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Abstract
Saliency detection is a long standing problem in
computer vision. Tremendous efforts have been
focused on exploring a universal saliency mod-
el across users despite their differences in gender,
race, age, etc. Yet recent psychology studies sug-
gest that saliency is highly specific than univer-
sal: individuals exhibit heterogeneous gaze patterns
when viewing an identical scene containing multi-
ple salient objects.
In this paper, we first show that such heterogene-
ity is common and critical for reliable saliency pre-
diction. Our study also produces the first database
of personalized saliency maps (PSMs). We mod-
el PSM based on universal saliency map (USM)
shared by different participants and adopt a multi-
task CNN framework to estimate the discrepancy
between PSM and USM. Comprehensive experi-
ments demonstrate that our new PSM model and
prediction scheme are effective and reliable.

1 Introduction
Saliency refers to a component (object, pixel, person) in a
scene that stands out relative to its neighbors and has been
considered key to human perception and cognition. Tradi-
tional saliency detection techniques attempt to extract the
most pertinent subset of the captured sensory data (RGB im-
ages or light fields) for predicting human visual attention.
Applications are numerous, ranging from compression [Itti,
2004] to image re-targeting [Setlur et al., 2005], and most re-
cently to virtual reality and augmented reality [Chang et al.,
2016].

By far, nearly all previous approaches have focused on ex-
ploring a universal saliency model, i.e., to predict potential
salient regions common to users while ignoring their differ-
ences in gender, race, age, personality, etc. Such universal
solutions are beneficial in the sense they are able to capture
all ”potential” saliency regions. Yet they are insufficient in
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Figure 1: An illustration of PSM dataset. Our dataset provides both
eye fixations of different subjects and semantic labels. Due to the
large amount of objects in our dataset, for each image, we didn’t ful-
ly segment it and only labelled objects that cover at least three gaze
points from each individual. A notable difference between PSM and
its predecessors is that each subjects looks 4 times on PSM data to
derive solid fixation ground truth maps. Both commonality and dis-
tinctiveness exist for PSMs viewed by different participant. This
motivates us to model PSM based on USM.

recognizing heterogeneity across individuals. Examples in
Fig. 1 illustrate that while multiple objects are deemed high-
ly salient within the same image (eg, human face (first row),
text (last tow rows) and object of (high color contrast), differ-
ent individuals have very different fixation preferences when
viewing the image. For the rest of the paper, we use term
universal saliency to describe salient regions that incur high
fixations across all subjects and term personalized saliency to
describe the heterogeneous ones.

Motivation. In fact, heterogeneity in saliency preference
has been widely recognized in psychology: ”Interestingness
is highly subjective and there are individuals who did not
consider any image interesting in some sequences” [Gygli et
al., 2013]. Therefore, once we know a person’s personal-
ized interestingness over each image (personalized saliency),
we shall design tailored algorithms to cater to him/her need-
s. For example, in the application of image retargeting, the
texts on the table in the fourth row in Fig. 1 should be pre-
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served for observer B and C when resizing the image whereas
such texts are less important for observer A. For applications
in VR/AR, one can design data compression algorithms that
personalized salient regions should be less compressed in or-
der to both improve the users’ experience and reduce the size
of data in transmission. In addition, we can embed character-
s/logo/advertisement at those personalized salient regions for
different individuals. Despite its importance, very little work
has been carried out on studying such heterogeneity, partially
due to the lack of suitable datasets and experiments. Further,
the problem is inherently challenging as saliency variation-
s across individuals are determined by multiple factors, e.g.,
gender, race, education, etc. , as well as the content of the
image such as the color, location, size and type of objects.

In this paper, we present the first dataset of personalized
saliency maps (PSMs) that consists of 1600 images viewed
by 20 human subjects. To improve reliability, we ensure that
each image is viewed by every subject for 4 times over about
one week interval. We use the ‘Eyegaze Edge’ eye tracker to
track gaze and produce a total of 32,000 (1, 600 × 20) fix-
ation maps. To correlate the acquired PSMs and the image
contents, we manually segment each image into a collection
of objects and semantically label them. Examples in Fig. 1 il-
lustrate how fixations vary across three human subjects. Our
annotated dataset provides fine-grained semantic analysis for
studying saliency variations across individuals. For example,
we observed that certain types of objects such as watches,
belts would introduce more incongruity (possibly due to gen-
der differences) whereas other types such as faces would lead
to more coherent fixation maps, as shown in Table 2.

We further present a computational model towards this per-
sonalized saliency detection problem. Notice that saliency
maps from different individual still share certain commonali-
ty via the USM. Hence, we model the PSM as a combination
of USM and a residual map which is related to the identity
and the image contents. We adopt a multi-task convolution-
al neural network (CNN) to identify the discrepancy between
PSM and USM for each person, as shown in Fig. 4.

The contributions of our paper are two-fold: i) To our
knowledge, it is the first work that specifically tackles the per-
sonalized saliency and we build the first dataset for personal-
ized saliency detection; ii) We present a USM based PSM
detection scheme and a multi-task CNN solution to estimate
the discrepancy between PSM and USM. Experimental re-
sults demonstrate the effectiveness of our framework.

2 Related Work
Tremendous efforts on saliency detection have been focused
on predicting universal saliency. For the scope of our work,
we only discuss the most relevant ones. We refer the readers
to [Borji et al., 2014] for a comprehensive study on existing
universal saliency detection schemes.

Universal Saliency Detection Benchmarks. There are a
few widely used saliency object detection and fixation pre-
diction datasets, in which each image is generally associated
with a single ground truth saliency map, averaged across the

fixation maps across the participates. To select images suit-
able for personalized saliency, we explore several popular eye
fixation datasets. The MIT dataset [Judd et al., 2009] con-
tains 1,003 images viewed by 15 subjects. In addition, the
PASCAL-S [Li et al., 2014] dataset provide the ground truth
for both eye fixation and object detection and consist of 850
images viewed by 8 subjects. The iSUN dataset [Xu et al.,
2015], a large scale dataset used for eye fixation prediction,
contains 20,608 images from the SUN database. The images
are completely annotated and are viewed by users. Finally,
the SALICON dataset [Huang et al., 2015] consists of 10,000
images with rich contextual information.

CNN Based Saliency Detection. It has been increasingly
popular to use deep networks for saliency detection. Huang
et al. [Huang et al., 2015] propose to fine-tune CNNs pre-
trained for object recognition via a new objective function
based on saliency evaluation metrics such as Normalized S-
canpath Saliency (NSS), Similarity, or KL-Divergence,etc.
Pan et al. [Pan et al., 2016] propose to use a shallow con-
vnet trained from scratch and fine-tune a deep convnet that
trained for image classification on the ILSVRC-12 dataset.
Liu et al. [Liu et al., 2015] propose a multi-resolution CNNs
that are trained from image regions centered on fixation and
non-fixation locations at multi-scales. Srinivas et al. present
a DeepFix [Kruthiventi et al., 2015] network by using Loca-
tion Biased Convolution filters to allow the network to exploit
location dependent patterns. Kruthiventi et al. [Kruthiven-
ti et al., 2016] propose a unified framework to predict eye
fixation and segment salient objects. All these approaches
have focused on the universal saliency model and we show
many merits of these techniques can also benefit personalized
saliency.

3 PSM Dataset
We start with constructing a dataset suitable for personalized
saliency analysis.

3.1 Data Collection
Clearly, the rule of thumb for preparing such a dataset is to
choose images that yield distinctive fixation map among d-
ifferent persons. To do so, we first analyze existing dataset-
s. A majority of existing eye fixation datasets provide the
one-time gaze tracking results of each individual human sub-
ject. Specifically, we can correlate the level of agreemen-
t across different observers with respect to the number of
object categories in the image. When an image contain-
s few objects, we observe that a subject tends to fix his/her
gaze at locations where objects that have specific seman-
tic meanings, e.g., faces, text, signs [Judd et al., 2009;
Xu et al., 2014]. These objects indeed attract more atten-
tion and hence are deemed more salient. However, when an
image consists of multiple objects all with strong saliency as
shown in Fig. 1, we observe a subject tends to diverge his/her
attention. In fact, the subject focuses attention on objects
that attract his/her most personally. We therefore deliberately
choose 1,600 images with multiple semantic annotations to
construct our dataset for PSM purpose. Among them, 1,100
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images are chosen from existing saliency detection dataset-
s including SALICON [Jiang et al., 2015], ImageNet [Rus-
sakovsky et al., 2015], iSUN [Xu et al., 2015], OSIE[Xu et
al., 2014], PASCAL-S [Li et al., 2014], 125 images are cap-
tured by ourselves, and 375 images are gathered from the In-
ternet.

3.2 Ground Truth Annotation
To gather the ground truth, we have recruited 20 student par-
ticipants (10 males, 10 females, aged between 20 and 24).
All participants have normal or corrected-to-normal vision.
In our setup, each observer sits about 40 inches in front of
a 24-inches LCD monitor of a 1920 × 1080 resolution. Al-
l images are resized to the same resolution. We conduct all
experiments in an empty and semi-dark room, with only one
standby assistant. An eye tracker (‘Eyegaze Edge’ eye track-
er) records their gazes as they view each image for 3 seconds.
We partition 1,600 images into 34 sessions each containing
40 to 55 images. Each session lasts about 3 minutes followed
by a half minute break. The eye tracker is re-calibrated at
the beginning of each session. To ensure the veracity of the
fixation map of each individual as well as to remove outliers,
we have each image be viewed by each observer 4 times. We
then combine the 4 saliency maps of the same image viewed
by the same person, and use the result as the ground truth
PSM of the observer. To obtain a continuous saliency map of
an image from the raw data of eye tracker, we follow [Judd
et al., 2009] by smoothing the fixation locations via Gaussian
blurs.

To further analyze the causes of saliency heterogeneity, we
conduct the semantic segmentation for all 1,600 images vi-
a the open annotation tool LabelMe [Russell et al., 2008].
Specifically, we annotate 26,100 objects of 242 classes in to-
tal and identify objects that attract more attention for each
individual participant. To achieve this, we compare the fixa-
tion map with the mask of a specific object and use the result
as the attention value of the corresponding object. We then
average the result over all images that containing the same
object, and use it to measure the interestingness of the object
to a specific participant. In Fig. 2, we illustrate some rep-
resentative objects and persons and show the distribution of
the interestingness of various objects for a same participan-
t. We observe that all participants exhibit a similar level of
interestingness measure on faces where they exhibit differen-
t interestingness measures on various objects such as watch,
bow tie, et al. This validates that it is necessary to choose
images with multiple objects to build our PSM data.

3.3 Dataset Analysis
Why is each image viewed multiple times for ground-
truth annotation? To validate whether it is necessity for
a subject to view each image multiple times, we randomly
sample 220 images, and each image is viewed by the same
participant 10 times. The time interval for the same person
to view the same image ranges from one day to one week
because we want to get the short term memory of the per-
son for the given image. We then calculate the differences of
these saliency maps in terms of the commonly used metrics
for saliency detection [Judd et al., 2012]: CC, Similarity. We

Person 1 Person 4 Person 6 Person 7 Person 8
men bow tie 0.068388 0.046459 0.035015 0.07911 0.025138
women bow tie 0.014818 0.019792 0.078912 0.109666 0.004215
men hand watch 0.034834 0.034573 0.057979 0.036348 0.027059
women hand watch 0.035535 0.04356 0.041277 0.033336 0.022686
men face 0.025989 0.044911 0.04291 0.03387 0.03736
women face 0.027088 0.040768 0.043192 0.037849 0.035902

Figure 2: The distribution of the interestingness of various objects
for a same participant. The value is calculated as follows: we sum
values of the fixation map intersecting with the mask of a specific
object, and divide it with the total of fixation maps over the whole
image. Thus higher value indicates that the participant puts more
attention on the object.
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Figure 3: The point with x = n measures the differences between
ground truth saliency maps generated by viewing the same image
n times and n+1 times. This figure shows that when n ≥4, the
ground truth saliency map generated by viewing the image n times
has little difference with that generated by observing the image n+1
times. Thus viewing each image 4 times is enough to get a robust
estimation of the PSM ground truth.

average these criteria for all persons and all images, and we
show the results in Fig. 3. We observe that the saliency map
obtained by viewing each image only once vs. multiple times
exhibit significant differences. Further, the saliency map av-
eraged over 4 or more times is closer to the long term result.

Heterogeneity among different datasets. To further illus-
trate that our proposed dataset is appropriate for personalized
saliency detection task, we compare the inter-subject con-
sistency, i.e., the agreement among different viewers, in our
PSM dataset and other related datasets. Specifically, for each
dataset, we first enumerate all possible subject-pairs, i.e., t-
wo different subjects, and then compute the average AUC s-
cores across all pairs. Recall that our PSM dataset consists
of images from different datasets, eg, MIT, OSIE, ImageNet,
PASCAL-S, SALICON, iSUN etc. , and only MIT, OSIE,
PASCAL-S are designed for saliency tasks∗. Hence, we only
compare the consistency scores among ours and above three
datasets, and we show the results in Table 1. We observe that
our dataset achieves the lowest inter-subject consistency val-
ues among all relative ones, indicating that the heterogeneity
in our saliency maps are more severe than the others.

∗Even though SALICON and iSUN are also saliency fixation
datasets, the ground truth were annotated based on mouse-tracking
and web camera respectively.
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AUC judd scores
Ours MIT OSIE PASCAL-S
79.11 89.34 88.47 88.10

Table 1: Inter-subject consistency of different datasets. To compute
the inter-subject consistency, we compute AUC judd for pair-wise
saliency maps viewed by different observers for each image, then
we average the results over all images. For fair comparison, the
AUC judd of our method reported here is based on the saliency maps
viewed by each observer once.

4 Approach
4.1 Problem Formulation
[Cornia et al., 2016][Pan et al., 2016] employed CNN in an
end-to-end strategy to predict saliency map and now serves
as the state-of-the-art. Intuitively, we can follow the same s-
trategy for PSM prediction, i.e. training a separate CNN for
each participant to map the RGB images to PSM. Howev-
er, such strategy is neither scalable nor feasible for a number
of reasons. Firstly, it needs a vast amount of training sam-
ples to learn a robust CNN for each participant. This requires
subjects to view thousands of images with high concentra-
tion, which is hard and extremely time consuming. Secondly,
training multiple CNNs for different subjects is computation-
ally expensive and inefficient.

While each participant is unique in terms of their gen-
der, race, age, personality, etc, resulting in their incongruity
in saliency preference, different participants still share com-
monalities in their observed saliency maps because certain
objects, such as faces and logos, always seem to attract the
attention of all participants as shown in Fig. 1.

For this reason, instead of predicting the PSM directly, we
set out to explore the difference map between USM and PSM.
The discrepancy map ∆(Pn, Ii) for the given image Ii (i =
1, . . . ,K) of the n-th participant Pn (n = 1, . . . , N ) is of the
form:

SPSM (Pn, Ii) = SUSM (Ii) + ∆(Pn, Ii) (1)

where, SPSM (Pn, Ii) is the desired personalized saliency
map and SUSM (Ii) is the universal saliency map.

Note that the USMs by traditional saliency method entail
the commonality in a saliency map observed by different par-
ticipants. We convert the problem of predicting PSMs to es-
timating the discrepancy ∆(Pn, Ii) and we show it is much
more efficient than directly estimating PSMs from RGB im-
ages as shown in . This is because that the universal saliency
map SUSM (Ii) itself already provides a rough estimation of
the PSM, and predicting the discrepancy ∆(Pn, Ii) is actually
easier than directly estimating the PSM from an RGB image.
In addition, if we take the discrepancy ∆(Pn, Ii) as an er-
ror correction function, the PSM prediction problem can be
therefore viewed as a regression task to correct the inaccurate
input (USM), which can be implemented in high performance
CNN scheme as shown in [Carreira et al., 2015]. Given Ii
and SUSM (Ii), we propose a Multi-task CNN network to es-
timate ∆(Pn, Ii).

4.2 Multi-task CNN

Since ∆(Pn, Ii) is subject-dependent and at the same time
dependant to the content of the input image, we construct a
Multi-task CNN network to tackle it. The inputs of network
are images with their corresponding universal saliency map
and our goal is to estimate the discrepancy maps ∆(Pn, Ii)
for n-th participants through n-th task. The network architec-
ture of our Multi-task CNN is illustrated in Fig. 4.

Suppose we have N participants in total. We concatenate a
160× 120 resolution RGB image with its USM from general
saliency models and generate a 160 × 120 × 4 cube as the
input of the multi-task network. For image Ii, ∆(Pn, Ii) is
the output of the n-th task corresponding to the discrepancy
between PSM and USM for the n-th person. There are four
convolutional layers shared by all participants after which the
network is then split into N tasks which is exclusive for N
participants. Each task has three convolutional layers fol-
lowed by an ReLU activation function.

[Cornia et al., 2016] and [Lee et al., 2014] show that
by adding the supervision in the middle layers, the features
learned by CNN will be more discriminative and can boost
the performance of an given task. Consequently, we set
an additional Loss Layer on conv5 and conv6 layer of the
n-th task to impose the middle layer supervision , which
can help the prediction of ∆(Pn, Ii). For the n-th task,
fn
` (SUSM (Ii), Ii) ∈ Rh`×w`×d`(` = 5, 6, 7) is the feature

map after the `-th convolutional layer (the first convolution-
al layer corresponds to the first exclusive convolutional layer,
so ` starts from 5). For each feature map fn

` (SUSM (Ii), Ii),
a 1 × 1 convolutional layer was employed to map it to
S`(SUSM (Ii), Ii) ∈ Rh`×w`×1, which is the target discrep-
ancy. To make S`(SUSM (Ii), Ii) close to ∆`(Pn, Ii), we set
the objective function as:

min
7∑

`=5

N∑
n=1

K∑
i=1

‖Sk(SUSM (Ii), Ii)−∆`(Pn, Ii)‖2F (2)

Then we use mini-batch based stochastic gradient descent to
optimize all parameters in our Multi-task CNN.

Remarks: Compared with techniques that use separate C-
NNs to predict ∆(Pn, Ii) for different participants, our Multi-
task CNN architecture has the two key advantages:

1. Previous approaches [Li et al., 2016] [Zhang et al.,
2014] have shown that features extracted by the first sever-
al layers can be shared between multiple tasks. In a similar
vein, we treat PSMs as some distinct but related regression
tasks across different individuals. Different from the multi-
task CNN for USM prediction [Li et al., 2016], our network
shares lots of parameters which reduces the number of param-
eters and the memory consumption. Therefore, we are able to
train these shared parameters using all training samples from
all participants.

2. Note that in our architecture, the first few layers are
shared and trained by all participants. In the deploymen-
t stage, given any unrecorded observer, our model only re-
quires training the last three layers. Thus such a multi-task
framework makes the problem scalable for open set settings.
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Figure 4: The pipeline of our Multi-task CNN based PSM prediction.

Methods CC Similarity AUC judd
RGB based MultiConvNets 62.24 65.27 77.83
RGB based Multi-task CNN 64.68 66.28 79.98

LDS [Fang et al., 2016] 65.73 63.34 82.96
LDS + MultiConvNets 70.71 75.65 83.69
LDS + Multi-task CNN 72.19 76.07 84.97

ML-Net [Cornia et al., 2016] 41.35 51.30 71.80
ML-Net + MultiConvNets 65.35 79.42 81.70
ML-Net + Multi-task CNN 67.53 80.17 83.45

BMS [Zhang and Sclaroff, 2013] 59.59 71.36 80.26
BMS + MultiConvNets 68.68 79.66 83.79
BMS + Multi-task CNN 70.33 80.41 85.03
SalNet [Pan et al., 2016] 72.66 74.18 84.67
SalNet + MultiConvNets 74.85 77.89 85.09
SalNet + Multi-task CNN 76.28 79.08 85.94

Table 2: The performance comparison of difference methods on our
PSM dataset.
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Figure 5: The effect of supervision on middle layers in our Multi-
task CNN.

5 Experiments
5.1 Experimental Setup
Parameters. We implement our solution on the CAFFE
framework [Jia et al., 2014]. We train our network with
the following hyper-parameters setting: mini-batch size
(40), learning rate (0.0003), momentum (0.9), weight decay
(0.0005), and number of iterations (40,000). In our experi-
ments, we randomly select 600 images ar training data, and
use the rest 1,000 images for testing. To avoid over-fitting
while improving model robustness, we augment the training
data through left-right flip operations.

The parameters corresponding to the universal saliency
map channel and 1 × 1 conv layers for middle layer supervi-
sion are initialized with ‘xavier’. Using the initialization step
in [Pan et al., 2016] and [Kruthiventi et al., 2016], we use the
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Figure 6: The effect of the number of training samples on the accu-
racy of PSM prediction.

well-trained DeepNet model to initialize the corresponding
parameters in our network. The network architecture of our
Multi-task CNN is identical to that of DeepNet [Pan et al.,
2016] except that i) the parameters corresponding to tasks of
different participants are different; ii) middle layer supervi-
sion is imposed by adding 1 × 1 conv layer after conv5 and
conv6; iii) a channel corresponding to USM is added in the
input.

Baselines. Based on the performance of existing methods
on the MIT saliency benchmark [Bylinskii et al., ] in terms of
similarity, we choose LDS [Fang et al., 2016], BMS [Zhang
and Sclaroff, 2013], ML-Net [Cornia et al., 2016], and Sal-
Net [Pan et al., 2016] to predict the universal saliency maps
on our dataset. The first two methods are based on hand-
crafted features, and the latter two are based on deep learning
techniques. We use their code provided online to generate
USMs.

To validate the effectiveness of our model, we have com-
pared our scheme with several baseline algorithms:

• RGB based MultiConvNets: MultiConvNets are
trained to predict ∆(Pn, Ii) for each participant inde-
pendently, with RGB images as input.
• RGB based Multi-task: Multi-task CNN architecture is

trained to predict ∆(Pn, Ii) for all participants simulta-
neously, with RGB images as input.
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Image  LDS  GT1 Ours1 GT2 Ours2

Figure 7: Some images, their ground truth PSM for different persons, and PSM predicted by our approach. The subscript indexes the ID of
the participant.

• X+MultiConvNets: MultiConvNets are trained to pre-
dict ∆(Pn, Ii) for each participant independently, with
RGB images and USM provided by method X as input,
where X donates LDS, BMS, ML-Net, and SalNet re-
spectively.

Notice that network architectures of the baseline ones are
similar. The major differences are the number of input chan-
nels and whether the parameters are shared in the first few
layers. For fair comparisons, we have employed the same
strategies on data augmentation, middle layers supervision,
and parameter initializations.

Measurements. We adopt the same evaluation metrics in
[Liu et al., 2015], [Pan et al., 2016] and [Kruthiventi et al.,
2016] and choose CC, Similarity, and AUC [Judd et al., 2012]
to measure the differences between the predicted saliency
map and ground truth.

5.2 Performance Evaluation
The performance of all methods are listed in Table 2. We also
show some predicted saliency maps for different participants
in Fig. 7. We observe that our solution achieves the best
performance in locating the incongruity fixation among in-
dividuals. Furthermore, the discrepancy based personalized
saliency detection methods consistently outperform directly
predicting PSM from RGB images. This validates the effec-
tiveness of our ”error correction” strategy for personalized
saliency detection. In addition, the multi-task CNN scheme
shows higher performance for fixation prediction for individ-
uals tasks than simply training a CNN for each individual.

The effect of supervision on middle layers Fig. 5 shows
the accuracy gain from imposing supervision on middle lay-
ers in our Multi-task CNN. We observe that middle layer su-

pervision is helpful for PSM prediction in line with previous
findings [Lee et al., 2014].

The effect of the number of training samples on the PSM
prediction accuracy. Fig. 6 shows that increasing the num-
ber of training samples from 200 to 600 (the testing data are
fixed) helps to improve the testing accuracy. However, train-
ing a more robust deep network requires large-scale training
samples which would increase the time complexity tremen-
dously.

6 Conclusion and Future Work
Our work demonstrates that heterogeneity in saliency maps
cross individuals is common and critical for reliable saliency
prediction, consistent with recent psychology studies show-
ing that saliency is highly specific than universal. We have
built the first PSM dataset and presented a framework to mod-
el such heterogeneity in terms of the discrepancy between
PSM and USM. We have further presented a Multi-task C-
NN framework for the prediction of this discrepancy. To our
knowledge, this is the first comprehensive study on personal-
ized saliency and it is expected to stimulate significant future
research.

In our data collection process, each participant needs to
observe thousands of images on a single eye-tracker device,
which is a bottleneck to increase both the number of images
and participants. Clearly additional eye trackers will great-
ly improve the PSM collection process and can help build an
even bigger dataset. Further, a key finding in our study is
that personalized saliency is closely related to the observers’
personal information (gender, race, major, etc. ). If we ob-
tain such information in prior, we can directly incorporate it
into the PSM prediction to further improve the accuracy and
efficiency.
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