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Abstract

In this paper, we focus on a new problem: apply-
ing artificial intelligence to automatically generate
fashion style images. Given a basic clothing im-
age and a fashion style image (e.g., leopard print),
we generate a clothing image with the certain style
in real time with a neural fashion style generator.
Fashion style generation is related to recent artis-
tic style transfer works, but has its own challenges.
The synthetic image should preserve the similar de-
sign as the basic clothing, and meanwhile blend the
new style pattern on the clothing. Neither existing
global nor patch based neural style transfer meth-
ods could well solve these challenges. In this pa-
per, we propose an end-to-end feed-forward neu-
ral network which consists of a fashion style gen-
erator and a discriminator. The global and patch
based style and content losses calculated by the dis-
criminator alternatively back-propagate the genera-
tor network and optimize it. The global optimiza-
tion stage preserves the clothing form and design
and the local optimization stage preserves the de-
tailed style pattern. Extensive experiments show
that our method outperforms the state-of-the-arts.

1 Introduction
Applying artificial intelligence to solve problems in art and
fashion fields attract a lot of attentions such as fashion style
classification [FYihui Ma and Tong, 2017; Kiapour et al.,
2014; Jiang et al., 2016a], clothing parsing [Yamaguchi et
al., 2013; Yamaguchi et al., 2012], clothing retrieval [Jiang et
al., 2016b] and recommendation [Fu12 et al., 2017]. In this
paper, we focus on a novel problem: fashion style generation.
It is different from existing online clothing design tools 1,2,
which directly put a picked icon on the basic clothing. As
shown in Figure 1 (b), with inputs of a basic clothing image
and a style image, we automatically generate a clothing im-
age blending with the new style while preserving the basic
design. The definition of “style” in this paper is similar as the

1https://www.customink.com/lab?ref=nav_v2
2http://www.ooshirts.com
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Figure 1: Fashion style generator framework overview. The input X
consists of a set of clothing patches X(1) and full clothing images
X(2). The system consists of two components: an image transfor-
mation network G served as fashion style generator, and a discrimi-
nator network D calculates both global and patch based content and
style losses. G is a convolutional encoder decoder network param-
eterized by weights θ. Six generated shirts with different styles by
our method are shown as examples. (We highly recommend to zoom
in all the figures with color version for more details.)

recent neural style transfer works [Gatys et al., 2015]. Tak-
ing Van Gogh’s “Starry Night” as the example style image,
style is between the low-level color/texture (e.g., blue and
yellow color, rough or smoother texture) and the high-level
objects (e.g., house and mountain). “Style” is a relatively ab-
stract concept. Fashion style generation has at least two prac-
tical usages. Designers could quickly see how the clothing
looks like in a given style to facilitate the design processing.
Shoppers could synthesize the clothing image with the ideal
style and apply clothing retrieval tools [Jiang et al., 2016b] to
search the similar items.

Fashion style generation is related to existing neural style
transfer works [Gatys et al., 2015; Li and Wand, 2016a;
Efros and Freeman, 2001], but has its own challenges. In
fashion style generation, the synthetic clothing image should

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3721



+

+

=

=

(a)

(b)

=

+

+

=

Figure 2: Limitations of applying the global [Gatys et al., 2015] (a)
and patch [Li and Wand, 2016a] based neural style transfer methods
to fashion style generation. The left two columns are input content
and style images. The right three columns are synthetic results in
different iterations. In (a), we apply global method on artistic style
transfer in the first row and on fashion style generation in the second
row. In (b), we apply patch method on face-to-face transfer in the
first row and on fashion style generation in the second row. This fig-
ure demonstrates that applying global or patch based methods may
fail to synthesize high quality fashion style images.

blend the style of the style image while preserving the orig-
inal form and shape of the clothing. Very few works have
focused on fashion style generation. To our best knowledge,
there is no publication so far and we only find an unpublished
course project, which investigates Gatys’s [Gatys et al., 2016]
neural style transfer work to fashion style transfer3. [Gatys
et al., 2016] performed artistic style transfer, combining the
content of one image with the style of another by jointly min-
imizing the content reconstruction loss and the style recon-
struction loss. Although [Gatys et al., 2016] produces high
quality results in painting style transfer, it is computationally
expensive since each step of the optimization requires for-
ward and backward passes through the pretrained network.
Meanwhile, existing works are mainly focused on painting or
other applications, which may not well capture the challenges
of fashion style generation task.

Existing neural style transfer works mainly consist of two
kinds of approaches: global and patch. Global (i.e., full im-
age) based methods [Gatys et al., 2015; Johnson et al., 2016;
Gatys et al., 2016; Ulyanov et al., 2016] achieve impressive
results in artistic style transfer, but with limited fidelity in lo-
cal detail, especially to high-resolution images. As shown
in Figure 2 (a), the global structure of content images (i.e.,
buildings and T-shirt) is well preserved; however, the detailed
structures of the style images are not well blended on the T-
shirt. We could see that the yellow stars are transferred on the
background instead of the T-shirt.

Patch based approaches, such as deep Markovian models
[Li and Wand, 2016a; Li and Wand, 2016b; Ding et al., 2016],
capture the statistics of local patches and assemble them to

3http://personal.ie.cuhk.edu.hk/˜lz013/
papers/fashionstyle_poster.pdf

high-resolution images. While they achieve high fidelity
of details, the additional guidance is required if the global
structure should be reproduced [Efros and Freeman, 2001;
Li and Wand, 2016a; Li and Wand, 2016b]. As shown in Fig-
ure 2 (b), patch based approaches well preserve both global
and local structure only when the style and content images
are with the similar structure such as face-to-face. However,
in fashion style generation, the style image is not necessar-
ily to be the clothing image or with the similar structure as
the content image. Lack of additional global guidance would
destroy the global structure of the synthetic image. For exam-
ple, in the second row of Figure 2 (b), the global structure of
the left part of the synthetic clothing is destroyed during the
synthesis processing.

To address the above challenges, we propose an end-to-
end feed-forward neural network of fashion style genera-
tion. We combine the benefits of both global and patch
based methods, and meanwhile avoid the disadvantages. As
shown in Figure 1, the inputs consist of a set of cloth-
ing patches and full images. There are two components:
an image transformation network G served as the fashion
style generator, and a discriminator network D calculates
both global and patch based content and style reconstruc-
tion losses. Furthermore, an alternating global-patch back-
propagation strategy is proposed to optimize the generator
to preserve both global and local structures. In online gen-
eration stage, we only need to do the forward propagation,
which makes it is hundreds faster than the existing methods
with both forward and backward passes [Li and Wand, 2016a;
Gatys et al., 2016]. Experimental results demonstrate that for
both speed and quality, the proposed method outperforms the
state-of-the-arts in fashion style generation task.

2 Method
2.1 Problem Formulation
For an input clothing image q and a style image ys, we want
to synthesize a clothing image ŷ through a style generator G.
ŷ blends the style of ys on q and meanwhile preserves the
form and design of q. We achieve it through off-line training
the parameters θ of G with a set of clothing images X and
the style image ys.

Recently, a wide variety of feed-forward image transfor-
mation tasks have been solved by training deep convolutional
neural networks [Johnson et al., 2016; Li and Wand, 2016b].
A general feed-forward network consists of an image trans-
formation network G and a discriminator network D. For
style transfer/generation, G is served as the a style genera-
tor. The reconstruction content and style loss of D iteratively
back-propagates and optimizes θ. In online generation, G
transforms the input clothing image q into output clothing im-
age ŷ via the mapping ŷ = fθ(q). Thus, we do not need to do
back-propagation, which facilitates the real time generation.

However, as discussed above, neither the existing global
[Johnson et al., 2016] nor patch [Li and Wand, 2016b] based
methods could well solve the challenges in fashion style gen-
eration. Therefore, we propose to jointly consider the global
and patch reconstruction losses when optimizing G to over-
come the shortcomings of global or patch based methods. The
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main purpose of global based optimization is to preserve the
global form and design of the basic clothing, while the main
purpose of patch based optimization is to preserve the local
details of the style pattern.

2.2 Architecture
The flowchart of Figure 1 shows the training stage of our sys-
tem. Different from existing works either only use full im-
ages or patches, the input X of our training stage consists of
a set of clothing patches X(1) and full clothing images X(2).
X(1) and X(2) are applied in patch and global based opti-
mization stage respectively. The patch images are cropped
from the online shopping clothing dataset [Hadi Kiapour et
al., 2015; Jiang et al., 2016b]. They are usually with clean
backgrounds and front poses, which makes it much easier to
focus on the details of the local clothing structure. The whole
clothing images are from the Fashion 144k dataset [Simo-
Serra and Ishikawa, 2016]. They are usually with complex
backgrounds and different poses, which makes the model
more robust to noise and could well preserve the global cloth-
ing structure.

Our system is an end-to-end feed-forward neural network
consists of an image transformation network G with param-
eter θ served as the fashion style generator and a discrimi-
nator network D. G consists of encoder and decoder parts.
The encoder En encodes the input image as a vector and de-
coderDe decodes the vector again as an image. D consists of
the global loss network φ and the patch loss network ϕs and
ϕc for style and content respectively. The reconstruction loss
back-propagates and optimizes θ to make the synthesis image
preserves both global structure and local details.

As mentioned in [Johnson et al., 2016], the pretrained con-
volutional neural networks are able to extract perceptual in-
formation and encode semantics. Therefore, we utilize a
pretrained image classification network (i.e., VGG-19) [Si-
monyan and Zisserman, 2014; Li et al., 2016] as the initial-
ization ofEn. Also, the VGG network is utilized as the global
loss network φ and the patch content loss network ϕc.

For the patch style loss network ϕs, since existing network
are mainly trained for whole images, instead of directly ap-
plying an existing pretrained discriminator network, we apply
the generative adversarial training [Goodfellow et al., 2014]
for learning the parameters of ϕs and initializing De simul-
taneously. After the initialization, an alternating patch-global
training strategy is applied for optimizing the generator pa-
rameter θ.

2.3 Objective Function of Discriminator
As discussed above, the loss function L of the discriminator
D is defined as a weighted combination of the patch based
loss L(1) and the global based loss L(2):

L(ŷ, yc, ys) = L(1)(ŷ, yc, ys) + λL(2)(ŷ, yc, ys)

= l
(1)
style + λ1l

(1)
content︸ ︷︷ ︸

patch

+λ2l
(2)
style + λ3l

(2)
content︸ ︷︷ ︸

local

, (1)

where λ, λ1, λ2 and λ3 are tuning parameters to adjust the
weights. Given an input training clothing image x ∈ X , ŷ is

the output synthetic image of the generator through mapping
ŷ = fθ(x). ys is the input style image. yc is the clothing con-
tent image. In the patch optimization stage, yc = x ∈ X(1),
while in global optimization stage, yc is a higher resolution
version of the image x ∈X(2).

Both L(1) and L(2) consist of two parts of losses: the con-
tent and the style reconstruction loss. The content losses
l
(1)
content(ŷ, yc) and l(2)content(ŷ, yc) capture the distances in respect

of perceptual features between yc and ŷ, for patch and global
respectively. The style losses l(1)style(ŷ, ys) and l(2)style(ŷ, ys) cap-
ture the distances between mid-level features of ys and ŷ for
patch and global respectively. In the following, we introduce
l
(2)
content, l

(2)
style, l(1)content, and l(1)style one by one.

As discussed above, we apply a pretrained convolutional
neural networks (i.e., VGG-19) as the global loss network φ.
The deeper layers of φ extract perceptual information and en-
code semantics of the content. Thus, measuring the percep-
tual similarity of yc and ŷ as the content loss is more infor-
mative than encouraging the pixel-based match. The middle
layers of φ, instead, extract mid-level feature representation
as the image style. Thus we measure the middle layer sim-
ilarity of ys and ŷ as the style loss. Let φj and φk be the
activations of the j-th (deeper) and k-th (middle) layer of the
network φ. Cj ×Hj ×Wj is the shape of feature map of the
j-th layer. In order to make the output image in the high res-
olution, we assign yc as the higher resolution version of the
input image x ∈X(2). lcontent(ŷ, yc) is the Euclidean distance
between feature representation as:

l
(2)
content(ŷ, yc) =

1

CjHjWj
‖φj(ŷ)− φj(yc)‖22, (2)

and for global style loss, we use the Frobenius norm of dif-
ferences of the Gram matrices [Gatys et al., 2015]:

l
(2)
style(ŷ, ys) =

1

CkHkWk
‖Gramφ

k(ŷ)−Gramφ
k(ys)‖2F . (3)

Different from l
(2)
content and l(2)style computed on the same loss

network φ, patch losses l(1)content and l
(1)
style are computed on

patch content loss network ϕc and patch style loss network
ϕs respectively. Assume we extract N patches from a full
image and denote Ψ(·) as the patches extracted from the im-
age. For content loss, we calculate the Euclidean distance
between feature representation in the similar way as Eq. (2):

l
(1)
content(ŷ, yc) =

1

N
‖ϕc(Ψ(ŷ)− ϕc(Ψ(yc)‖22, (4)

where Ψ(ŷ) and Ψ(yc) are patches extracted from ŷ and yc.
For patch style loss networkϕs, since existing networks are

mainly trained for full images, instead of directly applying the
existing pretrained discriminator network, we apply Genera-
tive Adversarial Network (GAN) [Goodfellow et al., 2014;
Radford et al., 2015] for learning ϕs and meanwhile initial-
izing the parameters of decoder De of the generator. We will
describe it in the next subsection. After obtaining the ϕs, we
apply Hinge loss to measure the style loss as [Li and Wand,
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2016b]:

lstyle(ŷ, ys) =
1

N

N∑
i=1

max(0, 1− 1× si), (5)

where si denotes the classification score of i-th neural patch.
More details could be referred in [Li and Wand, 2016b].

2.4 Optimization of Generator
In this section, we describe the strategy to optimize the pa-
rameter θ of the style generator G using the loss L calculated
by the discriminator:

θ∗ ← arg min
θ

Ex,ys,yc [L
(
fθ(x), ys, yc

)
], (6)

where Ex,ys,yc is the estimation of the expectation via the
training set {x, ys, yc}, x ∈X .

We firstly describe utilizing GAN [Goodfellow et al., 2014;
Radford et al., 2015] for learning patch style network ϕs and
meanwhile initializing the parameters of decoder De. The in-
puts of this stage are image patches X(2) and the style image
ys. As described, the parameters of theEn, the global loss net
φ and the local content loss net ϕc are initialized by VGG. We
keep En unchanged in this step.

GAN estimates generative models via an adversarial pro-
cess. The training procedure for G is to maximize the proba-
bility of D making a mistake. The objective function is as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))].
(7)

In traditional GAN, z is the random noise. In our work,
we replace z using the encoded feature of the input image by
En of VAE [Kingma and Welling, 2013]. The detailed theory
proof could be referred in [Goodfellow et al., 2014]. Figure 3
shows three examples of the generated patches with the style
“Chinese knot” after the initialization of ϕs and De. To this
end, all the parts of networks are initialized.

Figure 3: Example of generated style patches. The inputs are image
patches and a style image “Chinese knot”. We could see that the
generator blends the style of “Chinese knot” on the clothing patches
detailedly.

Next, we describe the alternating global-patch back-
propagation algorithm for optimizing θ. The discriminator
networks are unchanged during the optimization. The alter-
nating global-patch back-propagation iterates the following
two-steps for T iterations.

(1)Global back-propagation:
In the global back-propagation step, θt+1 can be obtained

by using the least squares error of the global loss in iteration

Algorithm 1 Alternating Patch-Global Back-propagation

INPUT: X(1), X(2), ys, T , τ (1), τ (2). VGG network param-
eter.

1: Initialize weights of En, φ, ϕc by VGG.
2: Apply GAN to initialize De and ϕs.
3: for t=1,2,...,T do
4: %update θ by global loss back-propagation.
5: for m=1,2,...,τ (2) do
6: Calculate the global loss by Eq. (1),(2),(3).
7: Update θt by Eq. (8).
8: end for
9: %update θ by patch loss back-propagation.

10: for m=1,2,...,τ (1) do
11: Calculate the patch loss by Eq. (1),(4),(5).
12: Update θt by Eq. (9).
13: end for
14: Update θt+1 = θt.
15: end for

ONPUT: Style generator parameter θ̂ = θt.

t + 1 and t as ‖L(2)
t+1 − L

(2)
t ‖ = ‖e(2)m+1‖ to train the genera-

tor fθ(x). We employ a gradient descent (GD) algorithm to
minimize ‖em+1‖. θt+1 is updated by repeating τ (2) times
as:

θt = θt − η(2)
∂‖e(2)t+1‖22
∂θt

, (8)

where η(2) is the learning rate.
(2)Patch back-propagation:
In local back-propagation step, θt+1 can be obtained by

using the least squares error of the patch loss in iteration t+1

and t as ‖L(1)
t+1−L

(1)
t ‖ = ‖e(1)m+1‖ to train the generator fθ(x).

θt+1 is updated by repeating τ (1) times as:

θt = θt − η(1)
∂‖e(1)t+1‖22
∂θt

(9)

where η(1) is the learning rate.
The algorithm of optimization is described in Algorithm 1.

3 Experiments
3.1 Experimental Details
Dataset and Data Processing: Our training dataset contains
two parts: A Fashion 144k dataset as full image inputs [Simo-
Serra and Ishikawa, 2016] and 300 online shopping images
as patch inputs, which are randomly selected from the On-
line Shopping dataset [Hadi Kiapour et al., 2015]. Exist-
ing patch based works point out that only a small number
of training images (i.e., 100 images) could still produce good
results [Li and Wand, 2016b]. The Fashion 144k dataset con-
sists of 144,169 user posts with images, collected from the
largest fashion website chictopia.com. The Online Shopping
dataset consists of 404,683 shop photos from 25 different on-
line clothing retailers. Our testing data are 100 images ran-
domly collected from online shopping websites. In the exper-
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Content NeuralST FeedSMRFCNN MGAN OursStyle

Figure 4: Synthetic fashion style images by 5 compared methods NeuralST, MRFCNN, FeedS, MGAN and Ours. The fist left column shows
the input style images “wave” and “bear”. The second left column shows four input content images. For MGAN and Ours, we enlarge the
regions in red frames to show more details.

iments, we apply 6 style images as shown in the last second
row in Figure 1. They are “blue and white porcelain”, “bear”,
“wave”, “Chinese knot”, “leopard print” and “starry night”.

The settings of the sizes of inputs and outputs images in
training are following existing global and patch based works
[Johnson et al., 2016; Li and Wand, 2016b]. The style images
are color images of shape 3 × 256 × 256. For full images,
the low-resolution inputs are of shape 3× 72× 72. The high-
resolution inputs are of shape 3×288×288. For patch images,
the patches are of shape 3×128×128. They are cropped from
full online shopping images with a fixed stride, which is 16 in
our work. Since the image transformation networks are fully-
convolutional, at test stage they can be applied to images of
any resolution.

Network details: For the generator network G, it takes
a V GG 19 layer relu4 1 encoding of an image and directly
decodes it to pixels of the synthesis image. For the decoder
De and the patch style loss network ϕs , like [Radford et al.,
2015; Wu et al., 2016], we use batch normalization (BN) and
LReLU to improve the training. The style loss is computed
at the V GG 19 network layer relu2 2, and the content loss
is computed in V GG 19 layer relu5 1.

Training details: For global stage back-propagation, max-
imum iteration is set to be 40000, and a batch size of 4
is applied. These settings give roughly 1.5 epochs over all
the training data. For patch stage back-propagations, we
test 1 to 10 epochs over all the patches. The optimization
is based on Adam [Kingma and Ba, 2014] with a learning
rate of 1 × 10−3. No weight decay or dropout is used. The
training is implemented using Torch [Collobert et al., 2011]
and cuDNN [Chetlur et al., 2014]. Each style training takes
around 7 hours on a single GTX Titan X GPU.

3.2 Compared Methods
Although there are very few publications fully focused on
fashion style generation task, to evaluate the effectiveness
of our proposed method, we take four most related global or
patch based neural style transfer works as our baseline meth-
ods as following:

NeuralST [Gatys et al., 2015]: Gatys et al. performed
artistic neural style transfer by synthesizing a new image that
matches both the content of the content image and the style
of the style image.

MRFCNN [Li and Wand, 2016a]: Li et al. combined gen-
erative Markov random field (MRF) patch based models and
discriminatingly trained deep convolutional neural networks
(dCNNs) for synthesizing 2D images.

FeedS [Johnson et al., 2016]: Johnson et al. proposed
feed-forward network to solve the optimization problem in
[Gatys et al., 2015] in real time in test stage.

MGAN [Li and Wand, 2016b]: Li et al. proposed a Marko-
vian patch-based feed-forward network for artistic style trans-
fer. This work is similar as the initialization of the patch loss
network in our work.

Ours: It includes the whole pipeline of our framework.
In NeuralST and MRFCNN, both forward and backward

propagations are applied when generating testing results. For
FeedS and MGAN, we train the feed-forward networks with
the same clothing datasets as our work. We have conducted
different settings of parameters and post the best results we
obtained of each method. For the comparison methods, we
run the code released by the authors.

3.3 Experimental Results
Figure 4 compares our results with compared methods Neu-
ralST, MRFCNN, FeedS and MGAN. In NeuralST and MR-
FCNN, we set the iteration number as 200. In FeedS, we set
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Figure 5: Illustration of synthetic clothings at different iterations (0, 1000, 2000, 3000 from left to right) of the global back-propagation after
the patch based initialization. The global iterations gradually add the style pattern on the destroyed parts of the images caused by the patch
initialization. We enlarge the parts in the red frames to show more details.

the iteration number as 40,000, which is almost 2.5 epochs. In
MGAN, we set the iteration number as 3000, which is almost
10 epochs. In Ours, we set T = 1 and τ (1) = τ (2) = 3000.
We remove the backgrounds of clothing images through im-
age matting algorithms for better visualization.

When comparing feed-forward based methods (FeedS,
MGAN and Ours), we found that MGAN and Ours better pre-
serve the detailed textures in the style images, compared with
global based FeedS. For example, the claws of the waves and
bear hair are very clear. Since our network is initialized by
patch based network, the difference of the texture between
MGAN and Ours are not large. However, as discussed above,
patch based methods may not well preserve the global struc-
ture of the full image. For example, in the first row of MGAN,
the areas in the red frames are not well synthesized. In our
method, these areas are better blended with style patterns. It
shows the effectiveness of considering both global and local
characteristics in our method.

NeuralST and MRFCNN are not feed-forward based net-
works. Generally, besides the speed, we have the similar
observations. In MRFCNN, although the generated images
preserve the textures, they may loss the original global struc-
tures. For example, on the two generated images with bear
style in MRFCNN, even the head of bears are transferred.

3.4 Discussion of Speed and Complexity

NeuralST and RMFCNN are computationally expensive
since each step of the optimization requires forward and
backward passes through the pretrained network. With the
feed-forward network, since we do need to do the back-
propagation in the test stage, the test speed is hundreds faster.

For the training stage, the most time-consuming part is the
patch discriminator network initialized by GAN. The time
complexity of this step is the same as [Li and Wand, 2016b].
It is mainly effected by the training iterations and the batch
size. In our work, it take about 5 hours for the initialization.
After initialization, the speed is effected by the alternating it-
eration number T , and the iteration numbers τ (1) and τ (2) in
the patch and global back-propagation. Since the generator is
already initialized, we set T , τ (1) and τ (2) at small numbers.
It takes about 2 hours for the following optimization.

3.5 Discussion of Our Method
To evaluate the effectiveness of the alternating patch-global
back-propagation, in Figure 5, we show the generated im-
ages of only utilizing the patch back-propagation (iteration
0) and after global back-propagation iterations at 1000, 2000
and 3000. The global back-propagation gradually blends the
style on the destroyed parts caused by the patch initialization,
which shows the effectiveness of the patch-global optimiza-
tion strategy.

We also discuss the weight λ in our objective function Eq.
(1). We tune λ through different settings of learning rate η(1)

and η(2) in Eq. (8) and (9). The initial learning rate η(1)

in patch optimization is 0.02. We fix η(1) and tune η(2) of
global optimization as e−5 to e−9. If we set the learning rate
too large, the network could not be converged and the output
image would be blur and without style patterns blended. We
achieve good results at η(2) around e−7. Comparing η(1) and
η(2), we observed that the patch loss plays an more important
role than global loss.

3.6 Limitation
Our work still has some limitations. First, similar as the patch
based method MGAN [Li and Wand, 2016b], we may also fail
to generate style texture on the clothing if a very large area of
image is non-texture and pain. Second, sometimes the color
would be less accurate, due to the network may preserve some
original color of the content image. Third, the resolution of
the generated clothings are still lower than the real clothing.

4 Conclusion
In this paper, we focused on fashion style generation, which
is a relatively new topic in artificial intelligence field. We
pointed out the challenges in fashion style generation com-
pared with existing artistic neural style transfer. The syn-
thetic image should preserve the similar design as the basic
clothing and meanwhile blend the detailed style. We ana-
lyzed the shortcomings of existing global and local methods
in neural style transfer if directly applied in our task. To ad-
dress the challenges, we proposed an end-to-end neural fash-
ion style generator, together with an alternating patch-global
back-propagation strategy. Experiments and analysis show
that our model outperforms the state-of-the-arts.
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