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Abstract
One of the major challenges confronting the widespread

adoption of solar energy is the uncertainty of production.

The energy generated by photovoltaic systems is a func-

tion of the received solar irradiance which varies due to

atmospheric and weather conditions. A key component

required for forecasting irradiance accurately is the clear
sky model which estimates the average irradiance at a

location at a given time in the absence of clouds. Cur-

rent methods for modelling clear sky irradiance are either

inaccurate or require extensive atmospheric data, which

tends to vary with location and is often unavailable. In

this paper, we present a data-driven methodology, Blue

Skies, for modelling clear sky irradiance solely based

on historical irradiance measurements. Using machine

learning, Blue Skies is able to generate clear sky mod-

els that are more accurate spatio-temporally compared to

the state of the art, reducing errors by almost 50%.

1 Introduction
Solar energy is gaining prominence across the world in

response to climate change, depleting reserves, lowering

costs, and favorable legislation. However, a key challenge in

integrating solar power into the grid is the ability to forecast

solar energy production accurately. The variability and un-

certainty of solar power can negatively impact grid stability

and increase the cycling costs of conventional power plants.

The energy generated by photovoltaic or solar thermal

systems is a function of the received irradiance, which is the

power density incident on a surface due to illumination from

the sun, and measured in Watt/m

2
. While the extraterrestrial

irradiance above earth’s atmosphere varies deterministically

as a sinusoidal function, the radiation incident on solar panels

varies stochastically as it is affected by both atmospheric

and weather conditions such as aerosols, gases, and cloud

cover. The expected solar irradiance on a given day can

be decomposed into the clear sky irradiance minus any

losses due to the presence of clouds. Clear sky irradiance is

defined as the radiation received at a site under cloud-free

conditions and is given by a clear sky model [Reno et al.,
2012

]

. Therefore, to predict the solar irradiance at a location,

in addition to weather forecasts, one requires an accurate

clear sky model appropriate for that location. Any errors or

bias in the clear sky models translate into errors in the total

irradiance forecast.

Additionally, clear sky models play an important role in

siting solar installations and estimating peak loads induced

on the power grid due to HVACs. Similarly, clear sky models

are also used to estimate the impact of solar radiation on the

quality of surface water bodies and in agriculture planning

to estimate the amount of evapotranspiration expected at a

given location

[

Chameides et al., 1999].
The clear sky model is a physical model that computes

the irradiance at a site at a given time and day of the year

under a cloudless sky. Even on a clear day, the solar radiation

percolates through the various layers of the atmosphere and

is absorbed, scattered, and reflected by the composition of

gases, aerosol content, water vapor, and other particulate

matter in the atmosphere. A good model should therefore

capture the attenuation due to these factors and local nuances

in order to provide accurate clear sky irradiance estimates for

a given location. However, the problem remains challenging

due to the complexities involved in estimating clear sky

radiation. Against this background, this work proposes a

data-driven methodology for automatically building accurate

and localised clear sky models using machine learning. Such

a framework is especially relevant given the widespread

adoption of solar photovoltaic systems. Our methodology

overcomes several drawbacks of the existing approaches and

clear sky models. Next, we provide a brief background on

clear sky modelling and highlight the aspects that are not

captured by current approaches.

1.1 Background
The sun is commonly modelled as an ideal black body.

Therefore its radiation intensity H0 at a distance D is given

by H0 =
R2

D2�T
4
, where � is the Stefan Boltzmann constant

and R and T are the radius and surface temperature of the

sun, respectively

[

Southworth, 1945

]

. Thus the extraterres-
trial irradiance or top of atmosphere irradiance at a location,
on a given day varies due to the axial tilt and elliptical orbit

of the earth. This is the maximum irradiation that is available

to the location on that day.

While the extraterrestrial irradiance is easily described us-

ing physics based models, the radiation falling on the earth’s

surface is highly variant due to atmospheric effects such as

absorption and scattering, in addition to local variations such

as water vapor and pollution. Different entities in the atmo-

sphere affect the incoming irradiation differently: while at-

mospheric gases cause Rayleigh scattering

[

Bucholtz, 1995

]

,
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atmospheric aerosols and dust particles cause Mie scattering

[

McCartney, 1976

]

. As a result, the irradiance reaching the

earth’s surface has a ‘direct’ (Direct Normal Irradiance, DNI)
and a ‘diffused’ (Diffused Horizontal Irradiance, DHI) com-

ponent. The total irradiation incident on the ground (Global

Horizontal Irradiance, GHI) is a function of these two terms.

GHI is easily measured using a pyranometer (we use such

data in our approach). For a given location, GHI varies dur-

ing the day as the solar position varies. The solar position is

parametrized by the solar zenith and azimuth angles. GHI is

also a function of the air mass, which is the length of atmo-

sphere that the solar rays have to pass through. While there

are complex models to evaluate air mass at a location

[

Bde-

scu, 1987; Gueymard, 1993; Kasten and Young, 1989

]

, it is

often approximated to be the secant of the zenith angle.

x=1/cos✓z (1)

This dependency of the surface irradiance on the atmospheric

conditions even on a clear day, implies that any clear sky

model will have a strong dependency on these atmospheric

parameters, which in turn are affected by locational and

seasonal variations. For example, a desert region will have

a different local atmospheric composition compared to a

tropical rain forest. Furthermore, the same location will have

varying atmospheric compositions such as aerosol or dust

content from one season to another.

Current approaches in clear sky modelling attempt to

capture these atmospheric conditions via parameters in the

model. Unfortunately, these methods either take a simple

‘one-fits-all’ approach or are incomplete and expect the

user to fill in the requisite parameter values. In the simple

methods, default parameter values are provided for use with

the model. However, these do not capture local variations

and result in inaccurate irradiance estimates. In contrast,

the complex models, requiring extensive parameter values,

are impractical because the atmospheric parameters are

not readily available for most locations, especially in the

developing world. In addition to generalizing across vastly

different locations, existing models also fail to capture

the seasonal variations in clear sky irradiance. Thus, most

existing models are oblivious to spatio-temoparal variations.

To address these problems, we propose a methodology for

building location and season-aware clear sky models called

‘Blue Skies’. Based on machine learning techniques, Blue

Skies takes in historical measurements of irradiance (GHI)

for a location to build an accurate clear sky model for that

location. Since GHI values recorded by pyranometers consist

of both clear and cloudy periods, this process involves au-

tomatically retrieving clear sky periods from such a dataset.

This clear sky dataset is then used to learn location specific

and seasonal model parameters, thereby making the models

spatio-temporally aware.

Our contribution, thus, is a comprehensive data-driven

clear sky modelling methodology. The need for Blue Skies

methodology and its performance is validated by evaluating

on real datasets captured from three vastly different locations.

The results show that clear sky models produced by Blue

Skies perform considerably better than any of the current

state of the art simple or complex clear sky models. At the

same time, as opposed to complex models which require

measurements of exogenous variables, Blue Skies requires
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Figure 1: Performance of clear sky models in Bangalore.

only past irradiance measurements from the vicinity of the

location, which are easy to obtain from nearby weather

stations or an installed pyranometer. In the next section, we

study the existing clear sky models. Section 3 describes our

method. Following that, Section 4 details our experimental

setup and results. Finally, Section 5 concludes the paper.

2 Related Work
A clear sky model essentially involves geometric calculations

that relate the irradiance incident at the location and estimates

of atmospheric parameters that attenuate the incident power.

Simple clear sky models are a function of extraterrestrial ir-

radiance, the zenith angle and a few atmospheric parameters

that generalize the atmospheric state for the location

[

Danesh-

yar, 1978; Kasten and Czeplak, 1980; Haurwitz, 1945; Bade-

scu, 2008

]

. Most of them differ only in the ways they model

and estimate the atmospheric parameters.

The Haurwitz model

[

Haurwitz, 1945

]

being one of the

simplest models, is widely used due to its dependence only

on the zenith angle. Models proposed by Kasten

[

1980

]

and

Ineichen and Perez

[

2002

]

account for atmospheric effects

along with the zenith angle. While Kasten’s model uses air

mass and the Linke turbidity factor (measure of turbidity of

atmosphere), it is further improved by Ineichen and Perez by

adding correction factors to the atmospheric parameter.

At the cost of adding complexity, improvements to

simple models considered the effects of individual at-

mospheric components such as ozone, aerosol and

perceptible water

[

Davies and McKay, 1989; 1982;

Gueymard, 2008

]

. Another complex but well studied model

is proposed by Bird

[

1984

]

, which includes transmittance due

to various atmospheric factors such as Rayleigh scattering,

aerosol attenuation, mixed gas absorption, etc. Though these

models provide accurate estimates of clear sky irradiance,

they require a lot of inputs that are often not readily available.

Moreover, methods for suitably estimating parameters for

these models using external sensor and meteorological data

is a tough process fraught with inherent errors.

The ASHRAE clear sky model

[

ASHRAE, 1979

]

reduces

the dependency on many atmospheric measurements by

providing a parameter look-up table for monthly values at a

few locations. However, the model is not robust for locations

where this table is unavailable. Fig. 1 shows the performance

of the commonly used clear sky models in Bangalore,

India compared against the actual measured irradiance on a

particular clear sky day and the extraterrestrial irradiance. We
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see that none of the models closely match that actual clear

sky trend of Bangalore. It is also interesting to note, from

the figure, that the complex models (ASHRAE and Ineichen)

perform worse than the simple Haurwitz model. Since both

the complex models use globally averaged measurements

as input parameters, for a given location they may perform

better or worse depending on how closely the global averages

reflect local atmospheric conditions.

In contrast to the above, a data-driven model is proposed

by Grigiante et al. [2011] where measured irradiance of clear

days are fitted with Bird’s model. The detection of clear

sky, however, is mainly done by visual inspection. NREL’s

Sunny Days

[

Long and Ackermani, 2000

]

is another similar

approach where the coefficients of a base model are found for

each clear day and parameters for other days are obtained by

interpolating the coefficients between clear days. Both these

methods depend on high resolution (spatially & temporally)

satellite image data which is not available for most locations.

Compared to all the above approaches, our methodology is

not dependent on any exogenous parameters or satellite data

and yet is capable of capturing variations due to location and

seasons.

3 Blue Skies Methodology
In this section, we describe the three components of our

methodology. First, we derive a generalised physical model

that describes the irradiance received at a location, which

we call the base model. The base model contains certain

parameters which are dependent on the location. In the

second stage, we present an algorithm to classify historical

irradiance measurements received from a location into clear

sky periods (Section 3.2). Finally, in the third stage, based

on the classified clear sky dataset, learning approaches are

used to determine the model parameters, thereby producing

a customized model for a given location (Section 3.3).

3.1 Stage 1: Base Model
As seen in Section 2, a detailed analysis of existing clear sky

models reveals that most models depend on the following

variables: extraterrestrial irradiance, zenith angle, air mass,

and a measure of atmospheric turbidity at the specified

location. More elaborate models require multiple exogenous

variables such as aerosol optical depth, water vapor content

in lower and upper atmosphere, pollution levels, and so on.

In order to arrive at a generalized physical model of surface

irradiance, we look at the Beer-Lambert law which describes

the attenuation of a direct beam of light as it travels through

fluids. The attenuation of light in a fluid is not only due to ab-

sorption but also due to scattering. The reduction of intensity

due to both these effects is termed as extinction. The Beer-

Lambert law states that an intensity I0 attenuates exponen-

tially with distance x based on the extinction coefficient � as:

I(x)=I0e
��x

(2)

The earth’s atmosphere is known to have many impurities.

Most complex models attempt to quantify the effect of

each of these impurities on the solar irradiation by hav-

ing a different coefficient �i for each impurity. However,

capturing all the impurities in this way is a highly arduous

and imprecise task. Instead, our model uses the average

extinction coefficient � which we learn separately for each

location based on data. Additionally, some processes, such as

absorption by water vapor, do not follow the Beer-Lambert

law

[

Elder and Strong, 1953

]

. For these, transmittance is

defined as the ability of a medium to allow radiant energy to

pass through and given by a clearness number:

Cn=
Iwater

Istandard
(3)

where Iwater and Istandard are the irradiance received in the

presence of water vapor in the atmosphere and under standard

atmospheric conditions respectively

[

Brutsaert, 1975

]

.

The above equations, along with the knowledge of the

extraterrestrial irradiance E and Eq. 1, allows us to calculate

the direct normal irradiance falling on a surface perpendicular

to the sun’s rays as:

IND=ECne
��

cos✓

z

(4)

where ✓z is the zenith angle. The direct irradiance on a

horizontal surface is then just the projection.

IHD=ECncos✓ze
��

cos✓

z

(5)

In addition to direct irradiance, there exists a diffused

component contributing to the overall irradiance. Previous

work

[

Liu and Jordan, 1960

]

has shown that the effective

method to obtain the diffused horizontal irradiation Idiff ,
is simply scaling IND by a factor C, which is the ratio of

intensity of solar irradiation incident on a horizontal versus

normal surface outside the atmosphere.

Idiff =CIND (6)

The global horizontal irradiance is then a sum of these values

GHI=IHD+Idiff (7)

In summary, the global horizontal irradiance received at

the earth’s surface at a certain solar zenith angle ✓z , when
the extraterrestrial irradiance E gets attenuated by a certain

turbid atmosphere (with clearness number Cn and mean

extinction coefficient �) and air mass (Eq. 1), is given as:

GHI=ECn(cos✓z+C)e
��

cos✓

z

(8)

This base model is syntactically similar to some of the mod-

els studied in Section 2. We learn the coefficients (C,Cn,�)
specific to a location (and/or time) using a clear sky dataset

for that location. Next, we describe how we obtain such a

dataset from historical irradiance measurements.

3.2 Stage 2: Generating Clear Sky Dataset
Typical low-cost pyranometers (located at weather stations,

solar plants, and so on) provide time-indexed measurements

of GHI at resolutions of 10 seconds, 1 minute, 10 minutes,

etc. Given any such pyranometer data, the challenge is to

label clear sky data points within it in order to generate

a ‘clear sky dataset’. Towards this, we built an automated

process using a 2-step filtering approach. The goal of the

filters is to weed out all instances of cloud cover and produce

a refined clear sky dataset. The intuition behind the filters

originates from two key observations:

1. All clear sky days have a smooth diurnal curve whose

trend matches that of the extraterrestrial irradiation

received that day. Fig. 1 illustrates this trend.

2. All smooth curves needn’t correspond to clear sky periods.

Uniformly cloudy days may also generate smooth irradi-

ation curves which match the trend of the extraterrestrial

curve but with significantly lower magnitude.
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Figure 2: Scatter plot of normalized residuals against normalized

zenith angles. The black points are characterized as outliers.

Moreover, pyranometer data is often sparse with missing

values which reduces the possibility of finding completely

clear sky days. Locations which are cloudy for most part

especially face this problem. Therefore, we employ a sliding

window based approach in order to identify and tag clear sky

periods in the data rather than clear days. Our approach is not

dependent on the size of this window. The size can be varied

to best suit the availability of data.

Step 1 - The Correlation Filter:
The first filter uses a correlation metric to take advantage of

the intuition that the trend of the GHI on clear sky periods

matches that of the extraterrestrial irradiance. We pass a

rolling window over the measured GHI data and correlate

the data points with the corresponding timestamped values

in the extraterrestrial data. A perfectly matching trend

within the window presents a correlation of 1. In contrast,

a cloudy period gives a negative correlation due to the drop

in irradiance received on the earth (visually appearing as

a negative spike in the pattern). For every window period,

we use the Pearson correlation coefficient to calculate the

correlation. Although rank based correlation may perform

well for each half of the complete diurnal curve (due to the

monotonic relationship), within small window sizes like in

our case, the data points have a linear relationship thereby

making Pearson correlation a better choice.

In this way, a period with negative correlation implies the

existence of cloud cover or non-clear sky, thereby allowing

us to remove such periods from the dataset. The periods

with positive correlation, however, needn’t necessarily be a

clear sky (potentially uniformly cloudy). This is because the

correlation filter does not take magnitude into account. For

this, the positively correlated data points are passed through

the second filter.

Step 2 - The Clustering Filter:
Although, measurements from fully cloudy periods also

generate smooth curves having a high correlation with

extraterrestrial irradiance, they have significantly lower mag-

nitude. Such cloudy periods are distilled out by the second

filter. A naive filtering approach would be to set a threshold

for the magnitude of the measured GHI. However, this thresh-

old will need to be time-variant as the clear period at 0700

hours will have much lower solar intensity than a clear period

at 1200 hours. The magnitude also varies across seasons.

These effects are seen even on the differences in magnitudes

between GHI and extraterrestrial. To avoid these problems,

we propose an automated unsupervised filtering method.

Instead of a time-series, we transform our instance space

to solar angles. Since time is a construct of the position of the

earth relative to the sun, it is possible to describe the time-

series data in terms of the zenith and azimuthal angles. A tu-

ple of zenith and azimuthal angle (✓z,✓a) represents the time

and day in a year. This transformation is useful because solar

intensity depends on the solar angles rather than the clock-

time. Now, just like earlier, for each window, we compute the

difference in magnitude between the measured GHI and cor-

responding extraterrestrial irradiation (hereby referred to as

the residual). This difference can be computed between the

mean values in the time window, or between the correspond-

ing min or max values (discussed further in Section 4.1).

Fig. 2 shows the scatter plot of the mean residuals against the

zenith angles of a year for a particular location. The zenith

angle is 0 degrees during the solar noon (directy overhead)

while it is 90 degrees at sunrise and sunset. The region of high

density in the plot captures the trend of the variation of the

mean residual over day and seasons. The noise or outliers in

the scatter plot represent instances of cloud cover or non-clear

periods. Thus, the dense nature of the clear sky data points al-

lows us to automate the process of grouping them into a single

large cluster while removing the outliers (cloudy periods).

Towards this, we use a well-known density based clus-

tering algorithm, DBSCAN

[

Ester et al., 1996]. Given two

inputs, ✏ and minpts, DBSCAN defines an ✏-neighborhood
for point x as: N✏(x) = {y 2X|d(x,y) ✏}. Core points are
points which have more than a minimum number of points,

minpts, in their neighborhood. A point y is then considered

density reachable from a core point x, if there exist a finite

sequence of core points between x and y where each such

point belongs to the ✏-neighborhood of the previous point.

Then, every point that is reachable from core points is

factored into a maximally connected cluster. DBSCAN’s

flexibility in generating arbitrary shaped clusters allows us

to capture the clear sky data points into a single cluster, with

cloudy periods being characterized as outliers or noise.

3.3 Stage 3: Learning Clear Sky Model

The base model for clear sky derived in section 3.1 yields the

global horizontal irradiance at time t as

GHI(t)=E(t)Cn(cos✓z(t)+C)e
��

cos✓

z

(t)
(9)

The value for extraterrestrial irradianceE(t) is obtained from
NREL’s Solar Position Algorithm

[

Reda and Andreas, 2004

]

,

which also computes the zenith ✓z(t) and azimuth ✓a(t) with
a precision of ±0.0003�, and is used as a standard in all

weather calculations. This leaves the clearness number Cn,

the diffusion coefficient C, and the atmospheric extinction

coefficient �, as unknowns in the model. As these coefficients

tend to depend on the location, we learn these unique values

from the clear sky dataset generated for the corresponding

location. In particular, let s denote the set of time steps that

are classified as clear sky conditions by the algorithm in

the previous section. Then, given irradiance measurements

{GHI(t),t 2 s}, the parameters C,Cn, and � are regressed
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by minimizing the L2 norm of the error:

(Ĉ,Ĉn,�̂)= argmin
(C,C

n

,�)

X

t2s

�
GHI(t)

�E(t)Cn(cos✓z(t)+C)e
��

cos✓

z

(t)
�2

(10)

The function is convex in each variable, which indicates that

the minimization does not yield local minimas. This was

also empirically verified. L2-minimization is obtained using

Levenberg-Marquardt algorithm.

The parameters C,Cn, and � at a location may also be

affected by diurnal and seasonal variations which should

be captured by an accurate clear sky model. In order to

determine the best model, we use the following learners:
1. Basic: The simplest clear sky model for a location can be

obtained by learning a single tuple (C,Cn,�) correspond-
ing to all clear sky irradiance measurements. Hence, this

learner does not capture any seasonality.

2. Seasonal: More detailed model would be obtained by di-

viding clear sky dataset by seasons and learning n tuples,

(C,Cn,�), for n seasons experienced at the location.

3. Azimuthal: Since (✓z, ✓a) give a construct for time, it

makes intuitive sense to learn (C, Cn, �) for different

ranges of azimuthal angles to capture temporal variations.

4. Hourly: Instead of azimuthal transformation, the clear

sky time series could be used to learn (C,Cn,�) for the
different hours of the day. Considering a 12 hour daylight

period, this would result in 12 tuples of (C,Cn,�).
Also, the Seasonal learner could be combined with either

Azimuthal or Hourly to create Seasonal-Azimuthal and

Seasonal-Hourly learners respectively. For example, given

n seasons and 12 hours, Seasonal-Hourly will have n⇥12 tu-
ples of (C,Cn,�). We empirically evaluate all these learners

to determine their performance on given set of locations.

4 Experiments
In order to empirically validate our methodology, we con-

ducted experiments and evaluated the performance of both

the components of our approach: (i) generating clear sky

dataset and (ii) learning clear sky model. For evaluation, our

irradiance dataset consisted of GHI pyranometer measure-

ments at 1-minute resolution from three different locations.

The locations were picked in different latitudinal zones in

order to understand the clear sky patterns in various regions:

1. Tucson, Arizona, US [

Andreas and Wilcox, 2010

]

: This

mid-latitude location is characterized by a desert climate

and has two major seasons, summer and winter with some

monsoon showers in Jul and Aug (NOAA). The dataset is

made up of 7 years from Nov 2010 to Aug 2016.

2. Bangalore, India: This tropical region has a tropical

savanna climate which is characterized by distinct dry and

wet periods. It is also at a higher altitude (900m) and is

affected by both the northeast and southwest monsoons with

Aug and Sept having 13 rainy days on average (Jensen). Our

dataset covers a 1 year period from Jan 2016 to Dec 2016.

3. Seria, Brunei: This equatorial location is characterized

by significant rainfall across the year. Even the driest month

(Feb) has, on average, 14 rainy days and Oct and Nov have

25 rainy days on average (WWO). Our dataset spans 3 years

from Jan 2012 to Dec 2014.

Table 1: Performance of the dataset generation algorithm

Algorithm Precision Recall
Mean-based residuals 91 86

Min/Max-based residuals 96 84

Time
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Figure 3: Clear sky periods identified on a sample day.

Finally, to evaluate our approach, we utilize NREL’s

National Solar Radiation Database (NSRDB)

[

Wilcox,

2007

]

. The dataset for Tucson, created by processing satellite

images, classifies cloud cover with labels from 0-12, where

each integer represents a type of cloud and 0 is clear sky. The

dataset also contains the clear sky GHI for Tucson based on

the REST2 model

[

Gueymard, 2008

]

.

4.1 Evaluation: The Dataset Generation Process

A clear sky dataset contains timestamps and corresponding

GHI measures of time instances when the sky was cloud free.

A good clear sky dataset, thus, must contain very few false

positives (cloudy periods being classified as clear periods).

In the dataset generation process, we proposed two methods

for computing the residuals (used to determine whether a

time window should be classified as clear sky): one is based

on mean values and other is based on min/max values of

irradiance in the window. To evaluate the two methods, we

compared our generated clear sky dataset with the NSRDB

database. While our dataset has 1-minute resolution, the

NSRDB database has a snapshot every 30 minutes. There-

fore, we compared the common timestamps, that is the value

at every 30th minute.

Table 1 shows the results for Tucson. Here, recall gives
the percentage of clear sky data points in NSRDB that were

identified by our methods. Precision gives the percentage

of actual clear sky data points (as given by NSRDB) in our

generated clear sky datasets. We see that while both methods

have similar recall, min/max based method has much higher

precision. This is because min/max residual method makes

the anomalies more extreme thereby allowing DBSCAN

to easily classify them as outliers. For creating a clear sky

dataset, the method with higher precision must be preferred

even if it has slightly lower recall as long as the recall is

sufficient to produce a large enough dataset. As that is the

case with the min/max residual method, we propose that this

method be used as part of the Blue Skies methodology. While

clear sky data was available only for Tucson for evaluation,

Fig. 3 gives a glimpse of how well our method identifies

clear sky periods for a given day in the Bangalore location

(similar results were seen for Seria).
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4.2 Evaluation: The Clear Sky Learning Methods
In Section 3.3, we proposed several learning methods that can

be used to determine the parameters (C,Cn,�) from the clear

sky dataset. For our experiments, we split the dataset into

train-test parts in the following manner. For Tucson and Seria,

where the dataset spans several years, some years were used

for training and others for test. For Tucson, 2011, 2012, 2013

& 2015 were in the training set and 2010, 2014 & 2016 in the

test set. For Seria, 2012 & 2014 were used for training and

2013 for test. Since the Bangalore dataset only spanned 12

months, 80% of the days in each month (24 days) were used

for training and rest 20% for test. All results are presented in

the form of RMSE values with normalized RMSE (nRMSE)

in paranthesis. We use the following formula for nRMSE:q
1
n

Pn
i=1(Ŷi�Yi)2

mean(Yi)
⇥100 (11)

where, Ŷi are the predicted values of GHI and Yi are the

actual values of GHI for n such GHI values.

Table 2 compares the performance of three current

state-of-the-art clear sky models – ASHRAE, Haurwitz and

Ineichen with our methodology, named Blue Skies-Basic

(BS-Basic) as it uses the Basic learner described in Sec-

tion 3.3. For comparison, we also included BS-Ineichen,

which is a hybrid of Blue Skies with Ineichen (most popular

among the current models). BS-Ineichen uses Ineichen as

the base model. However, instead of employing the default

parameter values provided by Ineichen model, it learns them

in a data-driven manner like in our approach, by following

stage-2 and stage-3 of our methodology.

While it is clear that the customised data-driven clear sky

models, BS-Ineichen and BS-Basic, perform considerably

better than the standard models for all the three locations we

make a few interesting observations. As described before,

most current models are dependant on detailed sensor

measurements, and in locations where such data is available

these models perform well. Ineichen, for e.g. does better

than ASHRAE and Haurwitz in Tucson due to the rich

sensor data available for the region. Another spatial trend

we note is that unlike other models whose performance falls

drastically when moving from mid-latitudinal Tucson desert

to tropical regions which are harder to model, Blue Skies has

a more gradual decline. The variation in spatial performance

is attributed to the local climatic conditions. Any clear sky

model benefits from large volumes of clear sky data in order

to model the atmospheric conditions at a location. While

Tucson’s desert like climate allows for a large number of

clear days, it is harder to get such data points from the rain

forests of Seria.

Finally, we see that BS-Basic outperforms BS-Ineichen

significantly even though they both only differ in the base

model. This is due to the fact that the Ineichen model is a

very rigid model with only one learnable parameter - Linke

Turbidity. We believe that our base model abstracts out most

of the physical rigidity imposed on the Ineichen model,

thereby making our base model more robust and better suited

for deriving the data-driven clear sky models.

Next, we studied the benefits of learning temporal

variations. We conducted experiments by replacing the

Table 2: RMSE (nRMSE) of various clear sky models

Method Bangalore Seria Tucson Avg
nRMSE

ASHRAE 116 (24.7) 101 (20.9) 51 (8.5) 18

Haurwitz 108 (23.1) 75 (15.2) 48 (8.2) 15.5

Ineichen 153 (32.6) 118 (24.8) 40 (7.1) 21.5

BS-Ineichen 68 (14.5) 84 (17) 28 (5) 12.5

BS-Basic 40 (8.5) 54 (10.9) 24 (4.1) 7.83

Table 3: RMSE (nRMSE) of temporal Blue-Skies models

Learner Bangalore Seria Tucson Avg
nRMSE

Seasonal (S) 35 (7.8) 44 (6.9) 20 (3.4) 6

Hourly (H) 34 (7.2) 52 (11.1) 26 (4.7) 7.7

Azimuthal (A) 32 (6.9) 51 (10.5) 26 (4.7) 7.4

S-H 29 (6.5) 42 (6.6) 19 (3.2) 5.4

S-A 27 (6) 42 (6.7) 18 (3) 5.2

Basic learner with the advanced temporal learners in our

methodology. Since the Seasonal, Seasonal-Azimuthal &

Seasonal-Hourly methods model each season distinctly, we

further separated the training and test datasets into seasons

for them. As Tucson has 2 major and 3 minor seasons, we

divided the data into 5 parts, each part corresponding to

a season. Similarly, the Seria and Bangalore dataset was

divided into 4 parts for the 4 seasons there. The results

presented for the seasonal learning methods are averages of

the results across seasons. The results (see Table 3) show

that Seasonal-Hourly (S-H) and Seasonal-Azimuthal (S-A)

perform the best. In fact, their errors are 3 to 4 times less than

the state of the art models. This confirms our reasoning that

seasonal and diurnal environmental effects play a significant

role on the clear sky irradiation and should be taken into

account by a good clear sky model.

We also compared with the more complex Numerical

Weather Prediction models. Due to the complexity of these

models, accurate parameter values are available for only

certain locations. For Tucson, the REST2

[

Gueymard,

2008

]

model has RMSE of 36.8W/m2
(nRMSE: 15.08)

while for Bangalore, the StreamerRT model

[

Key and

Schweiger, 1998

]

, has RMSE of 126.24W/m2
(nRMSE:

25.32). Moreover, a recent model by Kim et al. [

2016

]

,

which uses satellite images to determine visible reflectance

and brightness corresponding to various GHI values, also

reports RMSE value of 41.4W/m2
on the Tucson dataset.

5 Conclusion and Future Work
A clear sky model is a critical input to forecasting solar irradi-

ance at any location. However, current models are highly in-

accurate due to a variety of factors. In this paper, we presented

a novel data-driven methodology for creating customized

clear sky models for any location using a combination of AI &

ML techniques. When evaluated on real datasets, the models

generated by our method have errors 3 to 4 times lower than

current state of the art. For future work, we intend to build

such a data-driven methodology for forecasting solar energy

production. Another direction is to use our approach for envi-

ronmental impact analysis such as studying the changes in the

clear sky conditions over the years (e.g., comparing pollution

levels of Beijing between winter 2006 and winter 2016).
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