
How to Keep a Knowledge Base Synchronized with Its Encyclopedia Source
Jiaqing Liang12, Sheng Zhang1, Yanghua Xiao134∗

1School of Computer Science, Shanghai Key Laboratory of Data Science
Fudan University, Shanghai, China

2Shuyan Technology, Shanghai, China
3Shanghai Internet Big Data Engineering Technology Research Center, China

4Xiaoi Research, Shanghai, China
l.j.q.light@gmail.com, {shengzhang16,shawyh}@fudan.edu.cn

Abstract
Knowledge bases are playing an increasingly im-
portant role in many real-world applications. How-
ever, most of these knowledge bases tend to be
outdated, which limits the utility of these knowl-
edge bases. In this paper, we investigate how to
keep the freshness of the knowledge base by syn-
chronizing it with its data source (usually ency-
clopedia websites). A direct solution is revisiting
the whole encyclopedia periodically and rerun the
entire pipeline of the construction of knowledge
base like most existing methods. However, this
solution is wasteful and incurs massive overload
of the network, which limits the update frequency
and leads to knowledge obsolescence. To over-
come the weakness, we propose a set of synchro-
nization principles upon which we build an Update
System for knowledge Base (USB) with an update
frequency predictor of entities as the core compo-
nent. We also design a set of effective features and
realize the predictor. We conduct extensive exper-
iments to justify the effectiveness of the proposed
system, model, as well as the underlying principles.
Finally, we deploy USB on a Chinese knowledge
base to improve its freshness.

1 Introduction
Knowledge bases (KBs) are playing an increasingly impor-
tant role in many real-world applications. Many knowledge
bases, such as Freebase [Bollacker et al., 2008] and DBpedia
[Auer et al., 2007; Lehmann et al., 2015], are extracted from
encyclopedia website such as Wikipedia with many volun-
teers maintaining unstructured or semistructured knowledge
every day. Knowledge bases extracted from encyclopedia
websites usually have high precision and coverage, thus have
been widely used in many real applications, such as search
intent detection, recommendation and summarization.

∗Corresponding author. This paper was supported by National
Key Basic Research Program of China under No.2015CB358800,
by the National NSFC (No.61472085, U1509213), by Shanghai Mu-
nicipal Science and Technology Commission foundation key project
under No.15JC1400900, by Shanghai Municipal Science and Tech-
nology project under No.16511102102, No.16JC1420401.

However, most of these knowledge bases tend to be out-
dated, which limits their utility. For example, in many knowl-
edge bases, Donald Trump is only a business man even af-
ter the inauguration. Obviously, it is important to let ma-
chines know that Donald Trump is the president of the United
States so that they can understand that the topic of an arti-
cle mentioning Donald Trump is probably related to politics.
Moreover, new entities are continuously emerging and most
of them are popular, such as iphone 8. However, it is hard for
a knowledge base to cover these entities in time even if the
encyclopedia websites have already covered them.

One way to keep the freshness of the knowledge base is
synchronizing the knowledge base with the data source from
which the knowledge base is built. For example, encyclope-
dia websites such as Wikipedia are obviously good sources
for update. Not only because many knowledge bases are ex-
tracted from these encyclopedia websites, but also due to their
high-quality and updated information since many volunteers
are manually updating existing articles or adding articles for
new entities.

Thus, our problem becomes how should the knowledge
base be kept synchronized with online encyclopedia.

In the best situation, the encyclopedia website may provide
the access (such as live feed) to recent changes made in the
website. The DBpedia live extraction systems [Hellmann et
al., 2009; Morsey et al., 2012] rely on this access mechanism.
However, most of the encyclopedia websites do not provide
such access. In this case, a direct update solution is revisit-
ing the whole encyclopedia periodically and rerun the entire
pipeline of the construction of knowledge base like most ex-
isting methods. There are two alternative ways to access the
encyclopedia articles. The first one is directly downloading
the dump file provided by the encyclopedia websites, such as
Wikipedia. However, the dump is usually updated monthly,
which can not satisfy the real requirement about the knowl-
edge freshness. Moreover, only few encyclopedia websites
provide dump downloading. The second way is crawling all
the articles in encyclopedia. But crawling the entire online
encyclopedia with tens of millions of articles usually needs
more than one month with a single machine. No matter which
way we choose, we have to download data of GB size, which
consumes too much network bandwidth. What’s worse, the
encyclopedia websites might ban the crawling if the access is
too frequently. As a result, time delay of the update is still

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3749

significant, leading to the obsolescence of knowledge.
Above solution is not only wasteful but also unnecessary.

We notice that most entities have stable properties and are sel-
dom changed, such as basic concepts like orange, or histor-
ical persons like Newton. In contrast, some very hot entities
are subject to change, such as Donald Trump. Distinguishing
the entities subject to change (hot entities) from others with
stable properties and then only updating hot entities is clearly
a smarter strategy, which not only saves network bandwidth
but also shortens the time delay. Thus, the key will be how to
estimate the update frequency of an entity in an encyclopedia
website.

In this paper, we systematically study the update frequency
of entities in encyclopedia. We find that only few of them fol-
low Poisson distribution. Thus, we can only use the change
rate (λ) of Poisson distribution to estimate the update fre-
quency for quite few entities. This weakness motivates us to
build a more effective predictor of update frequency that em-
ploys not only the historical update information but also the
semantic information in the article page of the entity. Based
on the predictor, we build a KB update system USB (Update
System for Knowledge Base), whose effectiveness is justified
in our experiments. The update system was further deployed
on our knowledge base CN-DBpedia1, which is created from
the largest Chinese encyclopedia BaiduBaike2. The system
updates 1K entities per day, and about 70% of them actually
contain newly updated facts.

2 Framework
In this section, we present the basic framework of USB.

2.1 Problem Model and Solution Framework
Problem model Since the network resources are always
limited and some encyclopedia websites have restricted ac-
cess, we assume that there is an upper limit (K) on the num-
ber of entities we can access every day. In other words, a good
update strategy should maximize the number of crawled en-
tities with a newer version than which in our knowledge base
with at most K entities to crawl. The formal objective is:

arg max
R,|R|≤K

|{x|x ∈ R, tn(x) > ts(x)}| (1)

where R is the entity set that we crawl, tn(x) is the last up-
date time of x in online encyclopedia, and ts(x) is the last
synchronization time of x. When x is a new entity that is not
in the current KB, ts(x) = −∞.

A baseline solution Recall that the key of a smart update
strategy is predicting whether an entity has been updated
since its last synchronization. Assume that we have already
built an effective predictor; the naive solution is running the
predictor for each entity in the knowledge base. If the pre-
dictor says yes, we update the entities by re-crawling them.
However, this naive solution still has two weaknesses:
• First, there are too many entities (tens of millions) in the

knowledge base. Running the predictor for all of them
is still time-consuming.

1http://kw.fudan.edu.cn/cndbpedia/
2https://baike.baidu.com/

• Second, this method can only update the existing entities
in KB, and it misses new entities that are not in KB.

To overcome weaknesses above, we highlight that many
entities have stable properties and running predictor on these
entities is wasteful. In contrast, the entities with changed facts
actually are not too many. We find that hot entities mentioned
on Web (in hot news or hot topics) are good candidates, be-
cause hot entities on Web in general are either new emerg-
ing entities or old entities that have a large chance to change.
This rationale motivates us to use hot entities on Web as a
seed set to start the updating procedure. This strategy is not
good enough since the number of hot entities on Web per day
is usually small. Hence, we further propose entity expansion
to improve the recall.

Solution framework Based on the ideas above, we develop
a framework to update a KB, namely USB, which is illus-
trated in Algorithm 1. USB mainly consists of four steps:

1. Seed finding. We find hot entities from Web.

2. Seed synchronizing. We visit/crawl the latest encyclopedia
page for each seed entity, and synchronize (update or insert)
the information in online encyclopedia with the knowledge
bases via our knowledge extractor from online encyclopedia.

3. Entity expanding. We use the newest pages of the synchro-
nized entity to find more related entities via the hyperlinks in
the encyclopedia pages.

4. Expanded entities synchronizing. For the expanded entities,
we synchronize the entities according to their priority. The
priority is provided by a predictor of update frequency.

Algorithm 1 USB: Update System for KB
Input: K: upper limits of accesses to the online encyclopedia
Func: VISIT(x): access x’s page in the online encyclopedia, can

be called at most K times
Func: EXTRACT SEED(hots): extract entities from the sentence

set hots
Func: EXPAND(x): return all hyperlinked entities of x
1: // Step 1: Seed finding
2: hots← crawl hot sentences/phrases from Web
3: seeds← EXTRACT SEED(hots)
4: // Step 2 & 3: Seed synchronizing and seed expanding
5: pq ← ∅ //pq is a priority queue
6: for s ∈ seeds do
7: page(s)← VISIT(s)
8: if page(s) exists in online encyclopedia then
9: update s in KB with page(s)

10: for x in EXPAND(s) do
11: insert x into pq with priority value as E[u(x)]
12: end for
13: end if
14: end for
15: // Step 3 & 4: Entity expanding and synchronizing
16: while access limit K is not reached AND pq is not empty do
17: s← pq.pop() // pop the entity with the largest value
18: page← VISIT(s)
19: update s in KB with page
20: for x in EXPAND(s) do
21: insert x into pq with value E[u(x)]
22: end for
23: end while

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3750

In the algorithm, entity expansion (Step 3) and the syn-
chronization of expanded entities (Step 4) are repeated until
the upper access limit is reached or the queue is empty (line
16). Since Step 2 is already clear, in the following text, we
mainly elaborate the other three steps.

2.2 Seed Finding
In the first step, we use hot entities on Web as the seeds, mo-
tivated by the following principle:

Principle 1 If an entity appears frequently on Webs (search
engines, online communities or online news), its facts are
likely to change.

Specifically, we first collect the sentences or phrases from
(1) hot news titles, (2) top search keywords of search en-
gines, and (3) hot topics of online communities (line 2 in
Algorithm 1). Then we extract entity names from these sen-
tences and phrases (line 3 in Algorithm 1). We might di-
rectly run traditional named entity recognition (NER) meth-
ods to identify entities. However, the state-of-the-art NER
methods, have less than 90% recall [Finkel et al., 2005;
Lample et al., 2016]. In our case, recall is the key issue since
we don’t want to miss any new emerging entities. To achieve
a high recall, we exhaustively enumerate all word segmenta-
tions in the sentences or phrases; then search with the word
segmentations in the encyclopedia website to find the corre-
sponding entity. For example, from the news title: “Chinese
comedian Zhou Libo was arrested”, we get the segmentation
Zhou Libo, which is an entity name. Another segmentation
such as Libo was will also be searched, although it has no cor-
responding entity. Note that the exhaustive enumeration cost
is acceptable since the total number of hot sentences/phrases
is not large (each source only provides several tens of hot
sentences/phrases per day), and we filter out trivial segmen-
tations by a stop-word list.

Next we conduct an empirical study to justify the effective-
ness of our seeding strategy. We find 86 seed entities from a
hot query list of a search engine (Sogou search3) and a hot
topic list of a BBS (Baidu Tieba4). As a comparison, we ran-
domly sample the same number of entities from our KB. Then
we compute the number of days (as d) since the last update in
the encyclopedia website for each sampled entity. We show
the CDF (cumulative distribution function) of d for the two
sample sets in Figure 1. It can be seen that the CDF curve of
seed entities grows faster than that of random entities. In the
seed entity set, more than a half of them changed recently (in
one month). In contrast, there are only three entities in the 86
random samples changed recently. Therefore, our strategy is
effective to find entities recently changed.

2.3 Entity Expanding
In general, the seed entities have a high precision but the re-
call still needs to be improved. We further propose an entity
expansion step to find more recently updated entities. The ex-
pansion is based on Principle 2. To see the rationality of the
principle, consider Donald Trump’s wife. She becomes the

3http://top.sogou.com/home.html
4http://tieba.baidu.com/hottopic/browse/topicList?res type=1

0 50 100 150 200 250 300 350 400
X

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

d
<

X
)

Random

Hot seeds

Figure 1: The CDF of seed entities and random entities. Most seed
entities have a small d (#days since its last update), implying that
they are recently updated. Our seeding strategy is effective to find
recently updated entities.

First Lady after Donald Trump becomes American president.
Although her name occurs much less frequently on Web than
Donald Trump, the facts about her are likely to change.

Principle 2 An entity that is semantically related to a re-
cently updated entity is also likely to be updated recently.

The inner hyperlinks in Wikipedia or similar websites have
been widely used for finding semantically related entities.
Hence, we use the hyperlinked entities in the encyclopedia
articles of each seed entity as the expanded entity set. The
expansion procedure is iteratively executed along all the enti-
ties synchronized (see line 20-22 in Algorithm 1).

2.4 Expanded Entities Synchronizing
After getting the expanded entities, each expanded entity ei-
ther appears or not in the knowledge base. Any time in the
expansion when we find an entity that is not in the knowl-
edge base, we crawl and add it into the knowledge base, as
stated in Principle 3. The reason is not only completing the
KB with a new entity but also ensuring that there are no dead
links. Note that the new entity might be referenced by other
entities. The immediate update strategy for new entities will
not pose a great burden because in general the new entities
of the encyclopedia website are few. For example, there are
800 new articles per day in Wikipedia5. If the expanded en-
tity is already in the knowledge base, we rely on a predictor
to determine whether the entity needs to be updated.

Principle 3 Any entity that is not in the current knowledge
base has the highest priority to be synchronized.

We continue our experimental study to justify the predictor
based update strategy. From the 86 hot seeds, we get 687 ex-
panded entities along the hyperlinks. We find that 269 of them
(about 40%) are updated in the last month. The ratio is statis-
tically significantly (with a z-score 18.03) larger than random
samples (less than 3%). These results imply that (1) the ex-
pansion strategy is effective to find entities recently changed;
(2) synchronizing all the expanded entities is still wasteful be-
cause the percentage (40%) is not high enough, thus requiring
an oracle (predictor) for selection.

Given the network resource budget, we hope to synchro-
nize the entities that have the largest expected update times af-
ter the last synchronization (denoted by E[u(x)], where u(x)

5https://en.wikipedia.org/wiki/Wikipedia:Statistics

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3751

is the update times after the last synchronization of entity x)
as earlier as possible. The principle we used here is:
Principle 4 The entity that has large expected update times
in encyclopedia websites after its last synchronization, de-
serves a high priority to be synchronized under the network
access budget constraint.

Next, we show how to evaluate E[u(x)]. It is obvious that

E[u(x)] = P (x)× (tnow − ts(x)) (2)

where P (x) is the expected update frequency produced by
our predictor (See the next section), and ts(x) is the last syn-
chronization time of x. Moreover, we define ts(x) as −∞ if
x is not in our knowledge base. As a result, a new entity will
always have the highest priority to be synchronized, which
reflects Principle 3. We use E[u(x)] as the priority to insert
an entity into the synchronization queue, and stop the KB up-
dating procedure if the network resource budget runs out.

3 Update Frequency Predictor
In this section, we present our solution for the update fre-
quency prediction (i.e., estimating P (x) in Equation 2). We
first present a baseline solution based on Poisson distribution
assumption about the update frequency of an entity. However,
the predictor still has many weaknesses, which motivates us
to propose a learning model, which employs more informa-
tion than the baseline.

3.1 A Baseline Predictor
The first idea comes to our mind is that whether we can use
the historical update information to predict when an incom-
ing update will come. Many encyclopedia websites, such as
Wikipedia, BaiduBaike, have a complete update history, mak-
ing the exploration of the question above possible. If the an-
swer to the question is yes, it means that the change rate (or
update frequency) is independent of the time window we se-
lect, i.e. the change rate, or simply rate, is a constant. If it is
the case, we can assume that the number of updates occur in
an interval follows Poisson distribution (See Assumption 1).
Assumption 1 The number of updates in an interval (de-
noted by N) for an entity in encyclopedia websites follows
the Poisson distribution.

P (N = k) =
λke−λ

k!
(3)

Based on the Poisson distribution assumption, the rate λ
characterizes the update frequency. Thus, our problem will
be how to estimate λ. It was shown that the total number
of updates divided by time period is an effective estimator of
λ [Cho and Garcia-Molina, 2003; Umbrich et al., 2010]. This
allows us to use the historical update information to estimate
λ. More specifically, in our settings, we estimate λ as the
total number of updates C(x) in the encyclopedia website,
divided by the number of weeks since its creation.

λ̂(x) =
C(x)

tnow − tcreate(x)
(4)

λ̂(x) can be used as the expected update frequency P (x) in
Equation 2 and helps us finding the entity that has a large
expected number of updates.

Time unit Amount Confidence Test passed Proportion
Month 94873 0.050 4253 4.48%
Month 94873 0.010 6182 6.52%
Month 94873 0.005 6796 7.16%
Week 94873 0.050 313 0.33%
Week 94873 0.010 436 0.46%
Week 94873 0.005 490 0.52%

Table 1: The result of Poisson distribution test. Only few of entities
obey Poisson distribution.

Weakness of the baseline However, the baseline above still
has weaknesses. First, some new entities have a short history.
Thus, the historical update based estimation is inaccurate.
Second, the update frequency of an entity might change with
time. Thus the update frequency does not necessarily obey
Poisson distribution for many entities. For example, Donald
Trump is not so popular before his presidential campaign. The
update frequency when the election result is announced is cer-
tainly larger than before and afterwards.

We further conduct an empirical study to test whether the
update frequency follows a Poisson distribution. Specifically,
we use K-S (Kolmogorov-Smirnov) test [Lilliefors, 1967] for
this purpose. We set the interval with both month and week.
The K-S test results on randomly selected 94,873 entities of
BaiduBaike under three confidence levels (0.05, 0.01, 0.005)
are shown in Table 1. We can see that less than 8% of the
encyclopedia entities obey Poisson distribution.

Hence, Poisson distribution based assumption does not
necessarily hold for an entity. We still need more features
to build a more effective predictor for the update frequency.

3.2 Supervised Update Frequency Predictor
Next, we present some more effective features for the pre-
diction of the update frequency. These features are further
fed into a supervised regressor, which predicts the update fre-
quency according to these features. In order to train the re-
gressor, we need labeled dataset and effective features.

Labeled dataset and models We first need the labeled data
to supervise the learning of our model. Since we have the
entire changing logs for lots of entities in the encyclopedia
website and the objective of our model is the “future” update
frequency, we use a labeling method similar to time series
prediction problems. We first collect the whole changing logs
for 94k entities in BaiduBaike. Then we select a time stamp
T (in our study, we set T as one month before now). And
we use the snapshots of the entities at T to generate the fea-
tures. Moreover, the response variable y(e) is the average of
weekly update frequency after T of entity e. Thus, we con-
struct a sample as < 〈x1(e), x2(e), ...xk(e)〉, y(e) >, where
each xi(e) is one of the feature about e, which will be elabo-
rated in the next subsection. Finally, the training samples are
fed into two regressor models: linear regression [Kutner et
al., 2004] and random forest regression [Liaw and Wiener,
2002]. A regressor is obviously more advantageous than a
binary classifier since a regressor can be trivially transferred
into a binary classifier by a certain threshold. A regressor is
also necessary since we need to sort the candidate entities by
the predicted update frequency. We use the implementations

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3752

in scikit-learn [Pedregosa et al., 2011]. Specifically, for the
linear model, we use ridge linear regression, which uses lin-
ear least squares loss and l2 regularization.

Feature engineering For each entity, we extract features
from its snapshot at time T . We highlight that all the follow-
ing metrics are calculated from the data before time T . The
features are listed below:

1. #Weeks of existence. This is used to quantify how long the
entity exists in the encyclopedia website. Intuitively, a new
entity has a larger chance to be updated.

2. #Total updates. This quantifies how many times the entity
has been updated. A historically frequently updated entity in
some cases tends to be updated in the future as discussed in the
baseline method.

3. #Times viewed by users. The encyclopedia website contains
the times that an entity is viewed. Intuitively, a popularly
viewed entity has a large probability to be updated.

4. #All hyperlinks. The encyclopedia article of an entity usually
contains hyperlinks to external sources or other entities in en-
cyclopedia. The more such hyperlinks are, the more possibly
the entity is influenced by an external source or other entities.

5. #Hyperlinks to entities. The hyperlinks to other entities in en-
cyclopedia deserve an individual metric. Because any change
in one of hyperlinked entities in encyclopedia website might
propagate to the entity.

6. Page length. It is the length of the article page about an entity,
except the ADs and banners. A longer article usually has a
large chance to be updated since it contains rich content.

7. Main content length. It is the length of the main text of an
entity in encyclopedia.

8. Historical update frequency. It is the weekly average update
frequency. The rationale has been discussed in the baseline
method.

In addition, for the 2-7 features, we use g(x) = log(1+ x) to
normalize them.

4 Experiments
In this section, we conduct extensive experiments6 to show
the effectiveness of our update frequency predictor and our
updating framework.

Exp 1: Effectiveness of our features At first, we show the
effectiveness of our features. We use the labeled dataset pro-
posed in Section 3.2 to train a binary classifier that predicts
whether an entity will be changed in one month after T or
not. In the classifier version, the label is true when y(e) > 0,
and the label is false when y(e) = 0. We fed the model with
the same features as the regressor. The classifier models al-
low us to compute χ2 and IG (information gain) to evaluate
the effectiveness of each feature. The result is in Table 2.

The result shows that our features are effective to distin-
guish the recently updated entities from other entities. In gen-
eral, the number of updates either the total version or divided
by interval is among the most effective features. However,
many other features, such as the number of hyperlinks, show

6The code and data are available at http://kw.fudan.edu.cn/resour
ces/data/bdupd.zip

Feature χ2 IG(10−3)
1 #Weeks of existence 41.8 19.1
2 #Total updates 481.1 55.9
3 #Times viewed by users 203.5 46.2
4 #All hyperlinks 460.9 35.8
5 #Hyperlinks to entities 444.9 32.1
6 Page length 131.9 32.9
7 Main content length 202.1 19.1
8 Historical update frequency 287.6 54.7

Table 2: χ2 and IG of the features

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

Baseline

Linear

Random forest

Figure 2: PR curves of hold-out test

better effectiveness than historical update frequency in χ2.
These results suggest that other features also contribute to the
identification of recently updated entities.

Exp2: Effectiveness of the predictor: hold-out evaluation
In this experiment, we evaluate the effectiveness of our pre-
dictor of update frequency on the labeled dataset. We ran-
domly split our labeled 94K entities into training set (90%)
and test set (10%). We report the MSE (mean square error)
between the predicted update frequency and the real update
frequency for the test entities. Moreover, by using different
thresholds for predicting whether each test entity is updated
after time T , we get a precision-recall curve, and we report
the AUC (area under the curve) as the measures of the re-
gressor’s goodness. The results are shown in Figure 2 and
Table 3. The random forest model has the best result. Our
models outperform the baseline, which justifies that histori-
cal update based features together with other features perform
better than models with only historical update based features.

Exp3: Effectiveness of the predictor: real dataset We
use this experiment to test how our regressors perform in real-
world applications. We first make a snapshot of our knowl-
edge base on Dec 15, 2016. At the same time, we got 86
hot seeds from Web. From the seed, we get 687 expanded
entities. We run our regressor on the expanded entities, and
then rank all the expanded entities in terms of their predicted
update frequency. We further collect the changing logs be-
tween Dec 16, 2016 and Jan 15, 2017 of these expanded enti-
ties, and we find that 269 of them are updated in this month.

Model MSE AUC
Baseline 0.0400 0.2992
Linear 0.0367 0.3021

Random forest 0.0315 0.3692

Table 3: Comparison of models, for hold-out test

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3753

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Random

Baseline

Linear

Random forest

Figure 3: PR curves of expanded entities

Metric Random Baseline Linear RF
MAP 0.379 0.670 0.704 0.671
nDCG 0.800 0.916 0.941 0.933
AUC 0.376 0.666 0.700 0.667

Precision@20 0.400 0.850 0.900 0.950
Recall@20 0.030 0.063 0.067 0.071

F1@20 0.055 0.118 0.125 0.131
Precision@100 0.350 0.730 0.750 0.790

Recall@100 0.130 0.271 0.279 0.294
F1@100 0.190 0.396 0.407 0.428

Table 4: Comparison of models, for expanded entities

Thus, we can use ranking metrics, such as MAP, nDCG, etc,
to check whether our regressor can rank these 269 updated
entities higher. We compare the ranks produced by our re-
gressor (linear regression and random forest regression) to
random shuffling and ranking by historical update frequency.
The results are shown in Figure 3 and Table 4.

The result shows that, our two models generate better rank-
ings than the random ordering and the historical frequency
based ordering. Moreover, we can see that random forest
model in general has a better performance when we are only
interested in the top sublist. In contrast, the linear model has a
better performance when the entire ranked list is considered.
In real applications, we prefer random forest model, since the
upper access limit forces us to drop tailed entities.

Exp4: Performance of our system: USB In this exper-
iment, we report the performance of our system USB. We
deployed the system on our knowledge base, a DBpedia-like
Chinese knowledge base extracted from BaiduBaike. We set
K (upper access limit) as 1000 so that the crawling will not
be banned by the website. We report the proportion of web
visits that find a newer version of entities to all web visits.
The result is shown in Table 5.

The result shows that, our system is effective to find the
entities that have to be synchronized. Most of our visits crawl
entities that have a newer version. Hence, our system is ef-
fective to use the network resource budgets. By setting a rea-

Total visits Success updates Success ratio
50 46 92.0%

100 90 90.0%
200 175 87.5%
500 398 79.6%

1000 687 68.7%

Table 5: Real-world update experiment

sonable upper access limit, we can keep most of our KB up-
to-date, without incurring overloads on the encyclopedia site.

5 Related Work
Recently, knowledge bases have attracted wide research inter-
ests. Many knowledge bases are automatically constructed.
Specifically, most of them use encyclopedia websites such as
Wikipedia as main data sources, such as DBpedia [Auer et
al., 2007; Lehmann et al., 2015], WikiTaxonomy [Ponzetto
and Strube, 2008], and Freebase [Bollacker et al., 2008].

However, even if there are many volunteers maintaining
the unstructured or semistructured data in the Wikipedia
every day, most of these KBs are fixed in only one ver-
sion, and the knowledge in them is outdated. For exam-
ple, Freebase is stopped for maintenance. Although they can
build a new version with their constructing methods form
the latest Wikipedia dump, as we argued that, it is time-
consuming [Brewington and Cybenko, 2000], and wasteful.

There are some works focusing on the update of KBs, but
most of them have a severe limitation. That is, the encyclo-
pedia website should provide the access to recent changes,
as an update stream. For example, the Wikipedia foundation
kindly provided the Wikipedia OAI-PMH77 live feed. Based
on these information, [Hellmann et al., 2009] creates a live
extraction framework, and provides a mechanism that allows
the Wikipedia community to maintain the DBpedia ontology
collaboratively. [Morsey et al., 2012] provides a newer ver-
sion, which adds new features, e.g. abstract extraction, ontol-
ogy changes, and changesets publication. However, most of
encyclopedia websites do not provide the update stream.

There are also many previous literatures that investigated
the statistical update behavior of online data, such as web
page [Brewington and Cybenko, 2000; Cho and Garcia-
Molina, 2003] and linked open dataset [Umbrich et al.,
2010]. Among these researches, it is widely assumed that
the change frequency of online web data obeys Poisson dis-
tribution [Brewington and Cybenko, 2000; Cho and Garcia-
Molina, 2003]. In this paper, we use this assumption to de-
velop a baseline predictor, which unfortunately is still not
good enough yet to help us find the entity in an encyclope-
dia that recently changed.

6 Conclusion
In this paper, we focus on the knowledge bases using encyclo-
pedia websites as the data source. Most of these KBs tend to
be outdated, and simply rebuilding the whole KB is wasteful
and incurs massive network overload. To overcome the weak-
ness, we propose a set of synchronization principles upon
which we build a KB update system with an update frequency
predictor of entities as the core component. We also realize
the predictor with a set of effective features. Moreover, we
conduct extensive experiments to justify the effectiveness of
the proposed system, model, as well as the underlying princi-
ples. Finally, we deploy the system on a Chinese knowledge
base to improve the freshness of the KB. The system updates
1K entities per day, and about 70% of them actually contain
newly updated facts.

7http://www.mediawiki.org/wiki/Extension:OAIRepository

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3754

References
[Auer et al., 2007] Sören Auer, Christian Bizer, Georgi Ko-

bilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722–735. Springer, 2007.

[Bollacker et al., 2008] Kurt Bollacker, Colin Evans,
Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase:
a collaboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, pages 1247–1250. ACM, 2008.

[Brewington and Cybenko, 2000] Brian E Brewington and
George Cybenko. Keeping up with the changing web.
Computer, 33(5):52–58, 2000.

[Cho and Garcia-Molina, 2003] Junghoo Cho and Hector
Garcia-Molina. Estimating frequency of change. ACM
Transactions on Internet Technology (TOIT), 3(3):256–
290, 2003.

[Finkel et al., 2005] Jenny Rose Finkel, Trond Grenager, and
Christopher Manning. Incorporating non-local informa-
tion into information extraction systems by gibbs sam-
pling. In Proceedings of the 43rd annual meeting on asso-
ciation for computational linguistics, pages 363–370. As-
sociation for Computational Linguistics, 2005.

[Hellmann et al., 2009] Sebastian Hellmann, Claus Stadler,
Jens Lehmann, and Sören Auer. Dbpedia live extraction.
In OTM Confederated International Conferences” On the
Move to Meaningful Internet Systems”, pages 1209–1223.
Springer, 2009.

[Kutner et al., 2004] Michael H Kutner, Chris Nachtsheim,
and John Neter. Applied linear regression models.
McGraw-Hill/Irwin, 2004.

[Lample et al., 2016] Guillaume Lample, Miguel Balles-
teros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. Neural architectures for named entity recog-
nition. arXiv preprint arXiv:1603.01360, 2016.

[Lehmann et al., 2015] Jens Lehmann, Robert Isele, Max
Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick
Van Kleef, Sören Auer, et al. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia. Se-
mantic Web, 6(2):167–195, 2015.

[Liaw and Wiener, 2002] Andy Liaw and Matthew Wiener.
Classification and regression by randomforest. R news,
2(3):18–22, 2002.

[Lilliefors, 1967] Hubert W Lilliefors. On the kolmogorov-
smirnov test for normality with mean and variance un-
known. Journal of the American statistical Association,
62(318):399–402, 1967.

[Morsey et al., 2012] Mohamed Morsey, Jens Lehmann,
Sören Auer, Claus Stadler, and Sebastian Hellmann. Db-
pedia and the live extraction of structured data from
wikipedia. Program, 46(2):157–181, 2012.

[Pedregosa et al., 2011] F. Pedregosa, G. Varoquaux,
A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830,
2011.

[Ponzetto and Strube, 2008] Simone Paolo Ponzetto and
Michael Strube. Wikitaxonomy: A large scale knowledge
resource. In ECAI, volume 178, pages 751–752. Citeseer,
2008.

[Umbrich et al., 2010] Jürgen Umbrich, Stefan Decker,
Michael Hausenblas, Axel Polleres, and Aidan Hogan. To-
wards dataset dynamics: Change frequency of linked open
data sources. In 3rd International Workshop on Linked
Data on the Web (LDOW2010) at WWW2010. CEUR,
2010.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3755

