Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

A Monte Carlo Tree Search approach to Active Malware Analysis

Riccardo Sartea
University of Verona
Department of Computer Science
riccardo.sartea@univr.it

Abstract

Active Malware Analysis (AMA) focuses on ac-
quiring knowledge about dangerous software by
executing actions that trigger a response in the
malware. A key problem for AMA is to design
strategies that select most informative actions for
the analysis. To devise such actions, we model
AMA as a stochastic game between an analyzer
agent and a malware sample, and we propose a
reinforcement learning algorithm based on Monte
Carlo Tree Search. Crucially, our approach does
not require a pre-specified malware model but, in
contrast to most existing analysis techniques, we
generate such model while interacting with the mal-
ware. We evaluate our solution using clustering
techniques on models generated by analyzing real
malware samples. Results show that our approach
learns faster than existing techniques even without
any prior information on the samples.

1 Introduction

Malware are one of the biggest threats in IT security, with
millions of malicious applications released every year at an
ever growing rate. For this reason, automated techniques
based on machine learning are fundamental tools for help-
ing security experts in analyzing and classifying dangerous
software. Common approaches can be broadly categorized
as static, where the binary code of the malicious program
is inspected but not actually executed [Sharif et al., 2008;
Lakhotia et al., 2013; Yang et al., 20141, as dynamic, that
involves the program execution inside a safe environment to
observe its behavior [Meng er al., 2016; Gascon er al., 2013;
Zhang et al., 2014; Shin et al., 2011]. A limitation of all the
mentioned techniques is that they are passive, meaning that
they do not interact with malware during execution.
Dynamic analysis can also be conducted actively, using
a methodology in which the analyzer interacts with the in-
fected system in order to trigger malicious behaviors that
would otherwise remain invisible. Active Malware Analysis
(AMA) gained significant attention in the last years, and the
first steps towards this approach were presented in [Moser et
al., 2007], where the authors discussed the existence of mal-
ware requiring specific inputs to show their malicious behav-

3831

Alessandro Farinelli
University of Verona
Department of Computer Science
alessandro.farinelli@univr.it

iors. Recently, AMA has been applied to various scenarios,
and specifically to smartphones [Suarez-Tangil er al., 2014].
Such approaches focus mainly on the Android system, which
is nowadays one of the most important target of malware in-
fection.

An interesting branch of work addresses AMA by us-
ing game-theoretic approaches, and specifically stochastic
games [Williamson er al., 2012]. A key element for such for-
malization is the availability of a model for the malware that
must be manually designed by a security expert. Given this
model, the procedure can then devise the most informative
actions for the analyzer agent. To partially overcome this lim-
itation, [Sartea er al., 2016] propose an automated algorithm
for generating the model based on an analysis of malware ex-
ecution traces. A limitation of such previous work is that the
malware model to be used is static, meaning that it is fixed
before starting the analysis and cannot be changed during it.
Another limitation is that a prior knowledge of the malware
to analyze is required in order to generate the model.

In this work we design a learning approach that can be
used in domains involving learning behavioral models with
interacting agents. Examples include multi-agent learning
such as interactive apprenticeship learning, where a learner
agent queries a teacher agent for specific example traces. We
propose a reinforcement learning algorithm based on Monte
Carlo Tree Search (MCTS) and stochastic games, applying
it to the interesting context of AMA. Our approach aims at
selecting the most informative action for the analyzer agent,
generating the malware model during the analysis. This re-
moves the need to provide a static malware model for the an-
alyzer agent. A key element to select the most informative
action is the ability to represent the dynamics of the malware,
i.e. the probability that a malware sample will execute a se-
quence of actions in response to a specific action of the ana-
lyzer (usually called a trigger). In our work, we use Markov
chains to represent the malware dynamics. This is a natural
choice, given that we use stochastic games to represent the
AMA process, and allows us to efficiently compute the prob-
ability distribution over the malware actions. We tested our
approach on real Android malware, with results showing that
our solution has superior performance with respect to previ-
ous techniques for AMA [Sartea et al., 2016].

Our contributions to the state of the art can be summarized
as follows:

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1. We remove the need of a static, pre-specified model
for AMA. Specifically, we model AMA as a stochastic
game and we develop a reinforcement learning approach
based on MCTS that can generate the malware model at
runtime, i.e. while interacting with the malware.

2. We represent the dynamics of the malware by using
Markov chains. This allows us to efficiently compute
the probability distribution over the possible malware re-
sponses to the analyzer’s actions.

3. We empirically evaluate our approach by running AMA
on a dataset of real Android malware [Sartea et al.,
2016]. We analyze the results of the AMA by group-
ing malware behaviors, i.e. the transition function of
the stochastic game learned by the analyzer, through
standard clustering techniques (K-Means clustering and
Hierarchical Agglomerative Clustering). Results show
that our approach correctly groups malware samples
using fewer actions than the state-of-the-art approach
[Williamson et al., 2012; Sartea et al., 2016], and that it
is able to identify the possible existence of malware sub-
families inside the main families, i.e. variants of given
malware.

2 Preliminaries and Related Work

In this section we provide the necessary background on
stochastic games, MCTS and related work on AMA.

2.1 Stochastic Games

Definition 1 (Stochastic Game). A stochastic game G is a
tuple G = (S, N, A, T, R;) where:

e S is a set of stage games called states
e N ={i|1<i< n}isa finite set of players

e A=Ay x..x A, is an action profile, where A; is a
finite set of actions for player 1

o T': 8 xAxS" — Ry is a probabilistic transition
function

e R, : S x A — Ris the reward function for player i

The game starts from an initial state, and the joint actions
of players lead from one state to another with a probability
given by the transition function. All players are assigned a
reward depending on the choices made by all of them.

Markov chains describe the dynamics of the states of a
stochastic game where each player has a single action in each
state. Similarly, if players’ strategies are stationary, the dy-
namics of the states of a stochastic game form a Markov
chain [Neyman, 2003].

Definition 2 (Markov chain). A Markov chain M is a tuple
M = (S, u, P) where:

o S={s1,..., 80} is a set of states
e wu is a n-length vector of the starting distribution
e P isan n X n transition probability matrix

The dynamics of a Markov chain are completely defined
by a transition probability matrix expressing the probabil-
ity of moving from one state to another. Using theorem 1,

3832

Markov chains allow to efficiently compute the probability
of reaching a specific state from another one in a stochastic
game with stationary strategies, focusing on a single specific
action [Grinstead and Snell, 2003].

Theorem 1. Let P be the transition matrix of a Markov
chain, and let u be the probability vector which represents
the starting distribution. Then the probability that the chain
is in state s; after n steps is the it entry of the vector

u™ = yP"

2.2 Monte Carlo Tree Search

MCTS is a method for choosing best actions in a given do-
main, random sampling the action space and building a search
tree. The tree is built progressively, descending from the root
guided by the results of previous descents. An action reward
is estimated basing on the subtree built starting from an ac-
tion node, with the estimate becoming more accurate after
every descent. Consequently, the tree grows in an unbal-
anced way, favoring the expansion of most promising sub-
trees. The MCTS algorithm iteratively performs a sequence
of four steps [Browne er al., 2012]:

1. Selection: from the root node, a tree policy is recursively
applied to descend the tree until the most promising node
to expand is found. How the tree is built depends on how
nodes are selected in this step (figure 1a)

2. Expansion: a child node is added to the selected one,
according to the available actions (figure 1b)

3. Simulation: a simulation is run from the expanded node
following a default policy, producing a reward (fig-
ure 1c¢)

4. Backpropagation: the reward is propagated up to the
root, updating the statistics of the nodes encountered
(figure 1d)

After a predefined computational limit has been reached,
the action corresponding to a child of the root node is returned
as result. MCTS is often used in domains where a standard
tree search is unfeasible. In our approach, given the elevated
number of possible analyzer actions, combined with the anal-
ysis game length and the uncertainty on malware responses,
building a complete search tree would require too much com-
putational effort.

2.3 Active Malware Analysis

Static analysis techniques include control flow graphs com-
parison [Sharif et al., 2008], similarity detection [Lakhotia
et al., 2013], or malicious program logic extraction [Yang
et al., 2014]. For dynamic analysis instead, typical meth-
ods are based on API call sequences [Meng er al., 2016], call
graphs [Gascon et al., 2013], call dependency graphs [Zhang
et al., 2014], or control flow graphs [Shin ef al., 2011]. These
techniques though, are passive, hence they can miss impor-
tant malicious behaviors visible only if triggered by specific
actions on the infected system.

The work of [Williamson et al., 2012] introduces AMA as
a stochastic game between an analyzer agent and a malware
sample, where the former tries to acquire information about

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

(a) Selection (b) Expansion

(c) Simulation

.................................

(d) Backpropagation

Figure 1: Monte Carlo Tree Search steps

abortBroadcast
sendSms:1.0
startCall: 1.0

writeData
sendSms: 0.2
startCall: 0.3

sendSms:0.5
startCall: 0.4

sendSms:0.5 sendSms:1.0 sendSms:0.8

startCall: 0.6 startCall: 1.0 startCali: 0.7
openfFile readData
(a) Malware model example
abortBroadcast
sendSms:0.7 sendSms:1.0

startCall: 0.1 startCall: 1.0

openSocket

sendSms:0.3
startCall: 0.9

sendSms:1.0
startCall: 1.0

openfFile

(b) Malware model example

Figure 2: Example of two malware models

the latter. Authors propose MYOPIC, an algorithm that tries
to extract the policy of a malware sample stimulating it with
the most informative action based on entropy, so as to acquire
information about the malware behaviors. The strategy of the
analyzer is stationary, and it selects the action with highest
entropy in the model. The strategy of the malware sample is
supposed to be stationary too and embedded in its code.
AMA requires a model as analysis input that is manually
designed basing on the system on which the analysis is going
to be performed. Recent work of [Sartea er al., 2016] pro-
poses an automated algorithm to generate the malware model
to be later used as input for the analysis conducted on the
execution traces of the malware. The analyzer action set is
composed by all the possible triggering actions!, whereas the

'The triggering action set for the analyzer used in the experi-
ments comprises 30 different actions

3833

malware action set includes all the possible API calls that can
be executed on the system. A state is labeled with an API
call (action) executed by the malware to transition from the
preceding state to the current one. Joint actions of the two
agents lead from one state to another with a probability given
by the transition function. The model is similar to that of fig-
ure 2a, where one of the transitions goes with probability 0.2
from state openSocket to state writeData as a consequence of
analyzer sendSms and malware writeData joint actions.

3 Analysis Process

The aim is to learn the transition function of a malware sam-
ple, i.e. the behavior, minimizing the number of analyzer
actions to perform. Following [Williamson er al., 2012] we
model AMA as a stochastic game between the analyzer and
a malware sample, where the analyzer chooses a triggering
action and the malware sample responds with an execution
trace as a sequence of API calls [Sartea er al., 2016].
However, in contrast to [Williamson et al., 2012; Sartea et
al., 2016], our approach generates the malware model at run-
time using the information extracted from malware responses
to the analyzer actions. The choice of which analyzer action
to execute is made by using the model generated so far. These
two steps are iterated multiple times during the analysis (al-
gorithm 1). In particular, the algorithm starts with an empty

Algorithm 1 Monte Carlo Analysis

Input:
n - game length
Output: Malware model

1: model + ()

2: for n times do
3: tmpmodel < model.Copy()
4 a <~ MCTS(tmpmodel) > Choose next action
5 trace < Execute(a) > Observe malware reaction
6: model Update(trace, a)
7

: return model

> Start with empty model

model containing only the Init vertex, therefore with no in-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

formation about the malware sample that is going to be pro-
cessed. The decision of which analyzer action to perform is
taken running a MCTS based on a copy of the current model
being generated (copying the model is important because the
simulation step modifies it). The chosen action is then exe-
cuted on the system and the malware sample reaction is read
as a sequence of API calls. The trace is converted into a path,
starting always at Init, and used to update the model graph and
statistics, i.e. the transition probabilities between API calls.
The analysis game ends after the analyzer has performed a
fixed number n of triggering actions?, retrieving malware re-
sponse execution traces. Finally, the model generated is re-
turned as output.

In previous work, the model must be (manu-
ally [Williamson er al., 2012] or automatically [Sartea
et al., 2016]) generated before starting the analysis, knowing
exactly which malware families are going to be analyzed, or
the structure of the system used to conduct such analysis. In-
stead, with our approach, models are automatically generated
during the analysis without any prior knowledge, and can be
compared anytime, by comparing their transition function
vectors (see section 4.1).

4 Malware Model

The malware model contains all the information acquired dur-
ing the interaction between the analyzer and the malware
sample. The model is based on the dynamics of the stochastic
game played during the analysis phase, such as those shown
in figure 2. Vertices represent the states of the game and are
labeled with malware API calls. Edges connect two consec-
utive API calls of an execution trace, and are labeled with
transition probabilities conditioned by the actions executed
by the analyzer. If a vertex is labeled with an API call that
terminates one or more malware execution traces, such ver-
tex is marked as terminal (7')>. A path on the model graph is
a possible execution trace of the malware, and from the val-
ues on the edges we can compute the probability of reaching
a terminal state from the initial one, i.e. the probability of an
execution trace for a specific triggering action of the analyzer.
Probability values are assigned basing on the historical fre-
quency extracted from the execution traces, conditioned by
the specific analyzer action that triggered that response. For
each analyzer action a we keep track of the number of times
an edge has been traversed e; o, and the number of times a
vertex has been reached v, ,. Given a graph model G(V, E)
we can reconstruct the transition probability for every ana-
lyzer action a and outgoing edge e € E, of vertex v € V
with equation 1 as follows:
P(ela) = w (1)
‘E’U| + Ur,a
Notice that if statistics for a particular analyzer action regard-
ing a vertex or an edge are missing (v, , = 0 or e; 4 = 0),
the resulting probability value will be uninformative since we
have no knowledge of the behavior in that specific case.

>We tested different game lengths from 1 to 10 (figure 3)

3An API call is considered terminal if no additional API call is
performed after that one for a given number of seconds. This is not
related to the game termination or length

3834

4.1 Malware Comparison

Malware have distinctive features, such as the payload they
carry or how they infect a system, and can be grouped basing
on one or more of these traits, forming the so-called families.
Moreover, within the same family there can be variations of
malware with similar features, but behaving differently, e.g.
how they release the same kind of payload.

The end goal of AMA is to infer whether malware are re-
lated to each other, sharing common behaviors. To be able
to do this, we need a method for comparing models obtained
after the analysis, so as to quantify their (possible) similar-
ity. Our model formalization allows us to fuse the graphs,
merging vertices basing on API call labels, and to extract the
transition function (the 7" of the stochastic game definition 1)
of each malware model projecting its statistics on the merged
graph using equation 1.

The vectorial representation of the transition functions
extracted by the comparison of models in figure 2 is il-
lustrated below. The resulting merged graph shape is the
same of figure 2a since it includes the one of figure 2b.

sendSms startCall
a=1[0.50.51.0100208 |04 0.6 1.0 1.0 0.3 0.7]

b=[0.7 0.3 1.0 1.0 0.5 0.5 | 0.1 0.9 1.0 1.0 0.5 0.5]

Transition functions of single models projected on the same
merged graph are comparable, since each position represents
the probability value on the same edge under a specific ana-
lyzer action. A dataset of transition functions may then be
analyzed with clustering, classification or other techniques
based on feature vectors (see section 6).

5 Monte Carlo Tree Search Policies

MCTS algorithm can be applied to a wide range of domains
and performed in many different ways, according to the poli-
cies implemented. In this section we explain the choices we
made for our application of MCTS.

5.1 Tree Policy

In the selection step of the MCTS (figure la) we decided
to model the choice of which child to descend at each level
as the exploitation-exploration dilemma typical of the multi-
armed bandit problem [Browne er al., 2012]. Indeed, there is
the need of balancing the exploitation of an action currently
believed to be the best, with the exploration of other actions
that may turn out to be the best in the long term.

Upper Confidence Bound

The Upper Confidence Bound (UCB) is a value associated to
any arm of the multi-armed bandit problem, representing the
confidence we have in that arm to be the optimal [Auer ef al.,
2002]. Tts first application as a tree policy is due to [Koc-
sis and Szepesvari, 2006] in the form of Upper Confidence
Bound for Trees (UCT)

2Inn

UCT = X; 4 2C,
nj
where n is the number of times the current node has been

visited, X ; is the average reward of the child node j, n; is

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

the number of times the child node j has been visited, and
Cpisa constant*. The left-hand term encourages exploita-
tion of nodes with higher reward, whereas the right-hand term
encourages exploration of less visited nodes. The expected
value of a node is the reward approximated by the simulations
run from that node. The decision of which node to choose at
each level during the descent in the selection step is taken
basing on the highest value of UCT.

5.2 Default Policy

In the expansion step (figure 1b) we randomly append a new
child node to the selected one (figure 1a) choosing from the
actions yet to be added to such selected node. Our default pol-
icy simulates the sequence of analyzer actions and malware
responses (figure 1c) from the expanded node to the end of
the game. After each analyzer action, the malware response is
used to update a temporary model, and the process is repeated
until the end of the simulation, where a reward is computed.
Algorithm 2 illustrates the procedure, that is the simulation
step of the MCTS called by algorithm 1 at line 4.

Algorithm 2 Default Policy

Input:
n - expanded node
tmpmodel - temporary model
Output: Resulting model of the simulation

1: a < n.action

2: repeat

3 trace < Simulate(a)

4: tmpmodel Update(trace, a)

5 a < ChooseAction(tmpmodel)
6: until end of game
7. return tmpmodel

Trace Simulation

Malware response actions are simulated (line 3) using past
information on the analysis: if an analyzer action has never
been seen, a random sequence of API calls is generated. Oth-
erwise, a past execution trace is returned with the same his-
torical probability associated to the observation of that trace
in response to that analyzer action.

Action Choice

We tested two different strategies for choosing the analyzer
actions during the simulation (line 5): the first strategy
chooses randomly (a wide used policy for MCTS [Browne
et al., 2012]), whereas the second is guided by an entropy-
minimization heuristic, which chooses the action with highest
entropy in the current temporary model. The rationale behind
this is that having a higher entropy usually indicates having a
more informative action.

*We used C), = 1/+/2, obtaining a good balance between ex-
ploitation of actions that are known to trigger malware responses,
and exploration of actions that have unknown outcome

3835

Reward

Following [Williamson et al., 2012] we decided to em-
ploy an information-centric reward based on entropy. The
process uses equation 2 to compute the entropy gain
H,,(a) — Hy,, (a) for the analyzer action a, corresponding to
the node of the search tree encountered during the backprop-
agation step (figure 1d), between the model m built so far and
the model m’ estimated at the end of the simulation.

Hp(a) = =Y Dp(a)iln Dy, (a); 2)

D, (a) is the probability distribution for the analyzer action
a over every vertex in the model m labeled as terminal (7).
For the model depicted in figure 2a, the computation uses the-
orem 1 as follows for n = 3 steps:

005050 0 0
00 010 0
Dy (sendSms) = (10000 0] 8 8 8 (1)002 008
00 001 0
00 000 1

=[0000020.8 = [0.20.8]

The probability distribution is restricted to terminal vertices
(T') 4 and 5. Using Markov chains we can efficiently compute
the reward function instead of visiting the graph searching for
every possible path [Williamson et al., 2012; Sartea et al.,
2016].

6 Empirical Evaluation

The main goal is to prove the efficacy of our analysis algo-
rithm in generating the model at runtime without any prior
knowledge. Moreover, we want to attest that the models gen-
erated can be successfully compared and grouped in relation
to malware families, highlighting even the possible existence
of subfamilies composed by variations of similar malware.

6.1 Methodology

We compare our approach to the results obtained by [Sartea
et al., 2016], using the same dataset, with the application of
MYOPIC algorithm [Williamson ef al., 2012] to automati-
cally generated models. AMA is most effective in analyzing
malware reacting to triggers, so the dataset is composed by
four existing Android malware families of spyware and bots:
ZSone, GoldDream, SMSReplicator, and TigerBot. The mal-
ware samples have been downloaded from [Xi’an Jiaotong
University, 2011], for a total of 40 samples, 10 for each fam-
ily. Furthermore, ZSone family is composed by two subfam-
ilies of 5 samples each.

The aim is to group the transition function vectors ex-
tracted by our approach, obtaining a composition as similar
as possible to the malware families of the dataset. For this
purpose we applied K-Means clustering, repeating analysis
and clustering 10 times, and computing results as the aver-
age in terms of purity, inverse purity and f-score w.r.t. our

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

A.u.C. Au.C. A.u.C.
Purity | Inverse Purity | F-Score
MCA Entropy-Min | 889.69 929.91 890.36
MCA Random 882.47 909.11 882.63
MYOPIC 794.84 840.13 811.53

Table 1: Comparison of Area Under the Curve values

ground truth. Furthermore, we made use of Hierarchical Ag-
glomerative Clustering to dissect the composition of families,
identifying the possible existence of subfamilies.

The analysis environment is based on the Cuckoo sand-
box [Cuckoo Foundation, 2016], specifically modified to
meet the requirements of AMA. Indeed, a standard dynamic
analysis is not enough for our purpose because we need to
use the retrieved execution trace to update the model and to
choose the next analyzer action to perform, repeating the pro-
cess multiple times.

6.2 Results

Table 1 reports the area under the curve values for purity, in-
verse purity and f-score. These values are obtained by the ap-
plication of our proposed MCA algorithm in the two variants
for the default policy (random and entropy-minimization).
Results clearly show that both versions of our approach are
better than MYOPIC. The difference is statistically signif-
icant according to a Student’s paired two-tailed t-test with
p < 0.05.

Even though the random default policy gives good re-
sults, the best is obtained using a default policy based on the
entropy-minimization heuristic to choose analyzer actions in
the simulation step. This principle helps in choosing actions
generating more informative models, obtaining better clus-
tering results with fewer actions. Figure 3 reports the f-score
(y-axis), with standard error of the mean vertical bars, against
the number of actions played (x-axis). The graph shows that
our approach learns faster than MYOPIC, even without any
prior knowledge of the malware model. This advantage is
gained thanks to the MCTS, and more specifically, to the
simulation of possible future malware reactions triggered by
the analyzer. The capability of correctly grouping malware
belonging to the same family increases with the number of
triggering actions executed by the analyzer, since with more
actions it is possible to better discriminate or associate behav-
iors.

Figure 4 depicts the dendogram of the Hierarchical Ag-
glomerative clustering, restricted to samples of ZSone. This
family is composed by two subfamilies of 5 samples each.
This composition is reflected in the dendogram: datapoints
are grouped into two clusters {zsq4, 285, 287, 282, 2810} and
{zs1, 286, 288, 283, 289} Tespectively, representing the two
subfamilies, before being merged into the complete family.

In our experiments we set the computational limit of
MCTS to fit the Android emulator boot time, plus the time for
the installation of the malware sample on the guest machine
(about 30s in total for each analyzer action). With this solu-
tion we add no extra time to the analysis compared to MY-

3836

F-Score learning rate comparison
100

90
80

70 /{/ Sl

60 7/ .l
g % /L
w 500 /-
> [
40/‘
30 — MCA Entropy-Min
20 s MCA Random
10 -« MYOPIC
1 2 3 4 5 6 7 8 9 10
Actions
Figure 3: F-Score learning rate comparison
Dendogram of the Subfamilies for ZSone
3.0
2.5
S 2.0
C
8
3 1.5
1.0
0.5
0.0

b i) A Vv N ~ ©

1% &/ % Y Y Y % o)% 9’? o;?
% % % % ©’ % % % 1% %

Malware Samples

Figure 4: Dendogram of the subfamilies for ZSone

OPIC, even though we reach better results in terms of quality.
It is possible to increase the computational limit of MCTS if
more complex simulations are required. Finally, it is worth
noting that MYOPIC requires additional time for generating
the model before starting the analysis, whereas our algorithm
generates it at runtime.

7 Conclusions

We proposed a reinforcement learning approach based on
MCTS for AMA that, in contrast to existing analysis tech-
niques, requires no pre-specified model as input. Models in-
stead, are generated at runtime and can be compared to one
another by extracting a compatible vectorial representation
of the transition functions. We have been able to group mal-
ware in families using clustering techniques, basing on simi-
lar malware behaviors, highlighting the existence of possible
subfamilies within groups. Results show that our approach
learns faster than existing techniques even without any prior
information on the malware to analyze.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Auer et al., 2002] Peter Auer, Nicold Cesa-Bianchi, and
Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Mach. Learn., 47(2-3):235-256, May 2002.

[Browne e al., 2012] Cameron Browne, Edward J. Powley,
Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez
Liebana, Spyridon Samothrakis, and Simon Colton. A
survey of monte carlo tree search methods. IEEE Trans.
Comput. Intellig. and Al in Games, 4(1):1-43, 2012.

[Cuckoo Foundation, 2016] Cuckoo Foundation. Cuckoo
sandbox, 2016. https://cuckoosandbox.org.

[Gascon et al., 2013] Hugo Gascon, Fabian Yamaguchi,
Daniel Arp, and Konrad Rieck. Structural detection of
android malware using embedded call graphs. In Pro-
ceedings of the 2013 ACM Workshop on Artificial Intel-
ligence and Security, AlSec ’13, pages 45-54, New York,
NY, USA, 2013. ACM.

[Grinstead and Snell, 2003] Charles M. Grinstead and
J. Laurie Snell. Introduction to Probability. AMS, 2003.

[Kocsis and Szepesvari, 2006] Levente Kocsis and Csaba
Szepesvari. Bandit based monte-carlo planning. In Pro-
ceedings of the 17th European Conference on Machine
Learning, ECML’06, pages 282-293, Berlin, Heidelberg,
2006. Springer-Verlag.

[Lakhotia et al., 2013] Arun Lakhotia, Mila Dalla Preda, and
Roberto Giacobazzi. Fast location of similar code frag-
ments using semantic ’juice’. In Proceedings of the 2Nd
ACM SIGPLAN Program Protection and Reverse Engi-
neering Workshop, PPREW 13, pages 5:1-5:6, New York,
NY, USA, 2013. ACM.

[Meng er al., 2016] Guozhu Meng, Yinxing Xue, Zhengzi
Xu, Yang Liu, Jie Zhang, and Annamalai Narayanan. Se-
mantic modelling of android malware for effective mal-
ware comprehension, detection, and classification. In Pro-
ceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, pages 306-317, New
York, NY, USA, 2016. ACM.

[Moser et al., 2007] Andreas Moser, Christopher Kruegel,
and Engin Kirda. Exploring multiple execution paths for
malware analysis. In Proceedings of the 2007 IEEE Sym-
posium on Security and Privacy, SP °07, pages 231-245,
Washington, DC, USA, 2007. IEEE Computer Society.

[Neyman, 2003] Abraham Neyman. From Markov Chains
to Stochastic Games, pages 9-25. Springer Netherlands,
Dordrecht, 2003.

[Sartea er al., 2016] Riccardo Sartea, Mila Dalla Preda,
Alessandro Farinelli, Roberto Giacobazzi, and Isabella
Mastroeni. Active android malware analysis: An approach
based on stochastic games. In Proceedings of the 6th
Workshop on Software Security, Protection, and Reverse
Engineering, SSPREW 16, pages 5:1-5:10, New York,
NY, USA, 2016. ACM.

[Sharif et al., 2008] Monirul Sharif, Vinod Yegneswaran,
Hassen Saidi, Phillip Porras, and Wenke Lee. Eureka: A

3837

Framework for Enabling Static Malware Analysis, pages
481-500. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[Shin et al., 2011] Donghwi Shin, Kwangwoo Lee, and
Dongho Won. Malware Variant Detection and Classifica-
tion Using Control Flow Graph, pages 174—181. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Suarez-Tangil et al., 2014] Guillermo Suarez-Tangil,
Mauro Conti, Juan E. Tapiador, and Pedro Peris-Lopez.
Detecting Targeted Smartphone Malware with Behavior-
Triggering Stochastic Models, pages 183-201. Springer
International Publishing, Cham, 2014.

[Williamson et al., 2012] Simon A. Williamson, Pradeep
Varakantham, Ong Chen Hui, and Debin Gao. Active mal-
ware analysis using stochastic games. In Proceedings of
the 11th International Conference on Autonomous Agents
and Multiagent Systems - Volume 1, AAMAS 12, pages
29-36. International Foundation for Autonomous Agents
and Multiagent Systems, 2012.

[Xi’an Jiaotong University, 2011] Xi’an Jiaotong Univer-
sity. Androidmalshare, 2011. http://sanddroid.
xjtu.edu.cn:8080.

[Yang et al., 2014] Chao Yang, Zhaoyan Xu, Guofei Gu,
Vinod Yegneswaran, and Phillip Porras. DroidMiner:
Automated Mining and Characterization of Fine-grained
Malicious Behaviors in Android Applications, pages 163—
182. Springer International Publishing, Cham, 2014.

[Zhang er al., 2014] Mu Zhang, Yue Duan, Heng Yin, and
Zhiruo Zhao. Semantics-aware android malware classifi-
cation using weighted contextual api dependency graphs.
In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages
1105-1116, New York, NY, USA, 2014. ACM.

