenario, the drug smuggling activity on the
transportation network can be formulated as an adversarial
network flow. The adversarial behavior, on the other hand,
is hard to capture as the defender is facing several sophisti-
cated drug trafficking cartels who hire people with unknown
backgrounds to smuggle illegal drug [Beittel, 2015]. Besides,
as pointed out by the government report, the checkpoint op-
eration policy almost changes daily to deal with the fickle
smugglers [Office, 2009], which is captured by the repeated
manner of our model. Another example is the escaping path
interdiction problem [Jain et al., 2011], where the escaping
path of the attacker can be modeled by a unit flow on the
path. The roadblock placed by the defender can be treated as
a checkpoint with interdiction probability 1.
Regret: Let Ht denote the history information of the game
by time t (inclusive), and H0 denote no history information
at all. Given a sequence of adversarial flows f1, ..., fT , where
f t may be adaptive depending on Ht, we are interested in
designing an online policy S1(H0), ..., ST (HT−1) (possibly
randomized) that maximizes the defender’s expected utility
E[
∑T
t=1 Ud(S

t, f t)], where the randomization is taken over
the randomness of the policy and the environment. Alterna-
tively, we aim at minimizing the defender’s regret:

RT = max
S∈S

∑T

t=1
Ud(S, f

t)− E[
∑T

t=1
Ud(S

t, f t)].

The first term maxS∈S
∑T
t=1 Ud(S, f

t) is the utility of the
best hindsight allocation, which serves as the benchmark.
Without any prior knowledge of the adversarial behavior, we
take the worst case analysis and focus on the largest regret
against all possible adaptive adversaries. This type of re-
gret notion is common in the online learning theory litera-
ture [Cesa-Bianchi and Lugosi, 2006].

Online Submodular Maximization: As shown by Proposi-
tion 1, the defender utility function is submodular with allo-
cation S. At the first glance, we may relate the repeated NIG
with the online submodular maximization problem where the
decision-maker faces a sequence of submodular reward func-
tion and chooses a fix sized subset to play at each round.
However, existing approaches for online submodular maxi-
mization cannot perform well in repeated NIG, as we dis-
cussed in Section 2. As such, we propose a novel approach
to solve the repeated NIG efficiently with low regret solu-
tion. In particular, we first provide a non-trivial transforma-
tion from the repeated NIG as an online submodular maxi-
mization problem to an online linear optimization problem.
To solve the transformed online linear optimization problem,
we propose a novel algorithm called SBGA which exploit-
s the semi-bandit feedback on operated checkpoints and ob-
tains low regret solutions.

Proposition 1. The defender utility function Ud(S, f) is sub-
modular with allocation S.

Proof. For each S ⊆ I and i ∈ I \ S, we have:

Ud(S ∪ {i}, f)− Ud(S, f) =
∑

p∈P:i∈p
τi · Φ(S, p)fp.

Since Φ(S′, p) ≥ Φ(S′′, p) for any pair of S′ ⊆ S′′, Ud(S, f)
is submodular with allocation S when f is fixed.

4 From Online Submodular Maximization to
Online Linear Optimization

In this section, we show a transformation of repeated NIG
to an online linear optimization problem for which efficient
low regret solution is possible. The intuition is as follows: if
we look at the defender utility function Ud(S, f) in details,
we can find that the only parameter unknown is the adver-
sarial flow f . Fortunately, Ud(S, f) is actually linear with f .
In other words, we can write down Ud(S, f) as w · f where
the coefficient w, depending on the allocation S, is actually
known to the defender since the interdiction probability can
be estimated. As such, we define a mapping φ : S → Rm
such that for each allocation S ∈ S , φ(S) = w = 〈wp〉
with wp = 1 − Φ(S, p), ∀p ∈ P . Given an allocation S and
w = φ(S), we have: Ud(S, f) = w · f .

Therefore, instead of regarding the repeated NIG as al-
locating resources for a sequence of unknown submodular
functions, we can treat it as selecting decision points w for
the coming unknown linear functions. The later one is an on-
line linear optimization problem, as shown in Figure 2, where
φ(S) = {w|∃S ∈ S : w = φ(S)} denotes the set of points
mapped from S with φ. However, as we discussed in Sec-
tion 2, the most relevant existing approach BGA fails to solve
such an online linear optimization problem due to the slow
regret convergence rate. The main drawback of BGA is that
once an allocation S is played, only the total amount of inter-
dicted flow of S is utilized to learn the unknown adversarial
flow. In this case, BGA has to put a lot of effort in explo-
ration of estimating the adversarial flow. However, as we will
show later, by further exploiting the semi-bandit feedback on
each operated checkpoint of S, the exploration efficiency can
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be improved significantly. Based on this idea, we propose
the SBGA algorithm with nice and provable guarantees and
satisfactory practical performance.

For all t=1,2,...,T, repeat 
1. The defender chooses a point . 
2. The attacker chooses a network flow  to play. 
3. The defender receives the utility . 

Figure 2: Online Linear Optimization Problem.

5 SBGA
As depicted in Algorithm 1, the intuition of SBGA is as fol-
lows: suppose that the full information of the adversarial
flows of past plays can be accessed in repeated NIG, then
an efficient online algorithm with low regret against adap-
tive adversary is available, denoted as Geometric EXpert-
s algorithm (GEX) (Algorithm 2). Unfortunately, we only
have semi-bandit feedback in repeated NIG. As such, SB-
GA samples from an exploration basis Seb, exploits the re-
ceived semi-bandit feedback on operated checkpoints, and
builds an “imaginary” full information game where the un-
known adversarial flows (of past plays) are replaced by their
unbiased estimators f̂ . The algorithm GEX is then applied
on the “imaginary” repeated NIG to provide online decisions.
We now describe in details each components of SBGA.
GEX: Suppose that the adversarial flows f1, ..., f t−1 of pre-
vious rounds are known. We adopt the algorithm proposed
by Kalai and Vempala [2003] to serve as GEX subroutine,
shown in Algorithm 2. In particular, GEX returns the optimal
decision w in φ(S) against the cumulative flow of previous
rounds perturbed by a random noise vector z. The scale of
z is controlled by a learning parameter ε, which balances the
tradeoff between exploitation of playing the best hindsight
decision so far, and exploration of adding perturbations to
make the algorithm less predictable, especially for the adap-
tive adversary. Such tradeoff between exploitation and ex-
ploration is essential in the online learning theory, and GEX
successfully addresses it by setting ε to a delicate value and
achieves sublinearO(

√
T ) regret [Kalai and Vempala, 2003].

Exploration and Unbiased Estimator: As we mentioned
before, at round t, SBGA creates an unbiased estimator f̂ t

of the unknown adversarial flow f t by sampling from an ex-
ploration basis (with some probability), and hence an “imag-
inary” game, for which GEX is applicable, is constructed. To
do so, we first show that the semi-bandit feedback on each
operated checkpoint is linear with the unknown adversarial
flow. Specifically, for each allocation S, let rS,i,f denote the
amount of interdicted flow on operated checkpoint i ∈ S a-
gainst adversarial flow f when S is played. We have:

rS,i,f =
∑

p∈P

∏
j∈S(p,i)

(1− τj)τiαp,i · fp ∀i ∈ S

where S(p, i) denotes the set of checkpoints in S such that
path p passes through before checkpoint i, and αp,i is the

 

 
 

 

 

 

  
 

 

 

  

  

  
  

(a) True adversarial flow
 

 
 

 

 

 

  
 

 

 

  

  

  
  

(b) Estimation when S′ is drawn

Figure 3: Exploration with Seb = {S′, S′′}.

indicator which takes value 1 if i is on path p and 0 otherwise.
Let wS,i denote the vector such that:

wS,ip =
∏

j∈S(p,i)
(1− τj)τi · αp,i ∀p ∈ P . (1)

We have: rS,i,f = wS,i · f for each checkpoint i ∈ S, and
wS,i is known to the defender. Once S is played, rS,i,f is
revealed for each i ∈ S. Letm×k matrixWS =

⋃
i∈S w

S,i.
To illustrate the exploration in SBGA, consider an example

where m = 2k and let Seb = {S′, S′′}, as shown in Figure 3.
To simplify the explanation, suppose that the checkpoints set
I = {1, ..., n} and n ≥ m. Allocation S′ operates the first k
checkpoints in I and S′′ operates checkpoints {k+1, ...,m}.
Let m ×m matrix W = [WS′

,WS′′
], whose transpose W †

is illustrated in the figure. Each element of W † is defined
in (1). Assume that W is full rank. At round t, let rt be
the vector of semi-bandit feedbacks as shown in Figure 3(a),
and the true adversarial flow satisfies W †f t = rt. Howev-
er, rt is not available since only one allocation is played at
round t, which only reveals half of rt. Thus, we randomly
pick one allocation in Seb to play and estimate rt with r̂t,
as shown in Figure 3(b) where S′ is drawn and semi-bandit
feedbacks of S′ are doubled in r̂t. We estimate the flow with
f̂ t = (W †)−1r̂t and it is easy to see that E[̂f t] = f t since
E[̂rt] = rt.

In general, assume thatm is dividable by k and let m̄ = m
k .

Let Seb be an exploration basis of m̄ allocations, and let
m ×m matrix W =

⋃
S∈SebW

S = [b1, ...,bm] where the
l-th column is denoted as bl. W.l.o.g., suppose W to be full
rank.2 At round t, as illustrated in Algorithm 1, with proba-
bility λ, SBGA uniformly samples one allocation S in Seb to
play (line 10), and observes the interdicted flow for each op-
erated checkpoint i with amount rS,i,f

t

= wS,i · f t (line 13).
SBGA estimates flow f t according to the idea mentioned be-
fore. The estimation f̂ t = (W †)−1r̂t where the vector r̂t

is defined as follows: r̂tl = (m̄/γ)bl · f t if bl ∈ WS and
r̂tl = 0 otherwise (lines 14 & 15). Proposition 2 shows that
E[̂f t] = f t.

Proposition 2. f̂ t in SBGA is an unbiased estimator of f t.

Proof. Let r̂S,t denote the vector r̂t when S ∈ Seb is drawn.

2These assumptions are only for simplifying the analysis. The algo-
rithm and analysis work for general cases where usually m̄ = dm

k
e.

In practice, the full rank assumption of W may not hold true for any
set of m̄ allocations. Thus, the allocation with larger rank of WS

will be selected into Seb to reduce the size of exploration basis.
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Algorithm 1: SBGA
1 Parameter: γ and ε, where ε is a parameter of GEX
2 Initialize Seb, let W =

⋃
S∈SebW

S = [b1, ..,bm]

3 for t = 1, ..., T do
4 Let χt = 1 with probability γ and χt = 0 otherwise
5 if χt = 0 then
6 Select wt from the distribution GEX(f̂1, ..., f̂ t−1)
7 Receive utility ut = wt · f t

8 f̂ t = 0 ∈ Rm

9 else
10 Draw S uniformly at random from Seb
11 wt = φ(S)

12 Receive utility ut = wt · f t

13 Observe interdicted flow at each i ∈ S: rS,i,f
t

14 Let r̂t ∈ Rm by r̂tl = 0 for bl /∈WS and
r̂tl = (m̄/γ)bl · f t otherwise

15 f̂ t = (W †)−1r̂t

Algorithm 2: GEX
1 Parameter: ε, network flows f1, ..., f t−1 of previous rounds
2 Define a noise vector z ∈ Rm such that zi is uniformly drawn

from [0, 1
ε
]

3 wt = arg maxw∈φ(S) w · (f1 + ...+ f t−1 + z)
4 return wt

r̂S,tl = (m̄/γ)bl · f t if bl ∈WS , and we have:∑
S∈Seb

r̂S,t = (m̄/γ)W †f t. (2)

E[f̂ t] = (W †)−1E[̂rt] = (W †)−1 γ

m̄

∑
S∈Seb

r̂S,t

= (W †)−1W †f t = f t.

Exploitation with GEX: At this point, the unbiased estima-
tor of the adversarial flow is obtained. At each round t, with
probability 1 − λ, SBGA applies GEX routine to exploit the
“imaginary” game, where the adversarial flows are replaced
by their unbiased estimators f̂1, ..., f̂ t−1, to generate decision
wt and the corresponding allocation St to play (line 6).3 Pa-
rameter λ balances the tradeoff between exploitation of play-
ing decisions provided by GEX and exploration of sampling
from Seb to obtain an low-variance estimation of adversarial
flow. However, it is not clear yet whether SBGA can achieve
acceptable sublinear regret against adaptive adversary since
the analysis of existing approaches aimed at cost minimiza-
tion [McMahan and Blum, 2004], while the repeated NIG is
formulated as a utility maximization problem. The following
section shows that the answer is affirmative.

3In order to apply the approach of Kalai and Vempala [2003], the
estimated flows need to be transformed to meet its requirements,
which is omitted in this paper for the ease of reading, and the readers
can refer to appendix A of [McMahan and Blum, 2004] for details.

6 Theoretical Analysis
We first show that SBGA achieves a sublinear regretO(T 2/3)
against the adaptive adversary, compared with the best fixed
allocation on hindsight. The proof of Theorem 1 is provided
in Appendix A.

Theorem 1. If m̄ = 1, set γ = T−1/3 and ε =
√

m
T (rough-

ly optimal), we have: RT (SBGA) ≤ 5m1/2T 2/3; Other-
wise, set γ = m̄T−1/3 and ε = 1

m

√
γ/T (roughly optimal),

we have: RT (SBGA) = O((β∞ + C)m
√
m̄T 2/3), where

β∞ = ‖(W †)−1‖∞ and C is the spanning ratio of W with
respect to φ(S) defined below (Definition 1).

Definition 1. Given a basis of Rm: W = {b1, ...,bm}, the
spanning ratio ofW with respect to the subsetH ⊆ Rm is the
minimal value of C such that: for any point w ∈ H , we can
write w =

∑m
l=1 αlb

l where the coefficient αl ∈ [−C,C].

Besides the best fixed allocation on hindsight, we also set
the optimal adaptive strategy as benchmark. Specifically, the
defender applying the optimal adaptive strategy plays the op-
timal allocation against the adversarial flow at each round.
Let OPT be the cumulative defender utility of the optimal
adaptive strategy. Our next result shows that SBGA achieves
a low regret compared with a constant fraction δ of OPT .
Theorem 2. Let τmin = mini∈I τi and τmax = maxi∈I τi,
we have δ · OPT − Reward(SBGA) ≤ O(T 2/3) where
δ = min{1, km}

τmin
1−(1−τmax)k

.

Proof. Suppose k ≤ m and let δ = k/m. Consider the fixed
allocation which allocates the k checkpoints on k pathes with
maximal cumulative flows in

∑T
t=1 f

t:

maxS∈S Ud(S,
∑T

t=1
f t) ≥ k

m
· τmin

∑
p∈P

∑T

t=1
f tp.

For the optimal adaptive defender strategy,

maxS∈S Ud(S, f
t) ≤ [1− (1− τmax)k]

∑
p∈P

f tp.

Therefore, we have:

maxS∈S Ud(S,
∑T
t=1 f

t)

OPT (F )
≥ k

m

τmin
1− (1− τmax)k

= δ

7 Experimental Evaluation
To demonstrate the practical applicability of our approach,
we evaluate its performance through extensive experiments.
All computations were performed on a 64-bit PC with 16 GB
RAM and a quad-core 3.4 GHz processor. The tested net-
works are random planar graphs generated by the Waxman
geographical model (WG) suitable for modeling transporta-
tion networks [Waxman, 1988]. By default, the instances are
parameterized as follows: the number of nodes |N | = 200
and the average degree is 3.0. The number of inspection sta-
tions n = 100. The number of candidate paths for adversarial
flowm = 20, and the number of resources k ∈ {10, 20}, cor-
responding with m̄ ∈ {1, 2}. It is worthwhile to point out
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Figure 4: Experimental Evaluation (horizontal axis: round t, vertical axis: average regret per round).

that m̄ is usually not large (around 2) in practice. Take the
illegal drug trafficking scenario as an example. It is report-
ed that 88 percent of all drug shipment is transported to the
major drug markets within the United States through eight
principal corridors [CTR., 2010]. Meanwhile, there are 39
tactical checkpoints owned by the Border Patrol in 2009 and
the average operation percentage is about 8% for traffic jam
concern [Office, 2009]. Thus, the settings here are realistic.
All inspection stations are randomly placed on the graph and
all candidate paths for the adversarial flow are randomly gen-
erated. The edge capacity ce is randomly chosen in [0.5, 1.0],
and inspection probability τi ∼ [0.2, 0.6]. The total number
of rounds T = 1000. The results are averaged on 100 runs
on one randomly generated instance. However, we do em-
phasize that the convergence trend is almost the same across
simulated instances except in the initial rounds.

We compare SBGA against two benchmark algorithms: i)
BGA [McMahan and Blum, 2004], and ii) Online Greedy al-
gorithm for online submodular maximization [Streeter and
Golovin, 2008]. The submodular maximization problem of
GEX subroutine in SBGA is easily formulated as a convex
integer program, which is solved by KNITRO (version 9.0.0)
efficiently. The learning parameters in all algorithms are set
to their optimal or rough optimal values w.r.t. the theoreti-
cal regret bounds. The other candidate benchmarks, includ-
ing FPL-UE [Xu et al., 2016], the variant of FPL algorith-
m for semi-bandit optimization [Neu and Bartók, 2015], and
the Geometric Hedge algorithm [Dani et al., 2007], are not
tested here since they cannot scale up to instances with 100
checkpoints and over 10 resources. However, we do test their
performance on small instances which is significantly worse
than SBGA. Please see Appendix B for details.

We test our algorithm against four types of attackers, which
together represent the majority of typical attacking model-
s: i) Uniform: The attacker with uniform network flow at
each round; ii) BestResponse: At round t, the attacker best
responds to the empirical mixed defender strategy x of histo-
ry with xS = tS/(t − 1) where tS represents the number of
times that defender plays allocation S in first t−1 rounds; iii)
Adversarial: The adversarial type attacker aims at minimiz-
ing the defender’s utility. In particular, at round t, the attacker

plays the network flow which minimizes the defender utility
of the best fixed allocation on hindsight, under the restriction
that the amount of flow is no smaller than certain threshold,
set to be half of the maximal flow; and iv) QuantalResponse
(QR): It is non-trivial to apply QR model in network securi-
ty domain. Thus, we provide a simple implementation where
we first uniformly generate a set of 50 network flows Fqr.
At round t, the attacker responds to the empirical mixed de-
fender strategy x by playing a probability distribution over
Fqr such that a network flow f ∈ Fqr is chosen with proba-
bility pf = eλUa(x,f)∑

f′∈Fqr e
λUa(x,f′) . The parameter λ controls the

rationality level of the attacker. When λ = 0, the attacker uni-
formly chooses the network flow in Fqr to play; while when
λ =∞, the attacker plays the best response flow in Fqr.
Solution Quality: The performance of tested algorithms is
depicted in Figure 4. We can observe that: i) the convergence
rate of the average regret for SBGA is extremely fast and so-
lutions with low enough regret (less than 20% of the average
reward of the best fixed hindsight allocation) are obtained af-
ter about 50 rounds; ii) SBGA outperforms BGA and online
greedy algorithm significantly in both convergence rate and
average regret per round; iii) the convergence of the average
regret for BGA cannot be observed due to the extensive ex-
ploration. In fact, according to the optimal learning parame-
ter, for T = 1000 and m = 20, the exploration probability γ
is 1; and iv) it is obvious to see that the convergence rate of
the average regret for online greedy algorithm slows down at
a high regret level, which is reasonable since it only achieves
low approximate regret.

Regarding the adversarial types, we can observe that the s-
cale of regret against the BestResponse type adversary is sig-
nificantly larger than others, which is reasonable since the
BestResponse adversary will maximize the overall success-
ful flows, and the corresponding network flow should have a
larger amount. Even though, the average regret of SBGA is
still low enough (around 0.1) for practical use. All these re-
sults support out intuition of exploiting the semi-bandit feed-
back and show that SBGA achieves low regret solutions with
fast convergence rate against various realistic adaptive adver-
saries, whose practical applicability is acknowledged.
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Robustness: Since SBGA requires a good estimation of
the interdiction probability on each checkpoint, we e-
valuate the robustness of our algorithm under the un-
certainty of the estimation of interdiction probability.
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In particular, let τ̃i denote
the defender’s estimation
of the interdiction probabil-
ity of checkpoint i, which
is generated in such way:
τ̃i ∼ τi · [1−δ, 1+δ] where
τi is the true interdiction
probability and δ measures
the defender’s uncertainty
on the estimation. We measure the performance of SBGA
in games with n = 100, k = m = 20, and varying values of
δ ∈ {0, 0.1, 0.2, 0.3}, compared with BGA and online greedy
algorithm, and the result is shown in the right figure. We can
see that with higher uncertainty, the regret is larger, which is
reasonable. Even though, the average regret of SBGA still
outperforms BGA and online greedy algorithm significantly
and its convergence rate did not decrease a lot.

8 Conclusions
This paper provides the first defender strategy in repeated net-
work security domains with no prior knowledge of the adver-
sarial behavior model and the environment. In particular, we
proposed an adversarial online learning approach and non-
trivially modeled the repeated network interdiction game as
an online linear optimization problem, for which we provid-
ed a novel online learning algorithm, SBGA, to exploit the
unique semi-bandit feedback in network interdiction domain-
s. We formally proved that SGBA achieves low regret bounds
compared both with best fixed strategy on hindsight, and the
near optimal adaptive strategy. We have also run extensive
experiments to show that SBGA efficiently obtains robust so-
lutions with fast convergence rate against various realistic ad-
versarial types. In addition, it significantly outperforms the
existing methods. These imply the usefulness of our algorith-
m in many practical scenarios.
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A Proof of Theorem 1
We first explain some necessary notations. Let rt ∈ [0, 1]m

denote the vector where rtl = bl · f t for bl ∈ W . r̂t ∈ Rm
is SBGA’s estimation of rt in Algorithm 1. wt ∈ φ(S)
is the decision made by SBGA in round t. Let ŵt ∈
φ(S) be the decision recommended by GEX in round t, and
ŵt = wt if SBGA does not sample the exploration basis
in round t. ut ∈ [0, 1] is SBGA’s utility in round t, i.e.,
ut = wt · f t. Let ût ∈ R denote the utility of GEX in
the “imaginary” game, i.e., ût = ŵt · f̂ t. Let Gt denote

the history of the game by time t (inclusive), which con-
sists of all valid information of the game played so far. In
particular, if we condition on a history Gt, the random vari-
ables f1, ..., f t, r̂1, ..., r̂t, f̂1, ..., f̂ t,w1, ...,wt and χ1, ..., χt

are fully determined. Let w1:t be a sequence of decisions
{w1, ...,wt} and let f1:t be a sequence of adversarial flows
{f1, ..., f t}. We denote

utility(w1:T , f1:T ) =
∑T

t=1
wt · f t

best(f1:T ) = arg maxw∈φ(S)

∑T

t=1
w · f t

opt(f1:T ) = best(f1:T ) ·
∑T

t=1
f t.

Theorem 1 can be directly derived from four inequalities:

E[opt(f1:T)] ≤ T since ‖f t‖1 ≤ 1 (3)

(1−γ)E[utility(ŵ1:T , f̂1:T )]−E[utility(w1:T , f1:T )] ≤ γT
(4)

E[opt(f̂1:T )]−E[utility(ŵ1:T , f̂1:T )]

≤
{

(8m+ 2)C
√
T/γ, if m̄ ≥ 2;

2
√
mT, if m̄ = 1.

(5)

E[opt(f1:T)]−E[opt(f̂1:T )]

≤
{
mm̄(β∞ + 1)

√
T/γ, if m̄ ≥ 2;√

mT/γ, if m̄ = 1.
(6)

Proof of (4). We follow the similar procedure to prove (4) as
the proof of Theorem 3 in [McMahan and Blum, 2004].

w̄t =
∑

ŵt∈φ(S)
Pr(ŵt|Gt−1)ŵt.

Let r̂t,S and f̂ t,S be the estimators of rt and f t when S ∈ Seb
is sampled in round t, according to (2):∑

S∈Seb
f̂ t,S = (W †)−1

∑
S∈Seb

r̂t,S =
m̄

γ
f t. (7)

E[ût|Gt−1]

=
∑

S∈Seb
γ

m̄

∑
ŵt∈φ(S)

Pr(ŵt|Gt−1)(f̂ t,S · ŵt)

= γ[
∑

S∈S

1

m̄
f̂ t,S ] · w̄t =

γ

m̄
[
∑

S∈Seb
r̂t,S ] · w̄t

= f t · w̄t according to (7).

E[ut|Gt−1] = (1− γ)(f t · w̄t) + γ
∑

S∈Seb
1

m̄
(f t · φ(S))

≥ (1− γ)E[ût|Gt−1]− γ. since ‖f t‖1 ≤ 1

E[ut] = E[E[ut|Gt−1]] ≥ E[(1− γ)E[ût|Gt−1]− γ]

= (1− γ)E[E[ût|Gt−1]]− γ = (1− γ)E[ût]− γ.

Sum it up over t = 1, ..., T , and we will get the inequality (4).
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Proof of Inequality (5). We follow the sketch of proof of (2)

in [Dani and Hayes, 2006]: Let nonzero(f̂1:T ) denote the
sequence of non-zero flows in f̂1:T and let ξ denote the length
of nonzero(f̂1:T ). Let regret(GEX, f̂1:T ) denote the regret
of GEX in the “imaginary” game.

Case 1 [m̄ ≥ 2]: If m̄ ≥ 2, f̂ t can be negative, and the
approach by Kalai and Vempala [2003] has to be adapted to
serve as the GEX, which has been illustrated in appendix A
of [McMahan and Blum, 2004]:

E[regret(GEX, f̂1:T )|ξ] ≤ ε(4m+ 2)R2ξ + 4m/ε,
(8)

where R is an upper bound of |̂f t ·w| for w ∈ φ(S):

|̂f t ·w| = |(W †)−1r̂t ·Wα| = |̂rt ·α| ≤ ‖r̂t‖1‖α‖∞
≤ Cm/γ since ‖r̂t‖1 ≤ km̄/γ = m/γ,

where w = Wα with ‖α‖∞ ≤ C andC is the spanning ratio
of W w.r.t. φ(S). Substitute to Eq.(8) with E[ξ] = γT :

E[regret(GEX, f̂1:T )] = E[E[regret(GEX, f̂1:T )|ξ]]
≤ ε(4m+ 2)C2m2T/γ + 4m/ε.

Let ε =
√
γ/T/m, we have:

E[regret(GEX, f̂1:T )] ≤ (8m+ 2)C
√
T/γ.

Case 2 [m̄ = 1]: In this case, f̂ t = 1
γ f
t. The algorithm by

Kalai and Vempala [2003] can be directly applied for GEX:

E[regret(GEX, f̂1:T )|ξ] ≤ εξ/γ +m/ε

E[regret(GEX, f̂1:T )] ≤ εT +m/ε.

Set ε =
√
m/T , we get:

E[regret(GEX, f̂1:T )] ≤ 2
√
mT.

Proof of Inequality (6). We follow the sketch of proof of (3)
in [Dani and Hayes, 2006], since ‖w‖2 ≤

√
m for w ∈ φ(S):

|opt(f̂1:T )− opt(f1:T )| ≤
√
m‖
∑T

t=1
(f̂ t − f t)‖2. (9)

Define ∆t = f̂ t − f t, according to [Dani and Hayes, 2006]:

E[‖
∑T

t=1
∆t‖2]2 ≤

∑T

t=1
E[‖∆t‖22]. (10)

Case 1 [m̄ ≥ 2]:
‖f̂ t‖2 ≤

√
m‖(W †)−1‖∞‖r̂t‖∞ ≤ m̄

√
mβ∞/γ

‖f t‖2‖f t‖1 ≤ 1.

‖∆t‖2 ≤ ‖f̂ t‖2 + ‖f t‖2 ≤
{

1, w.p. 1− γ;
m̄
√
mβ∞
γ + 1, w.p. γ.

E[‖∆t‖22] ≤ (m̄
√
mβ∞ + 1)2/γ.

Substitute to (9) & (10):

E[|opt(f̂1:T )− opt(f1:T )|] ≤ m̄m(β∞ + 1)
√
T/γ

Case 2 [m̄ = 1]: Similarly, since ‖f̂ t‖2 = ‖ 1
γ f
t‖2 ≤ 1

γ :

E[|opt(f̂1:T )− opt(f1:T )|] ≤
√
mT/γ.

B Supplementary Experimental Evaluation
We also conduct experimental evaluation on small instances
with 20 checkpoints and 5 resources. Except BGA and online
greedy algorithm, other benchmarks are also tested, includ-
ing FPL-UE [Xu et al., 2016], the variant of FPL algorithm
for semi-bandit optimization [Neu and Bartók, 2015], and the
Geometric Hedge algorithm [Dani et al., 2007]. The results
are depicted in Figure 5, from which we can see that even in
the small instances, SBGA still outperforms all other bench-
marks significantly w.r.t. both the convergence rate and low
regret.
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Figure 5: Supplementary Experimental Evaluation.
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