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Abstract
Statistical models of network structure are widely
used in network science to reason about the prop-
erties of complex systems—where the nodes and
edges represent entities and their relationships. Re-
cently, a number of generative network models
(GNM) have been developed that accurately capture
characteristics of real world networks, but since they
are typically defined in a procedural manner, it is
difficult to identify commonalities in their structure.
Moreover, procedural definitions make it difficult to
develop statistical sampling algorithms that are both
efficient and correct. In this paper, we identify a fam-
ily of GNMs that share a common latent structure
and create a Bayesian network (BN) representation
that captures their common form. We show how
to reduce two existing GNMs to this representation.
Then, using the BN representation we develop a gen-
eralized, efficient, and provably correct, sampling
method that exploits parametric symmetries and de-
terministic context-specific dependence. Finally, we
use the new representation to design a novel GNM
and evaluate it empirically.

1 Introduction
Many complex systems are modeled using networks—where
nodes represent entities and edges represent some type of
relation between the entities. An open problem in network
science is how to create generative models that accurately
capture the characteristics of real world, sparse networks, in
order to better understand the properties of the systems, and
to facilitate statistical analysis.

Recent research has explored various models to accurately
characterize network structure (e.g., [Chung and Lu, 2002;
Hoff, 2008; Leskovec et al., 2010; Benson et al., 2014]). A
number of these generative network models (GNMs) use a
common procedure to generate the edges in the network using
a matrix of probabilities. The approaches differ in the number
and structure of parameters used to specify the edge probabili-
ties. While several GNMs can capture important characteris-
tics of real world networks such as power law degree distribu-
tions and community structure, it has been more difficult to
develop methods to capture longer-range dependencies that im-

pact global characteristics. To address these limitations, new
hierarchical GNMs have been proposed with more complex
dependencies between the edge probabilities, e.g., mixed Kro-
necker product graph model (mKPGM) [Moreno et al., 2013],
Block two-level Erdős-Rényi Model (BTER) [Seshadhri et al.,
2012], bipartite stochastic block model (biSBM) [Larremore
et al., 2014], and hierarchical graph models [Peixoto, 2014].

Moreover, while GNMs specify a generative process, it
can still be computationally intensive to naively sample large
networks. There have been efficient sampling methods pro-
posed for some GNMs [Leskovec et al., 2010; Yun and Vish-
wanathan, 2012], but because models are specified procedu-
rally it is difficult to guarantee correctness, and consequently
the efficient sampling methods can generate improbable net-
work structures [Moreno et al., 2014]. Thus, it is still an open
question how to develop accurate and efficient sampling meth-
ods. Another challenge is to identify commonalities across
GNMs. Again, since models are specified procedurally, it is
difficult to discern the impact of algorithmic differences–both
w.r.t. the number and structure of parameters–except by com-
paring the structure of the networks that are generated from
the methods.

In this paper, we show that hierarchical GNMs can be
abstracted as Bayesian networks (BNs) with random vari-
ables (RVs) representing the existence of edges in the net-
work, and hierarchies of latent RVs representing relations
among groups of edges. With this representation we can
identify common properties of unrelated models, such as
mKPGM and BTER, and use the knowledge to guide the
design of new GNMs. The BN representation also facili-
tates the development of a general sampling method that is
both efficient and accurate. The transformation of a GNM
to BN representation makes it easy to identify parametric
symmetries allowing us to sample groups of edge RVs rather
than sequentially—using insights from lifted inference [Poole,
2003; Jha et al., 2010; Van den Broeck and Darwiche, 2013;
Mittal et al., 2015]. Moreover, we can maximize computa-
tional efficiency and guarantee correctness by using insights
from context specific independence [Boutilier et al., 1996;
Poole and Zhang, 2003] to dynamically sparsify the set of RVs
to be sampled based on the context of parent RV values.

Previous work had provided important insights about the
relationship among some GNMs (e.g. [Jacobs and Clauset,
2014]) and BNs have been used to model GNMs (e.g.
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[Schein et al., 2016; Liang et al., 2016; Ho et al., 2011;
Neiswanger et al., 2014]), However, to our knowledge, this
work is the first attempt to model a family of existing GNMs
in a principled way that is general enough to facilitate the
creation of new classes of GNMs. We do that by taking advan-
tage of BNs to model GNMs but without enforcing restrictions
on the topology of a BN except for a hierarchical conditional
dependence which we describe in this paper.

In summary, the key contributions of this work are:

1. Demonstration that hierarchical GNMs can be represented
in a universal, succinct way that supports the development
of new models.

2. Development of a general efficient, and provably correct,
sampling algorithm that applies to all GNMs in the family
of hierarchical GNMs. Our algorithm is based on two
important properties:

(a) Deterministic context specific dependence–which spar-
sifies the RV sampling space.

(b) Parametric symmetries–which, due to GNM parame-
terizations, can be exploited with lifted sampling.

3. Design, and evaluation, of a new GNM to illustrate the
utility of the BN representation; in particular, of the related
sampling algorithm.

2 Background: Generative Network Models
First, we review some details about generative network models.
Let G=(V,E) be a network with set of vertices V and edges
E ⊂ V ×V. We define a generative network model (GNM)
M with parameters Θ as follows.

Definition 1. Generative network model (GNM)
A GNM is a statistical modelM with parameters Θ that define,
either explicitly or via a construction process, a size |V|× |V|
matrix P of probabilities. Each cell [i, j] ∈ P corresponds to
the binary random variable Aij and the value Pij represents
the Bernoulli probability that the [un]directed edge ei,j exists
in the network (i.e., ifAij =1 then ei,j ∈ E and P (Aij =1) =
Pij). Thus, P models the structure of the network through the
set of binary random variables Aij ∀i, j ∈ {1, . . . , |V|}.

The size of Θ differs for each GNM and can vary in the
range [1, |V|2]. This restriction in the number of parame-
ters is intended to make sampling of random graphs effi-
cient. However, most GNMs have a small number of param-
eters (usually |Θ|�|V|) to avoid overfitting. Thus, multiple
cells in P (and RVs A) could have the same probability val-
ues. We use < U,T > to represent this, where U is the
set of unique probabilities that appear in the matrix P , i.e.
U=unique(P)={π1, π2, . . . , πu , . . . πκ}, and T is the set
of the list of positions Tuwhere each of the πu appears in P .

2.1 Basic Edge-Oriented GNMs
There is a range of basic GNMs such as Erdős-Rényi Model
(ER) [Erdos and Renyi, 1960], Stochastic Block Model
(SBM) [Holland et al., 1983], Chung-Lu Model (CL) [Chung
and Lu, 2002], etc. that build P with some mathematical op-
eration over a set of parameter(s). For space reasons we will
define only CL here since is relevant for our later discussion.

Chung-Lu Model (CL) [Chung and Lu, 2002]. In a CL
model, Pij=wiwj/

∑
wk for a sequence of expected node-

degrees w = (w1,. . ., w|V|). There are then, for the case of
undirected networks, at most |V|(|V|−1)/2 probabilities πi
in P (and associated U), in which case T would consist of
lists of a single element each.

2.2 Hierarchical GNMs
Hierarchical GNMs are a super-classs of GNMs that use a
hierarchical process to introduce dependencies among sets of
edge RVs. While a basic GNM defines the matrix P directly,
a hierarchical GNM uses intermediate latent variables at a
certain level in the hierarchy to model the variable interactions
of the next level in the hierarchy, modeling the entries in P
indirectly. Thus, there are two levels of randomness associated
with sampling in hierarchical GNMs: one for the intermediate
(hierarchical) RVs that impact the generation of P , and one
for edge sampling. Notice that basic GNMs can be regarded
as hierarchical GNMs with a single layer. Most hierarchical
GNMs are defined iteratively or procedurally, but not all it-
erative or procedural GNMs are hierarchical. We denote the
levels in the hierarchy by λ ∈ {0, 1, . . . , φ − 1}, where φ is
the number of levels in the hierarchy, λ=0 represents the root
of the hierarchy, and λ = φ − 1 the edge layer. B[λ] is the
adjacency matrix associated with the blocks at layer λ.

Block two-level Erdős-Rényi Model (BTER) [Seshadhri et
al., 2012]. In a preprocessing step, BTER creates groups
of nodes based on the sequence of expected degrees. Then,
sampling is done in two steps: (1) An ER model is used to
link nodes within groups, where the probability is proportional
to the smallest node-degree in the group; (2) A CL model is
used to create link between groups, with probability of edges
is proportional to the excess degree from (1). Step 1 ensures
that edges within-blocks have higher probability than between-
blocks. Step 2 ensures a power law degree-distribution and
since it uses a CL model, U & T have the same worst case
scenario as CL.

Mixed Kronecker Product Graph Model (mKPGM)
[Moreno et al., 2013]. mKPGM is a GNM that overcomes
known limitations (see e.g. [Seshadhri et al., 2013]) of stochas-
tic Kronecker graphs [Leskovec et al., 2010]. Given a b×b
parameter matrix Θ, K and `, it samples a network as follows.

1. Compute P [0], a b` × b` matrix, equal to `−1 Kronecker
products of Θ with itself.

2. Construct G[0]from P [0] by sampling each edge RV inde-
pendently ∼ Bernoulli(P [0]

ij ).

3. For l=1 . . .K−`: Set P [l] =G[l−1] ⊗Θ and sample G[l].
Note, |V[0]|= b` and |V[K−`]|= bK. Since G[0]. . . G[K−̀−1]

represent auxiliary graphs, where each edge influences a
block of possible edges in the next iteration of the hierar-
chical sampling process (and they are not present in the final
output network); we refer to them as block adjacency ma-
trices: B[0] . . . B[K−̀ −1]. To simplify notation we will refer
to the final sampled network G[K−`] = (V[K−`],E[K−`]) as
G= (V,E). In mKPGMs, the size of U is b2 for each level
l>0 of the hierarchy and T consists of b2 lists of edges.
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GNM Sampling(⇥){
Derive latent RVs from ⇥

[Derive relations of RVs]

Use RVs to sample G

Return graph G

}

(a) (b) (c)
Figure 1: Example transformation from an original GNM defined procedurally (a) to BN form (b) and its corresponding plate notation (c).

3 Representing GNMs as Bayesian Networks
In this section, we introduce a common BN representation
for GNMs with hierarchical dependencies among the edge-
probabilities, and develop an associated, efficient sampling
method. We also identify common properties of the GNMs
based on their BN form and exploit these properties for effi-
cient and provably correct sampling.

The BN representation is comprised of a hierarchical struc-
ture of edges and blocks. We denote the levels in the hierarchy
by λ ∈ {0, 1, . . . , φ− 1}, where φ is the number of levels in
the hierarchy, λ=0 represents the root of the hierarchy, and
λ=φ−1 the edge layer. A block j at level λ has an associated
RV Z

[λ]
j which represents its state: sampled (Z

[λ]
j =1) or not

(Z
[λ]
j = 0). Since blocks could have different sizes we keep

a one dimensional subindex for each block RV (Zi) rather
than use the rectangular structure (with two subindices Zij) of
some GNMs (e.g., mKPGM in Fig. 2). Likewise, P could be
regarded as a one-dimensional structure for this same purpose
(notice that P (B

[λ]
j =1) = P [λ]

j is the probability of sampling
block j as defined by the GNM). This illustrates that our algo-
rithm is easily applicable to hierarchical models with complex
topology of the interacting layers and not just to tree-like BNs.
The function pa

(
Z

[λ]
j

)
:=Z

[λ−1]
i for λ>0 returns the parent

RVs for Z [λ]
j . We denote as Z[λ] the set {Z [λ]

j }. It is important
to notice that the BN is comprised of Z[0], . . . ,Z[φ−1] and
that the parameters of the BN are the associated probabilities.
These probabilities are a function of, or derived from, P [λ].
However, this relation is not straightforward for all GNMs.

3.1 Transformation of GNMs to BNs
As discussed in the previous section, hierarchical GNMs
are a superclass of GNMs that include edge-based GNMs
as a special case, as well as more complex models that
use a hierarchy of latent variables to represent dependen-
cies among edge RVs. However, since most hierarchical
GNMs are defined iteratively, the hierarchical structure is
not immediately evident and a transformation is necessary.
In particular for procedural models, transforming a GNM
to BN form consists of two steps, as outlined in Figure 1:
(1) Restructure the output of each step in the iterative sam-
pling of a GNM as a set of RVs. This allows the process to
be reorganized as levels in a hierarchy of RVs. (2) Use the

hierarchy of RVs to build a BN using parameters for the BN
derived from the GNM. Some care should be exercised for
this transformation as the relations among RVs are not trivial.

General Transformation from Hierarchical GNM to BN
A hierarchical model M, with parameter matrix Θ, can be
represented as a BN N with parameters Θ′ obtained from Θ:
MΘ r⇀NΘ′ as follows:
1. Represent as Z [0]

j the RV that models the block edge B[0]
j

2. Define the probability of Z [0]
j : P (Z

[0]
j =1) = P [0][j]

3. For λ = 1, . . . , φ− 1

(a) Represent as Z [λ]
k the RV that models the block B[λ]

k

(b) Specify pa
(
Z

[λ]
k

)
= Z

[λ−1]
k′ to be the corresponding

parent of RV Z
[λ]
k , then, define the CPD of Z [λ]

k :
P
(
Z

[λ]
k = 1|pa

(
Z

[λ]
k

)
= 1

)
= P [λ][k]

P
(
Z

[λ]
k = 1|pa

(
Z

[λ]
k

)
= 0

)
= 0

4. Add the RVs Z[0], . . . ,Z[φ−1] (from 1 & 3.a) to the BN N
and add their associated CPDs (from 2 & 3.b) to Θ′.

Notice that when φ (number of levels) is 1 then the hierarchical
GNM collapses to a traditional edge-based GNM. Thus, hier-
archical GNMs include edge-based GNMs as a special case.
Finally, Θ′ is fully defined by Θ because all P are derived
from it. We now discuss two specific transformations.

Transforming mKPGM to BN representation

|V[0]|

|V[0]|

|V[0]|

Figure 2: Example mKPGM in BN form. The left subplot, descen-
dants for 1 RV per level show the relations among the variables. The
right subplot shows the BN using plate notation.

An mKPGM modelM with parameter matrix Θ, K, and `
(Sec. 2.2) can be represented as a BN N with a tree structure
and parameters Θ′ obtained from Θ:MΘ r⇀NΘ′ as follows.
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1. Represent as Z [0]
ij the RV that models the block edge B[0]

ij

∀i, j∈ [1, b`]

2. Define the CPD of Z [0]
ij : P (Z

[0]
ij = 1) = P [0][i, j] for all

i, j, where P [0] =⊗`k=1Θ

3. For λ = 1, . . . , φ, where φ = K − ` do:
(a) Represent as Z [λ]

kl the RV that models the block edge
B

[λ]
kl ∀k, l∈ [1, b`+λ]

(b) Specify pa
(
Z

[λ]
kl

)
= Z

[λ−1]
dk/be,dl/be to be the parents of

RV Z
[λ]
kl , where x=mod (k−1, b)+1 and y=mod (l−

1, b)+ 1, then, define the CPD of Z [λ]
kl , ∀k, l∈ [1, b`+λ]:

P
(
Z

[λ]
kl = 1|pa

(
Z

[λ]
kl

)
= 1

)
= Θ[x, y]

P
(
Z

[λ]
kl = 1|pa

(
Z

[λ]
kl

)
= 0

)
= 0

4. Add the RVs Z[0],Z[1], ...,Z[λ=K−`] (from steps 1 and 3.a)
to the BN N and add their associated CPDs (from steps 2
and 3.b) to Θ′.

An example BN representation of an mKPGM is shown in
Fig. 2 for λ=0, 1, 2, 3. Here λ=0 corresponds to B[0] in the
mKPGM sampling process. There is a total of (b`)2 = |V[0]|2
RVs each of them represented by a Z [0]

ij (a double subindex
is used to indicate the position of the RV in the block/edge
matrix). Each of the RVs has b2 descendants at λ>0.

Transforming BTER to BN representation
A BTER modelM with parameters Θ=({nd}d∈N, {cd}d∈N),
where {nd}d∈N is a sequence of target degrees and {cd}d∈N is
the target clustering coefficient per degree, can be represented
as a BN N with a tree structure and parameters Θ′ obtained
from Θ:MΘ r⇀NΘ′ as follows.

As discussed earlier, BTER creates groups of nodes with
possibly the same degree and uses an ER model to generate
blocks of edges linking those nodes together. These are called
affinity-blocks. To produce a power law degree distribution,
there are many affinity-blocks of edges linking nodes with
small degree and fewer blocks for nodes with larger degree.
Recall that each node has an expected degree; then, bulk nodes
are nodes where the minimum degree of its affinity block
is equal to its expected degree. Otherwise, if the minimum
degree is smaller, they are called filler nodes. Contrary to
mKPGMs, BTER has an heterogenous number of descendent
edges. The nodes of degree one have no edges between them
because they are used as filler nodes; i.e. they are used to link
blocks of degrees > 1.

Let nb, rd, db be the number of edges in affinity block B
[0]
ij ,

the ratio of the number of filler nodes to the total nodes, and
the minimum degree in the block, respectively. Let, Bin−1 be
the inverse CDF of a binomial. Then, the mapping of BTER
sampling to BN representation is as follows:

1. Represent as Z [0]
ij the RV modeling the affinity blocks B[0]

ij

2. Obtain the parameters nb, rd, db of BTER as described in
Algorithm 1 of [Kolda et al., 2014]

3. Define the CPD of Z [0]
ij : P (Z

[0]
ij = 1) = P [0][i, j] ∀ i, j

where P [0] is probability of sampling edges from degree
equal to the degree of B[0]

ij

4. Let pa(·) be the affinity block containing ·. Define
P (Z

[φ]
kl = 1|pa(Z

[φ]
kl ) = 0) = 0 ∀k, l ∈ [1, . . . , |V|]. Oth-

erwise, for edges ek,l s.t. pa(Z
[φ]
kl ) = 1 and b its affinity

block with clustering coefficient cdb
(a) Represent its associated RV as Z [φ]

kl

(b) If k = l: Define the CPD of Z
[φ]
kl :

P (Z
[φ]
kl =1|pa(Z

[λ]
kl )=1)=Bin−1

(
c
1/3
db

(
nb
2

))
(c) Else: Given σtype = rd

2 if type = filler, and
σtype = 1−rd

2 if type = bulk, define the CPD
of Z

[φ]
kl : P (Z

[φ]
kl = 1|pa(Z

[λ]
kl ) = 1) = Bin−1(∑

i∈Vd σtypei [di − (c
1/3
db
· db)]

)
for all k, l and nodes

i ∈ Vd of degree d

5. Add the RVs Z[0],Z[1] to the BN N (steps 1, 5.a.i, 5.b) and
their associated CPDs (steps 3, 4, 5.a.2, & 5.c) to Θ′.

As we can see BTER and mKPGM are similar in the sense
that both models constrain the sampling so very few edges
are sampled with higher probabilities. This allows for skewed
degree distribution. The difference in the depth of the hierar-
chies is now easily seen, mKPGM groups edges in blocks and
super-blocks to abstract their relations as separate latent SBM
models, while BTER uses shallower hierarchies for redistribu-
tion of probabilities according to a power-law.

3.2 GNM-BN Common Properties
We identify 2 properties of GNMs transformed to BN form.
1. Group Symmetries—The first key insight about our BN
representation is that symmetries appear in the BN from
the parameterization of the GNM. Since there are fewer
than |V|2 unique Θs, RVs can be grouped and sampled to-
gether. Moreover, since the models are designed to gener-
ate sparse networks, it is more efficient to sample the num-
ber of edges and then select their locations rather than se-
quentially sample each edge RV, as proved in [Moreno et
al., 2014]. As in earlier lifted techniques, that were based
on finding identical structures for which a common compu-
tation was performed only once ([Koller and Pfeffer, 1997;
Pfeffer et al., 1999]), we propose an algorithm that identifies
RVs with the same conditionals and group them together in a
single representation. Then, sampling will be done only once
by using a Binomial (this determines the number of edges to
sample) and randomly selecting the edges from the locations
with the same unique probability (as illustrated in Fig. 3).
Because in GNMs the symmetries are parametric similarities
among a set of independent RVs there is no need to assess the
dependencies among individual RVs or among groups of RVs.
2. DCSD Sparsification—The second property of the BN
representation for GMNs is deterministic context-specific de-
pendence (DCSD). As seen in the earlier transformations, this
property arises because some values of the variables are sam-
pled with value 0. Since sampling at the next layer of the
hierarchy is conditional on the sampling of the previous layer,
the sampling space becomes more and more sparse as we
move through the hierarchy, as shown in Figure 4. Because a
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Figure 3: Sampling of GNM-BN: Symmetries of RV values are exploited for efficiency and correctness.

value in any given U[λ] may be 0, we don’t need to sample at
all for the associated T . Thus this sparsification can be used
for more efficient sampling. Formally:
Definition 2. Deterministic context-specific dependence
(DCSD): LetN be a BN that generates a networkG through a
hierarchical sampling process. Let P

(
Z

[λ]
j

)
be the probabil-

ity that a block is sampled. ThenN is “DCSD” iff it partitions
all Zj , such that:

P
(
Z

[λ]
j = 1

∣∣∣pa(Z [λ]
j

)
= 0

)
= 0 ∀ j, λ

where P
(
Z

[λ]
j =1|pa

(
Z

[λ]
j

)
=1

)
>0 ∀ j, λ, at each layer λ.

Remark 1. Z [λ]
j is sampled iff its parent is sampled with

value 1. However, if a superblock is not sampled, sam-
pling of subblocks or edges is inhibited. Note that while
P (Euv|pa(Euv)=0)=0, the marginal P (Euv)>0.
DCSD is related to context-specific independence (indepen-
dence in a BN due to specific realizations of RVs) [Boutilier et
al., 1996], but in this case the specific context precludes further
sampling of subblocks and edges. We show below how these
two properties can be used to develop an efficient and provably
correct general sampling algorithm for the GNM-BNs.

3.3 GNM-BN Sampling
RV Reorganization: As we described before, a GNM can
be represented as a set of unique probabilities πu ∈ U and
their positions Tu. We can apply this organization to the
RVs Z[0], ...,Z[λ=φ−1] (and their probabilities) in N from
the transformationsM r⇀N explained before. Thus, N can
be represented by the set of ordered pairs {(U[λ],T[λ])}φ−1

λ=0,
where U[λ]={π1, ..., πu , . . .}=unique(P (Z [λ])) and T[λ]

is a vector with the list of positions T
[λ]
u where each of the

probabilities πu appear at level λ.
Algorithm: We propose an algorithm for sampling from
models trasnformed to BN form that is efficient (as proved
below). Our algorithm is easily applicable to hierarchical
models with complex topology. The input of the algorithm
is the BN N and its parameters. N has an associated set
of unique probabilities U[λ] and list of positions T[λ] as we
described above.

Algorithm GNM-BN-Sampling
1: Input: N
2: Ouput: G = (V,E) {defined by its adjacency matrix A}
3: V = {1, . . . , |V|}
4: Obtain the set U[0] and the list T[0] usingN
5: for λ = 0, . . . , φ− 1 do
6: for i = 1, . . . , |U[λ]| do
7: Take πi = U

[λ]
i {unique prob inP[λ]}

8: Take τi = |T[λ]
i | {# of positions inP[λ] where πi appears}

9: Sample Nbi ∼ Bin(τi, πi)

10: −−→pos = Random Nbi positions from T
[λ]
i

11: if λ < φ− 1 then
12: Set Z[λ]

j = 1, for all j ∈ −−→pos
13: Obtain the set U[λ+1] and the list T[λ+1] using Z[λ]

14: else
15: Set −→u =d

−−→pos
|V| e and −→v=mod(−−→pos+|V|−1, |V|) + 1

16: Set Au,v=1 where u=−→uw , v=−→vw for w = 1, . . . , Nbi

Line 4 obtains the set of unique probabilities U[0] and the
list T[0] (i.e. the corresponding positions where those prob-
abilities appear). This information is used for sampling at
the root layer λ = 0. The algorithm consists of using each
πi ∈ U[λ] and the corresponding list of positions for randomly
sampling blocks. Instead of sampling from a Bernoulli for
each position of the block, we sample from a binomial which
models the distribution of successes in |T[λ]

i | Bernoulli trials
with probability πi. Sampling from this distribution gives the
number of sampled blocks (Nbi) for layer λ whose positions
are randomly picked and stored in the vector −−→pos. This vec-
tor is used to sample the blocks, i.e. to set their RVs Z[λ]

j to
one, where j ∈ −−→pos (lines 11-13). Sampling of edges (lines
15-16) follows the same idea except the positions −−→pos are
transformed to two indices: the row and column, u ∈ −→u , and
v ∈ −→v of the adjacency matrix.

Complexity: The average-case complexity of the algorithm
is O(φ|E|), where φ is the depth of the hierarchy (typically
a constant) and |E| = E[|E|]. This can be proved as follows.
Lines 9-10 have average-case complexity O(E[|Z[λ−1]|]).
This complexity is O(τiπi) (τi=# of positions in P [λ] where
πi appears). The average complexity of the loop for (λ<φ−1)
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is approximately O(E[
∑φ−1
λ=0 |Z[λ]|])=O(φ|E|) (φ =# layers)

Since the average-case complexity for λ = φ− 1 is O(|E|).
Scalability: Because of the linear (in the number of edges)
average case complexity of the algorithm, a BN-GNM is scal-
able for sufficiently sparse networks. Additionally, a BN-
GNM is amenable to be parallelized. After symmetries are
identified, sampling could be separated in independent tasks
due to the independence of the parameters.
Lemma 1. Given a valid model in BN representation NΘ′

with probability PN , and the algorithm GNM-BN-Sampling
with probability PS , then ∀G[λ] and 0 < λ ≤ φ− 1:

PN (ek,l ∈ G[λ]|G[λ−1])=PS (Z
[λ]
kl =1|pa(Z

[λ]
kl ))

Proof. Let γ(k, l) be the indices of the block con-
taining ek,l, and πσkl the unique probability associ-
ated with Z

[λ]
kl . Then, PN (ek,l ∈ G[λ]|G[λ−1]) ={

P [λ][k, l] if Eγ(k,l) ∈ G[λ−1]

0 if Eγ(k,l) /∈ G[λ−1] . Likewise, PS (Z
[λ]
kl =

1|pa(Z
[λ]
kl )) =

{
πσkl = P [λ][k, l] if pa(Z

[λ]
kl ) = 1

0 if pa(Z
[λ]
kl ) = 0

.

Since Eγ(k,l) ∈ G[λ−1] ⇐⇒ pa(Z
[λ]
kl ) = 1, then PN (ek,l ∈

G[λ]|G[λ−1])=PS (Z
[λ]
kl =1|pa(Z

[λ]
kl )).

Lemma 2. Given a valid model in BN representation NΘ′

with probability PN , and the algorithm GNM-BN-Sampling
with probability PS , then ∀G[λ] and 0 < λ ≤ φ− 1:

PN (G[λ]|G[λ−1])=PS (Z[λ]|pa(Z[λ]))

Proof. By lemma 1 and sampling independence of Z[λ]

then PS (Z[λ]|pa(Z[λ])) =
∏
∀k,l PS (Z

[λ]
kl = 1|pa(Z

[λ]
kl )) =∏

∀k,l PN (ek,l∈G[λ]|G[λ−1])=PN (G[λ]|G[λ−1])

Theorem 1 (Correctness). Given a valid model in BN repre-
sentation NΘ′ with probability PN , and the algorithm GNM-
BN-Sampling with probability PS , then ∀G PN (G) = P

S
(G).

Proof. PN (G)=
∑
G[λ−1]∈Γ[λ−1] PN (G[λ]|G[λ−1])PN (G[λ−1])

for the set Γ of all possible graphs at λ − 1. By Lemma 2
PN (G) =

∑
G[λ−1]∈Γ[λ−1],Z[λ] PS (Z[λ]|pa(Z[λ]))PN (G[λ−1])

By the same procedure, it can be proven recursively
that: PN (G[1])=

∑
G[0]∈Γ′[0],Z[1] PS (Z[1]|pa(Z[1]))PN (G[0])

for the set Γ′ of all possible graphs at level 0.
Since PS(pa(Z[0])) = 1, by Lemma 1: PN (G[1]) =∑
G[0]∈Γ′[0],Z[1] PS (Z[1]|pa(Z[1]))PS (pa(Z[1])).

Then, ∀G PN (G)=P
S
(G)

Remark 2. Given a valid mKPGM modelM(Θ) with proba-
bility PM , there is a BN N such that the algorithm GNM-BN-
Sampling, with sampling probability PS , samples correctly
from PM , i.e. ∀G PS (G) = PM(G).

Let PS be the probability of the GNM-BN sampling. Given
the mapping MΘ r⇀NΘ′ , as shown in the transformation of
mKPGM to BN. Since the CPD are the same for the sampling
and the BN representation, then, by Thm 1, ∀G PM(G) =
PN (G)=PS (G)

Remark 3. Given a valid BTER modelM(Θ) with probabil-
ity PM , and the algorithm GNM-BN-Sampling with probabil-
ity PS , then from Thm. 1 it also follows that ∀G PM(G) =
PS (G).

4 Designing New GNMs: a Case Study
To take advantage of the properties of the BN representation,
we propose a new GNM, namely the BN-Graphlet model. We
will show that the new GNM can model graph characteristics
that are not possible with several existing GNMs. We consider
undirected networks but BN-Graphlet could be easily extended
for directed graphs as well.

In order to take advantage of our framework, and in particu-
lar our sampling algorithm, we design a GNM that is directly
interpretable as a BN hierarchy with common parameters per
layer and with a generative process that exploits sampling con-
ditioned on the previous layer. The key idea in BN-Graphlet is
to redistribute symmetries and sparsity based on several graph
patterns, to convey (1) locations where edge probability mass
is concentrated in the desired graphs, (2) primitives regarding
interactions among nodes in the graph, and (3) hierarchical
dependencies among primitives. To do so we consider (a) the
degree distribution, (b) minimal graphlets (mingraphlets, i.e.
triangles, wedges, and edges) that encode node interactions per
degree, and (c) a graph decomposition due to the mingraphlets.
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The reason to use mingraphlets is that larger graphlets can
be constructed via algebraic transformations of the minimal
graphlets. Since each of these characteristics are dependent
on the previous one, each will be encoded in a level of the BN
hierarchy.

Let ∆ ∼ fdeg(θ∆) be the sequence of degrees drawn from
the degree distribution fdeg. BN-Graphlet creates groups of
nδi nodes of degree δi for δi ∈ ∆. Then we can partition
the adjacency matrix via the joint degree distribution, and use
block bij =B

[0]
ij to refer to links among nodes with degrees

δi, δj respectively. Let P [0][i, j]=0 for blocks with no links;
otherwise, P [0][i, j]=1.

Next, the model partitions a single block in sub-
groups of nodes that link only triangles, only wedges,
and the remainder, i.e., every block will be subdivided
into nine subblocks B[1]

·· . To simplify notation, we use
B

[1]
k=[1..3]l=[1..3](i, j) to refer to appropriate cell in B[1]

associated with its parent i, j in B[0]. Then: P [1][k, l] =
p4bij

if k=1, l=1 i.e., both nodes link only to triangles
p∧bij if k=2, l=2 i.e., both nodes link only to wedges
1 o.w.

Here p4bij and p∧bij are respectively: the probability that the

two nodes incident to an edge in block B[0]
ij participate only in

triangles, and the probability that the two nodes incident to an
edge in block B[0]

ij participate only in wedges.
Lastly, the final adjacency matrix is constructed from sub-

matrices of size nδi × nδj for each degree pair δi, δj . The
nodes of each sub-matrix will be associated with roles based
on their parent B[1]

kl (i, j). For 3x3 submatrices of edges em,n,
where m,n have the role only triangles, the off-diagonal edge
probabilities in B[2]

mn will be all 1; for blocks where the nodes
have the role only wedges, there will be two edges with proba-
bility 1s and one with probability 0. For all other edges, the
probability will be κ1/3

bij
, where κbij is the clustering coeffi-

cient centered at a node in block B[0]
ij .

It is straightforward to see that the BN N of BN-Graphlet
is directly derived from the blocks B[λ]

ij and their probabilities,
contrary to mKPGM and BTER where transformations were
needed. This is because we use our framework directly to
build the GNM. The equivalence can be directly obtained with
the following procedure:

1. For λ = 0, . . . , 2

(a) For i, j = [1, rows(P [λ])], [1, cols(P [λ])]

i. Define Z [λ]
ij the RV that models the blocks B[λ]

ij

ii. Define P (Z
[λ]
ij = 1|pa(Z

[λ]
ij ) = 0) = 0

iii. Define P (Z
[λ]
ij =1|pa(Z

[λ]
ij ) = 1) = P [λ][i, j]

Estimation: We need to estimate θ∆, the sequence κbij , and
probabilities p4bijand p∧bij. θ∆ is learned as the MLE of the
fitted degree distribution. κbij is the clustering coefficient per
block of the data graph. The parameters p4bij and p∧bij are
estimated as the MLE of the respective multinomial.

# of non isolated nodes# of non isolated nodes# of non isolated nodes

KPGM2⇥2 mKPGM ` = 6 BN-Graphlet
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Figure 5: Variation of mKPGM and BN-Graphlet graph properties in
synthetic networks. (LCC: largest connected component)

4.1 Experiments and Analysis
We performed two sets of experiments. First, we encoded
BN-Graphlet using the new representation and show, using
synthetic networks, that it can model different networks com-
pared to mKPGM. Because mKPGM was shown in [Moreno
et al., 2013] to be capable of modeling a wider range of
network characteristics than Chung Lu and KPGM models,
in our experiments we compare to mKPGM. We generated
networks for a wide range of parameter values Θ and plot-
ted the characteristics of the sampled graphs. For mKPGM,
we used 22,060 different values of Θ (b = 2). The pa-
rameters were generated using every possible combination
of Θ, such that θ11, θ12 ∈ {0.01 : δ : 1.00}, θ12 = θ21,
θ22 ∈ {θ11 : δ : 1}, and 2.1 ≤ ∑ij θij ≤ 2.4 We utilized
δ = 0.015 and θ12 ∈ {0.01 : δ : 1} to avoid repetition
of the parameters due to isomorphisms of Θ. For each Θ
setting, we generated 75 undirected networks with mKPGM
(K=9, `=6). For BN-Graphlet we considered θ∆ that lead
to networks with a number of edges in the range [800, 2650]
for a fair comparison with mKPGM models. For κbij we
generated random values under the restriction that the global
clustering coefficient is realistic. The values of p4bijand p∧bij
were assigned using grid search.

We evaluate the characteristics of the generated networks
using: (1) average cluster coefficient, (2) average geodesic
distance, (3) number of non isolated nodes, and (4) size of
the largest connected component. Figure 5 reports the results.
BN-Graphlet produces the lowest geodesic distance (small
world phenomena), the highest cluster coefficient (community
structure), and largely reduces the number of isolated nodes
(larger connected component). Thus BN-Graphlet can model
networks that are not easily modeled with mKPGM.

Second, we show that BN-Graphlet can model real world
networks better than the other models. We fitted the models
to three real datasets: the CoRA citations network (comprises
11,881 AI papers with 31,482 citations between them), the Na-
tional Longitudinal Study of Adolescent Health (AddHealth)
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Figure 6: 3D-Kolgomorov-Smirnov distance across 4 datasets.

network (1155 nodes and 7884 edges), the astrophysics arXiv
network (9,987 nodes and 25,973 edges), and Facebook wall
postings (449,748 nodes and 1,016,621 edges).

We compared the BN-Graphlet with BTER and mKPGM.
Figure 6 shows the 3-dimensional Kolmogorov-Smirnov
(KS

3D
) distance of the learned to the true network charac-

teristics: hop-plot, degree, and clustering coefficient. In all
datasets, BN-Graphlet obtains the lowest error, except in Face-
book where its error is the second lowest; showing it can
jointly model the hop-plot, degree, and clustering coefficient
of real networks consistently better than BTER or mKPGM.

5 Related Work and Discussion
GNMs have been developed in various ways, using different
motivations and frameworks. There has been some work to
identify the common features of GNMs. For example, [Jacobs
and Clauset, 2014] provides an overview of different families
of GNMs and gives some important insights about relation-
ships among them. [Rohe et al., 2011] considers the relation
between the latent space model [Hoff et al., 2002] and stochas-
tic block models [Holland et al., 1983]. However, these works
do not consider complex GNMs with a hierarchical sampling
process involving intermediate latent variables.

Previous work have used BNs to create GNMs [Schein et
al., 2016; Liang et al., 2016; Ho et al., 2011; Neiswanger et
al., 2014]. However, these works proposed a specific BN with
the purpose of solving a specific network problem (e.g., node
actions, link predictions, etc). Our contribution is to propose
a general representation that is not dependent on any dataset,
problem, or BN topology, but rather only on an assumption of
conditional independence during sampling. Using this mini-
mal building block, we have proposed a sampling method that
is universal across GNMs that fulfill this assumption.

Also related to our work is lifted inference. Lifted infer-
ence algorithms identify and exploit abundant symmetries in
graphical models, in order to avoid repeated computations
and speed up probabilistic inference [Koller and Pfeffer, 1997;
Poole, 2003; Jha et al., 2010; Van den Broeck and Darwiche,
2013; Mittal et al., 2015; Sen et al., 2009]. Lifted Importance
Sampling (LIS) was proposed in relational learning for proba-
bilistic inference [Gogate and Domingos, 2011], and extended
by [Gogate et al., 2012]. We note that their task is different
since the symmetries are exploited to improve the precision of
LIS (i.e., reduce variance) while our work exploits parametric
symmetries for efficient network sampling, which provides
guaranteed performance (both time complexity and correct-

ness) for GNMs. [Venugopal and Gogate, 2014] showed a
way to deal with situations where symmetries are broken. As
in their work, we show ways to find symmetries but in the
realm of social network models.

In general, like these existing lifted-techniques, our lifted
sampling identifies structural patterns in GNMs to sample a
set of random variables as a group rather than treating each
random variable separately. This leads to an efficient and cor-
rect sampling method. Unlike existing lifted-techniques, we
use symmetries to create a meta-model that encodes existing
social network models and allows for creation of new ones.

In our work, we take advantage of the symmetries in the
intrinsic graphical model of the GNMs for efficient sampling
and then exploit the hierarchical representation to construct a
generative model that produces sampled graphs with character-
istics that are not easily achieved with current GNM methods.
In the experiments, we show the range of networks that can be
modeled with this new generative model. To our knowledge,
our work is one of the first applications of lifted techniques that
exploits the symmetries existing in social network models.

6 Conclusion
In this paper, we showed how hierarchical GNMs that are
specified procedurally, can be represented as generally as BNs.
Our unifying BN view provides the following advantages: (1)
universal representation, which can highlight the similarities
and differences between GNMs, and (2) efficient, provably
correct and universal sampling, due to the adherence of the
algorithm to a directed BN structure and an efficient sampling
algorithm. The representation also facilitates the creation of
new GNMs. To illustrate the benefits of the BN representation
and associated sampling method, we proposed the hierarchical
BN-Graphlet model and showed it more accurately captures
the structure of four real-world networks.
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