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Abstract
Although influence maximization problem has
been extensively studied over the past ten years,
majority of existing work adopt one of the follow-
ing models: full-feedback model or zero-feedback
model. In the zero-feedback model, we have to
commit the seed users all at once in advance, this s-
trategy is also known as non-adaptive policy. In the
full-feedback model, we select one seed at a time
and wait until the diffusion completes, before se-
lecting the next seed. Full-feedback model has bet-
ter performance but potentially huge delay, zero-
feedback model has zero delay but poorer perfor-
mance since it does not utilize the observation that
may be made during the seeding process. To fil-
l the gap between these two models, we propose
partial-feedback model, which allows us to select a
seed at any intermediate stage. We develop a novel
α-greedy policy that achieves a bounded approxi-
mation ratio.

1 Introduction
Since the seminal work of [Domingos and Richardson, 2001],
the influence maximization problem has attracted tremendous
attention in recent years. This problem is first formalized
and studied by [Kempe et al., 2003] as a discrete optimiza-
tion problem. They study this problem under several diffu-
sion models including independent cascade model and linear
threshold model. They demonstrate that the influence maxi-
mization problem under both models are NP-hard, however,
the objective function is monotone and submodular. Due to
these nice properties, they propose an elegant greedy algo-
rithm with constant approximation ratio. Since then, con-
siderable work [Chen et al., 2013; Leskovec et al., 2007;
Cohen et al., 2014; Chen et al., 2010; 2009; Tang et al., 2011;
Tang and Yuan, 2016; Tong et al., 2016; Yuan and Tang,
2017] has been devoted to this topic and its variants.

However, majority of existing work fall into one of the fol-
lowing categories: full-feedback model [Golovin and Krause,
2011] or zero-feedback model [Kempe et al., 2003]. In the
zero-feedback model, we have to commit the seed users all at
once in advance, this strategy is also known as non-adaptive
policy. In the full-feedback model, we select one seed at a

time and wait until the diffusion completes, before selecting
the next seed, this policy is also known as adaptive policy.
Adaptive policy has better performance in terms of expected
cascade because of its adaptivity, e.g, it allows us to adap-
tively choose the next seed after observing the actual spread
resulting from previously selected seeds. However, the viral
marketing in reality is often time-critical, implying that it is
impractical, sometimes impossible, to collect the full status
of the actual spread before selecting the next seed.

To fill this gap, we propose a generalized feedback mod-
el, called partial-feedback model, that captures the tradeoff
between performance and delay. We adopt independent cas-
cade model (IC) [Kempe et al., 2003], which is one of the
most commonly used models, to model the diffusion dynam-
ics in a social network. Unfortunately, we show that the ob-
jective under partial-feedback model and IC is not adaptive
submodular, implying that existing results on adaptive sub-
modular maximization does not apply to our model direct-
ly. To overcome this challenge, we develop a novel α-greedy
policy, that, for the first time, achieves bounded approxima-
tion ratio under partial-feedback model. One nice feature of
α-greedy policy is that we can balance the delay/performance
tradeoff by adjusting the value of α. In particular, larger (re-
sp. smaller) α implies better (resp. poorer) performance and
longer (resp. shorter) delay.

2 Related Work
In [Domingos and Richardson, 2001], they show that data
mining can be used to determine potential seed users in viral
market. Since then, there is a rich body of works that has been
devoted to viral marketing problem. Most of existing works
on this topic can be classified into two categories. The first
category is non-adaptive influence maximization: we must
find a set of influential customers all at once in advance sub-
ject to a budget constraint. Kempe et al. [Kempe et al., 2003]
first formalized and studied this problem under two diffu-
sion models, namely Independent Cascade model and Linear
Threshold model. [Chen et al., 2013; Leskovec et al., 2007;
Cohen et al., 2014; Chen et al., 2010; 2009] study influence
maximization problem under various extended models. The
second category is adaptive influence maximization, which is
closely related to adaptive/stochastic submodular maximiza-
tion [Golovin and Krause, 2011; Badanidiyuru et al., 2016;
Tong et al., 2016; Yuan and Tang, 2017]. Existing studies
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mainly adopt full-feedback model, assuming that we can ob-
serve the full status of the previous cascade before selecting
the next seed. We relax this assumption by incorporating
partial-feedback and develop a novel α-greedy adaptive poli-
cy that achieves the first bounded approximation ratio.

3 Network Model and Diffusion Process
3.1 Independent Cascade Model
A social network is modeled as a directed graph G = (V,E),
where V is a set of n nodes and E is a set of social ties.
We adopt independent cascade model [Kempe et al., 2003] to
model the diffusion dynamics in a social network. Each node
v ∈ V is associated with a cost cv , each edge (u, v) in the
graph is associated with a propagation probability puv , which
is the probability that node u independently influences node v
in the next slot after u is influenced. The expected cascade of
U , which is the expected number of influenced nodes given
seed set U , is denoted as I(U).

3.2 The Feedback Model
Based on independent cascade model, we next introduce the
concept of full diffusion realization [Golovin and Krause,
2011].
Definition 1 (Full Diffusion Realization) For every edge
(u, v) ∈ E, it is either in “live” state or in “blocked” s-
tate (describing whether the propagation through (u, v) is a
success or not). We represent the state of the diffusion stage
using function ψF : E → [0, 1], called diffusion realization.

Majority of existing work adopt one of the following feed-
back models: zero-feedback model or full-feedback model.

Zero-feedback Model: During the seeding process, we can
not observe anything about the resulting spread of adoption.
Since there is no benefit in “waiting”, we can simply commit
the seeds all at once in advance. This model is equivalent to
traditional non-adaptive model which has been well studied
in the literature [Kempe et al., 2003].

Full-feedback Model: We select one seed at a time and
wait until the diffusion completes, before selecting the next
seed, this policy is also known as adaptive policy. In partic-
ular, after selecting a seed u, we can observe the status of all
edges existing v, where v is any node that is reachable from
u via live edges in ψF . For this model, [Golovin and Krause,
2011] introduced the concept of adaptive submodularity and
proposed a Greedy algorithm has a (1 − 1/e) approximation
guarantee.

As discussed in Section 1, full-feedback (resp. zero-
feedback) model has better (resp. poorer) performance but
potentially huge (resp. small) delay. To fill the gap between
these two models, we propose partial-feedback model, which
generalizes the previous two models by allowing us to selec-
t the next seed at any intermediate stage. In particular, we
restrict our attention to the following model:
Definition 2 (Partial-feedback Model) Consider any seed
u, after u has been activated for d slots, we can observe the s-
tatus of all edges existing v, where v is any node that is reach-
able from u within d − 1 hops via live edges. Then based on
the partial feedback collected so far, we can choose to stop
observing at any slot and proceeds to selecting the next seed.

4 Problem Formulation
Under the partial-feedback model, we perform the decision
process in a sequential manner where the decision made in
each round is depending on the current observation of the
network diffusion and the remaining budget. Consider any
seed u which has been activated for d slots, we are able to
observe the status (live or dead) of all edges exiting v, for all
nodes v reachable from u within d − 1 hops via live edges
under ψF . The union of such observations from all previous-
ly activated seeds can be represented by a partial realization
ψ ⊆ ψF . We define our adaptive policy π : ψ → v, which is
a function from the current “observation” ψ to v, determining
which seed to pick next given ψ.

Assume there is a known prior probability distribution
p(ψF ) := P [Ψ = ψF ] over diffusion realizations. Given
a realization ψF , let SψF denote all seeds picked by π under
ψF , and c(SψF ) =

∑
v∈SψF

cv denote the total cost of SψF .
The expected cascade of a policy π is

f(π) = E[I(SψF |Ψ)] =
∑

p(ψF ) · I(SψF |ψF )

where I(SψF |ψF ) denotes the cascade of SψF under realiza-
tion ψF , e.g., all nodes that are reachable from SψF under
ψF . The goal of the adaptive influence maximization prob-
lem is to find a policy π such that

Maximize f(π)
subject to:

c(SψF ) ≤ B, ∀ψ
F

We first show that the objective is not adaptive submod-
ular under partial feedback model. The concept of adaptive
submodularity is a generalization of submodularity to adap-
tive policies: we say a function f is adaptive submodular if
adding an element e to a realization ψ increases f at least
as much as adding e to a superset of ψ. Since the Myopic
Feedback model proposed in [Golovin and Krause, 2011] is
a special case of our partial-feedback model, we borrow the
same counter example from their work to prove the following
lemma.

Theorem 1 [Golovin and Krause, 2011] The objective f un-
der partial-feedback model is not adaptive submodular.

5 Adaptive Influence Maximization with
Partial Feedback

First of all, we want to emphasize the difference between
“round” and “slot”. One round corresponds to one execu-
tion of our algorithm, while one slot corresponds to one step
of information propagation.

5.1 α-Greedy Policy under Uniform Cost
We first study the case with uniform cost, e.g., ∀v ∈ V : cv =
1. Since each node has the same cost, the budget constraint
is reduced to cardinality constraint, e.g., the number of seeds
that can selected is upper bounded by B. We next propose an
adaptive greedy policy with bounded approximation ratio.
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Policy Description
Our greedy policy πu (Algorithm 1) is performed in a sequen-
tial greedy manner as follows: After observing the partial dif-
fusion realization, we choose to either wait one slot or select
the next seed that maximizes the expected marginal benefit.
This process iterates until the budget is used up.

Suppose we have made observations ψ[r] at round r,
let pv(S;ψ[r]) denote the activation probability of v giv-
en seeds S and observation ψ[r], and let f(S;ψ[r]) =∑
v∈V pv(S;ψ[r]) denote the expected cascade under the

same setting. Define O[r] as the set of nodes whose activa-
tion probability is zero at round r. Except for the first round,
we wait until the following condition is satisfied, before se-
lecting the next seed:

f(S;ψ[r])

|V \O[r]|
≥ α (1)

where α ∈ [0, 1] is a control parameter and | · | is the size of a
set. This condition can be interpreted as follows: the average
activation probability of all nodes with non-zero activation
probability is sufficiently high. Note that this condition can
always be satisfied in at mostD slots, whereD is the diameter
of the social network. We use α to control the tradeoff of
delay and performance. In particular, a larger α indicates
longer delay but better performance. For example, if we set
α = 1, our model becomes full-feedback model, that is, we
must wait until every node is either in active state or non-
active state, before selecting the next seed. On the other hand,
if we setα = 0, our model is reduced to zero-feedback model,
implying that we can select all seeds in advance.

We use ∆(v;ψ[r]) = f({v}∪S;ψ[r])−f(S;ψ[r]) to denote
the expected marginal benefit of v given existing seeds S and
partial realization ψ[r]. It was worth noting that we may select
multiple seeds in one slot as long as Condition (1) holds, thus
one slot may contain multiple rounds.

Algorithm 1 α-Greedy Policy: πu

Input: 0 ≤ α ≤ 1.
Output: S .

1: S = ∅; r = 0;
2: select v = arg maxu∈V \S ∆(u;ψ[r]);
3: S ← S ∪ {v}; B ← B − 1;
4: while B ≥ 0 do
5: r ← r + 1;
6: if f(S;ψ[r])

|V \O[r]|
≥ α then

7: select v = arg maxu∈V \S ∆(u;ψ[r]);
8: S ← S ∪ {v}; B ← B − 1;
9: else

10: wait one slot; update ψ[r];
11: return S

Performance Analysis
Let πu

[r] denote the level-r-truncation of πu obtained by run-
ning until it terminates or until round r. In the rest of this
paper, we assume that the i-th seed is selected at round ri.
For brevity, we will assume without loss of generality that

O = O[ri]. Let fO(S;ψ[ri]) =
∑
v∈O pv(S;ψ[ri]) denote the

expected cascade in O given seeds S and observation ψ[ri].
We use π∗ to denote the optimal adaptive policy. In the rest
of this paper, let f(π;ψ) (resp. fO(π;ψ)) denote the expect-
ed cascade of π in V (resp. in O) under realization ψ. In
order to prove the main theorem (Theorem 2), we first prove
two preparatory lemmas (Lemma 1 and Lemma 2).

Lemma 1 For any 1 ≤ i ≤ B and 0 < α ≤ 1, we have

f(π∗;ψ[ri])−f(πu
[ri]

;ψ[ri])/α ≤ f
O(π∗;ψ[ri])−f

O(πu
[ri]

;ψ[ri])

Proof: First, we have f(π∗;ψ[ri]) − f(πu
[ri]

;ψ[ri])/α =

(fO(π∗;ψ[ri]) − fO(πu
[ri]

;ψ[ri])/α) + (fV \O(π∗;ψ[ri]) −
fV \O(πu

[ri]
;ψ[ri])/α) ≤ (fO(π∗;ψ[ri])− fO(πu

[ri]
;ψ[ri])) +

(fV \O(π∗;ψ[ri]) − fV \O(πu
[ri]

;ψ[ri])/α). According to
Algorithm 1, we wait until the following condition
is satisfied

∑
v∈V pv(S;ψ[r])

|V \O| =
∑
v∈V \O pv(S;ψ[r])

|V \O| ≥
α, before selecting the i-th seed. It follows that
fV \O(πu

[ri]
;ψ[ri]) =

∑
v∈V \O pv(S;ψ[ri]) ≥ α|V \

O|, thus fV \O(π∗;ψ[ri]) − fV \O(πu
[ri]

;ψ[ri])/α ≤ 0.
Then f(π∗;ψ[ri]) − f(πu

[ri]
;ψ[ri])/α ≤ fO(π∗;ψ[ri]) −

fO(πu
[ri]

;ψ[ri]). �

Lemma 2 For any round ri, we have f(πu
[ri+1];ψ[ri]) −

f(πu
[ri]

;ψ[ri]) ≥ 1
B

(
fO(π∗;ψ[ri])− fO(πu

[ri]
;ψ[ri])

)
.

Proof: Assume ψ′ and ψ are two partial realizations satis-
fying ψ′ ⊇ ψ, let S ′ and S denote the seeds selected under
ψ′ and ψ, satisfying S ′ ⊇ S . Since the activation proba-
bility of v is zero, then based on similar proof of Theorem
8.1 in [Golovin and Krause, 2011], we can prove the fol-
lowing ∀v ∈ O, ∀z ∈ V : pv(S ∪ {z};ψ) − pv(S;ψ) ≥
pv(S ′ ∪ {z};ψ′)− pv(S ′;ψ′).

Notice that fO(S;ψ) =
∑
v∈O pv(S;ψ), it follows that

fO(S∪{z};ψ)−fO(S;ψ) ≥ fO(S ′∪{z};ψ′)−fO(S ′;ψ′)
(2)

Eq. (2) implies that function fO(·) is submodular. Let
arg maxz∈V [fO(S ∪ {z};ψ[ri]) − fO(S;ψ[ri])] de-
note the largest marginal gain from O at round ri.
Since πu selects the node that maximizes the en-
tire marginal gain f(πu

[ri]
;ψ[ri]) − f(πu

[ri+1];ψ[ri]),
thus we have f(πu

[ri+1];ψ[ri]) − f(πu
[ri]

;ψ[ri]) ≥
arg maxz∈V [fO(S ∪ {z};ψ[ri]) − fO(S;ψ[ri])] ≥
1
B

(
fO(π∗;ψ[ri])− fO(πu

[ri]
;ψ[ri])

)
. Based on Eq.

(2), the second inequality follows the standard analysis of
submodular maximization. �

Now we are ready to prove the performance bound of πu.

Theorem 2 The expected cascade of πu is bounded by
f(πu) ≥ α(1− e− 1

α )f(π∗).

Proof: Let ∆i = f(π∗) − f(πu
[ri]

)/α, we have α(∆i −
∆i+1) = f(πu

[ri+1]) − f(πu
[ri]

) = E[f(πu
[ri+1];ψ[ri]) −

f(πu
[ri]

;ψ[ri])] ≥ E[ 1
B

(
fO(π∗;ψ[ri])− fO(πu

[ri]
;ψ[ri])

)
] ≥
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E[ 1
B (f(π∗;ψ[ri]) − f(πu

[ri]
;ψ[ri])/α)] = 1

B∆i. The first in-
equality is due to Lemma 2, and the second inequality is
due to Lemma 1. It follows that ∆i+1 ≤ (1 − 1

αB )∆i.
Hence ∆B ≤ (1 − 1

αB )B∆0 ≤ e−
1
α∆0. It follows that

f(π∗) − f(πu
[rB ])/α ≤ e−

1
α∆0 = e−

1
α f(π∗). Hence

f(πu) = f(πu
[rB ]) ≥ α(1− e− 1

α )f(π∗). �
As a corollary of Theorem 2, we can prove that the approx-

imation ratio of our greedy policy under full-feedback setting
is (1− e−1).

Corollary 3 Under full-feedback model, i.e., α = 1, we have
f(πu) ≥ (1− e−1)f(π∗).

Another interesting finding is that for sufficiently small α,
Condition (1) is always true regardless of the observation ψ.
Our policy under this setting becomes non-adaptive, imply-
ing that we can select all B seeds in advance without observ-
ing any partial realization. It is also worth noting that select
the seed at a later slot never worsens the result.

Implications of our results. One immediate implication
of Theorem 2 is that given a desired approximation ratio, we
can decide an appropriate slot to select the next seed. Another
implication is that given any level of partial feedback, which
can be quantified using α, we can evaluate the performance of
the greedy selection strategy in terms of approximation ratio.

5.2 α-Greedy Policy under Non-Uniform Cost
Policy Description
We next study the case with non-uniform cost. The pre-
vious adaptive policy can be naturally modified to handle
non-uniform item costs by replacing its selection rule by:
v = arg maxu∈V \S

∆(u;ψ[r])

cu
. The detailed description of

our greedy policy with non-uniform cost, called πnu, is listed
in Algorithm 2.

Algorithm 2 α-Greedy Policy with non-uniform cost: πnu

Input: 0 ≤ α ≤ 1.
Output: S .

1: S = ∅; r = 0;
2: select v = arg maxu∈V \S

∆(u;ψ[r])

cu
;

3: S ← S ∪ {v}; B ← B − cv;
4: while B ≥ 0 do
5: r ← r + 1;
6: if f(S;ψ[r])

|V \O[r]|
≥ α then

7: select v = arg maxu∈V \S
∆(u;ψ[r])

cu
;

8: if B − cv < 0 then
9: break;

10: else
11: S ← S ∪ {v}; B ← B − cv;
12: else
13: wait one slot; update ψ[r];
14: return S

Performance Analysis
We first provide the following two preparatory lemmas. Their
proofs are similar to the proofs of Lemma 1 and Lemma 2.

Lemma 3 Assume πnu terminates with l seeds, for any
1 ≤ i ≤ l, we have f(π∗;ψ[ri]) − f(πnu

[ri]
;ψ[ri])/α ≤

fO(π∗;ψ[ri])− fO(πnu
[ri]

;ψ[ri]).

Lemma 4 Let ci+1 denote the cost of the (i + 1)-th seed s-
elected by πnu, we have f(πnu

[ri+1];ψ[ri]) − f(πnu
[ri]

;ψ[ri]) ≥
ci+1

B

(
fO(π∗;ψ[ri])− fO(πnu

[ri]
;ψ[ri])

)
.

Theorem 4 Let c = maxv∈V cv , the expected cascade of πnu

is bounded by f(πnu) ≥ α(1− e− 1
α
B−c
B )f(π∗).

Proof: Let ∆i = f(π∗) − f(πnu
[ri]

)/α, we
have α(∆i − ∆i+1) = f(πnu

[ri+1]) − f(πnu
[ri]

) ≥

E[ ci+1

B

(
fO(π∗;ψ[ri])− fO(πnu

[ri]
;ψ[ri])

)
] ≥

E[ ci+1

B (f(π∗;ψ[ri])− f(π[ri];ψ
nu
[ri]

)/α)] = ci+1

B ∆i. The first
inequality is due to Lemma 4 and the second inequality is due
to Lemma 3. It follows that ∆i+1 ≤ (1 − ci+1

αB )∆i. Hence,
assume πnu terminates with selecting l seeds under budget

B, we have ∆l ≤ [
∏l
i=1(1 − ci

αB )]∆0 ≤ e−
1
α

∑l
i=1 ci
B ∆0

where for the second inequality we have used the fact that
1− x < e−x for all x > 0. Hence

f(πnu
[rl]

) ≥ α(1− e− 1
α

∑l
i=1 ci
B )f(π∗) (3)

Since our policy runs until the budget has been exhausted,
we have

∑l
i=1 ci ≥ B − c. It follows that f(πnu

[rl]
) ≥ α(1 −

e−
1
α
B−c
B )f(π∗). �

Based on πnu, we next provide an enhanced greedy pol-
icy πenhanced with constant approximation ratio. πenhanced

(Algorithm 3) randomly picks one from the following two
candidate solutions with equal probability: The first candi-
date solution contains a single node v∗ which can maximize
the expected cascade: v∗ = arg maxv∈V I({v}); the second
candidate solution is computed by the greedy policy πnu.

Algorithm 3 Enhanced Greedy Policy πenhanced

1: Randomly pick one from the following two strategies
with equal probability: return {v∗} or run πnu;

Theorem 5 The expected cascade of πenhanced is bounded

by f(πenhanced) ≥ α(1−e−
1
α )

2 f(π∗).
Proof: Assume πnu terminates after selecting l seeds, let
cl+1 denote the cost of the first node that can not be selected
due to the budget constraint, we have f(πnu) + I({v∗}) ≥

α(1− e− 1
α

∑l+1
i=1

ci
B )f(π∗) ≥ α(1 − e− 1

α )f(π∗). The first in-
equality is due to the adaptive submodularity of I(·) and Eq.
(4), and the second inequality is because

∑l+1
i=1 ci ≥ B. Then

f(πenhanced) = (f(πnu) + I({v∗}))/2 ≥ α(1−e−
1
α )

2 f(π∗).
�
As a corollary of Theorem 5, we can prove that the ap-

proximation ratio of πenhanced under full-feedback and non-
uniform cost setting is (1− e−1)/2.
Corollary 6 Under full-feedback model, i.e., α = 1, we have
f(πenhanced) ≥ (1−e−1)

2 f(π∗).
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6 Incorporating Inaccurate Estimation
So far we suppose that the following two assumptions hold:
1. We can find arg maxu∈V \S ∆O[r]

(u;ψ[r]) in polynomial
time. 2. We can verify Condition (1) in each round in poly-
nomial time. However, since computing the exact value of
f(S;ψ) is #P-hard [Chen et al., 2010], the above assump-
tions may not always hold trivially. Fortunately, an approxi-
mate estimation of f(S;ψ) can be computed through Reverse
Influence Sampling [Tang et al., 2015]. This motivates us to
investigate the performance of α-Greedy Policy under inac-
curate estimation of f(S;ψ). We first introduce the definition
of ε-approximate estimation.

Definition 3 [ε-approximate Estimation] Denote by f̃(S|ψ)
(resp. f(S;ψ)) the estimated (resp. actual) influence given S
and ψ. Under ε-approximate estimation, we have for any ψ
and S: f̃(S|ψ) ∈ [(1− ε)f(S;ψ), (1 + ε)f(S;ψ)].

Uniform Cost. We first provide an approximate version of
Lemma 1 and Lemma 2.

Lemma 5 Consider πu under ε-approximate estimation, for
any 1 ≤ i ≤ B, we have f(π∗;ψ[ri]) − f(πu

[ri]
;ψ[ri])(1 +

ε)/α ≤ fO(π∗;ψ[ri])− fO(πu
[ri]

;ψ[ri]).

Proof: Notice that at round ri when the i-th seed has been

selected, we have
f̃(S;ψ[ri]

)

|V \O| ≥ α. Since f̃(S;ψ[ri]) ∈

[(1− ε)f(S;ψ[ri]), (1 + ε)f(S;ψ[ri])], we have
f(S;ψ[ri]

)

|V \O| ≥
α/(1+ε). It follows that f(π∗;ψ[ri])−f(πu

[ri]
;ψ[ri])/

α
1+ε ≤

0. Then f(π∗;ψ[ri])− f(πu
[ri]

;ψ[ri])/
α

1+ε ≤ f
O(π∗;ψ[ri])−

fO(πu
[ri]

;ψ[ri]). �

Lemma 6 Consider πu under ε-approximate esti-
mation, we have f(πu

[ri+1];ψ[ri]) − f(πu
[ri]

;ψ[ri]) ≥
1−ε

(1+ε)B

(
fO(π∗;ψ[ri])− fO(πu

[ri]
;ψ[ri])

)
− 2ε

1+εn.

Proof: We first prove that in any round r under
ε-approximate estimation, we can find a node v :
∆O[r]

(v|ψ[r]) ≥ 1−ε
1+ε∆O[r]

(u∗|ψ[r]) − 2ε
1+εn where u∗ =

arg maxu∈V ∆O[r]
(u|ψ[r]). Let ∆̃O[r]

(v|ψ[r]) denote the
estimated marginal benefit of v, based on Definition
3, we have f̃(πu

[r];ψ[r]) + ∆̃O[r]
(v|ψ[r]) ≤ (1 +

ε)(f(πu
[r];ψ[r]) + ∆O[r]

(v|ψ[r])) and (1 − ε)(f(πu
[r];ψ[r]) +

∆O[r]
(u∗|ψ[r])) ≤ f̃(πu

[r];ψ[r]) + ∆̃O[r]
(u∗|ψ[r]). Togeth-

er with ∆̃O[r]
(v|ψ[r])) ≥ ∆̃O[r]

(u∗|ψ[r])) (due to greedy s-
election), we have ∆O[r]

(v|ψ[r]) ≥ 1−ε
1+ε∆O[r]

(u∗|ψ[r]) −
2ε

1+εf(πu
[r];ψ[r]) ≥ 1−ε

1+ε∆O[r]
(u∗|ψ[r])− 2ε

1+εn where the sec-
ond inequality is due to f(πu

[r];ψ[r]) ≤ n.
Then based on similar proof of Lemma 2,

we have f(πu
[ri+1];ψ[ri]) − f(πu

[ri]
;ψ[ri]) ≥

1−ε
1+ε

1
B

(
fO(π∗;ψ[ri])− fO(πu

[ri]
;ψ[ri])

)
− 2ε

1+εn. �

Theorem 7 The expected cascade of πu under ε-
approximate estimation is bounded by

f(πu) ≥ α
1+ε (1− e

− 1−ε
α )f(π∗)− 2ε

1+εn.

Proof: Let ∆i = f(π∗) − f(πu
[ri]

)/ α
1+ε , we

have α
1+ε (∆i − ∆i+1) = f(πu

[ri+1]) − f(πu
[ri]

) ≥

E[ 1−ε
1+ε

1
B

(
fO(π∗;ψ[ri])− fO(πu

[ri]
;ψ[ri])

)
− 2ε

1+εn] ≥
E[ 1−ε

1+ε
1
B (f(π∗;ψ[ri]) − f(πu

[ri]
;ψ[ri])/

α
1+ε ) −

2ε
1+εn] =

1−ε
1+ε

1
B∆i − 2ε

1+εn. The first inequality is due to Lem-
ma 6 and the second inequality is due to Lemma 5.
It follows that ∆i+1 ≤

(
1− 1−ε

1+ε
1
B

1+ε
α

)
∆i + 2ε

α n.

Hence ∆B ≤
(

1− 1−ε
1+ε

1
B

1+ε
α

)B
∆0 + 2ε

α nB ≤

e−
1−ε
1+ε

1+ε
α ∆0+ 2ε

α nB. It follows that f(π∗)−f(πu
[rB ])/

α
1+ε ≤

e−
1−ε
1+ε

1+ε
α f(π∗) + 2ε

α nB. Hence f(πu) = f(πu
[rB ]) ≥

α
1+ε (1− e

− 1−ε
α )f(π∗)− 2ε

1+εn. �
Non-Uniform Cost. We next provide the approximation

ratio of πenhanced under ε-approximate estimation for the case
with non-uniform cost. Without loss of generality, we assume
∀v ∈ V : cv ≥ 1.

Lemma 7 Consider πnu under ε-approximate estimation, for
any 1 ≤ i ≤ B, we have f(π∗;ψ[ri]) − f(πnu

[ri]
;ψ[ri])(1 +

ε)/α ≤ fO(π∗;ψ[ri])− fO(πnu
[ri]

;ψ[ri]).

The scheme of the proof is the same as in Lemma 5.

Lemma 8 Let ci+1 denote the cost of the (i + 1)-th
seed selected by πnu under ε-approximate estima-
tion, we have f(πnu

[ri+1];ψ[ri]) − f(πnu
[ri]

;ψ[ri]) ≥
1−ε
1+ε

ci+1

B

(
fO(π∗;ψ[ri])− fO(πnu

[ri]
;ψ[ri])

)
− 2ε

1+ε (
ci+1

c +1)n

where c = minv∈V cv .

Proof: Let u∗ = arg maxu∈V
∆(u;ψ[r])

cu
. We

first prove that at each round r, we can find
a v such that ∆(v;ψ[r])

cv
≥ 1−ε

1+ε

∆(u∗;ψ[r])

cu∗
−

2ε
1+ε (

1
c + 1

cv
)n. Based on Definition 3, we have

f̃(πu
[r];ψ[r])+∆̃O[r]

(v|ψ[r])

cv
≤

(1+ε)(f(πu
[r];ψ[r])+∆O[r]

(v|ψ[r]))

cv

and
(1−ε)(f(πu

[r];ψ[r])+∆O[r]
(u∗|ψ[r]))

cu∗
≤

f̃(πu
[r];ψ[r])+∆̃O[r]

(u∗|ψ[r])

cu∗
. Because

∆̃O[r]
(v|ψ[r])

cv
≥

∆̃O[r]
(u∗|ψ[r])

cu∗
(due to greedy selection), we have

∆(v;ψ[r])

cv
≥ 1−ε

1+ε

∆(u∗;ψ[r])

cu∗
− 2ε

1+ε (
1
cu∗

+ 1
cv

)f(πu
[r];ψ[r]) ≥

1−ε
1+ε

∆(u∗;ψ[r])

cu∗
− 2ε

1+ε (
1
c + 1

cv
)n where the second inequality

is due to cu∗ ≥ c.
Thus, due to similar proof of Lemma

2, we have
f(πnu

[ri+1];ψ[ri]
)−f(πnu

[ri]
;ψ[ri]

)

ci+1
≥

1−ε
1+ε

1
B

(
fO(π∗;ψ[ri])− fO(πnu

[ri]
;ψ[ri])

)
− 2ε

1+ε (
1
c + 1

ci+1
)n.

�

Theorem 8 The expected cascade of πnu under ε-
approximate estimation is bounded by

f(πnu) ≥ α
1+ε (1− e

− 1−ε
α

B−c
B )f(π∗)− 2ε

1+ε (
1
c + 1)nB.
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Figure 1: Influence spread vs. α on NetHEPT dataset under varying budget constraint.

Proof: Let ∆i = f(π∗) − f(πnu
[ri]

)/ α
1+ε , we

have α
1+ε (∆i − ∆i+1) = f(πnu

[ri+1]) − f(πnu
[ri]

) ≥

E[ 1−ε
1+ε

ci+1

B

(
fO(π∗;ψ[ri])− fO(πnu

[ri]
;ψ[ri])

)
− 2ε

1+ε (
ci+1

c +

1)n] ≥ E[ 1−ε
1+ε

ci+1

B (f(π∗;ψ[ri]) − f(π[ri];ψ[ri])/
α

1+ε )] −
2ε

1+ε (
ci+1

c + 1)n ≥ 1−ε
1+ε

ci+1

B ∆i − 2ε
1+ε (

ci+1

c + 1)n.
The first inequality is due to Lemma 8 and the sec-
ond inequality is due to Lemma 7. It follows that
∆i+1 ≤ (1 − (1−ε)ci+1

αB )∆i + 2ε
α ( ci+1

c + 1)n. Hence,
assume πnu terminates with selecting l seeds under budget
B, we have ∆l ≤ [

∏l
i=1(1− (1−ε)ci

αB )]∆0++ 2ε
α ( 1

c +1)nB ≤

e−
1−ε
α

∑l
i=1 ci
B ∆0 + 2ε

α ( 1
c + 1)nB. Hence

f(πnu
[rl]

) ≥ α

1 + ε
[(1− e−

1−ε
α

∑l
i=1 ci
B )f(π∗)− 2ε

α
(
1

c
+ 1)nB]

(4)
Since our policy runs until the budget has been exhausted,

we have
∑l
i=1 ci ≥ B−c. It follows that f(πnu

[rl]
) ≥ α

1+ε (1−
e−

1−ε
α

B−c
B )f(π∗)− 2ε

1+ε (
1
c + 1)nB. �

Theorem 9 The expected cascade of πenhanced under ε-
approximate estimation is bounded by f(πenhanced) ≥
1
2

1−ε
1+ε [

α
1+ε (1− e

− 1−ε
α )f(π∗)− 2ε

1+ε (
1
c + 1)nB].

The proof is similar to the proof of Theorem 5, the only d-
ifference is that the first candidate solution can only achieve
1−ε
1+ε maxv∈V I({v}) and the second candidate solution can
achieve the bound derived in Theorem 8.

7 Experimental Evaluation
We conduct extensive experiments on a real benchmark so-
cial networks: NetHEPT to examine the effectiveness and ef-
ficiency of the partial adaptive seeding algorithms. We set the
propagation probability of each directed edge randomly from
i× {0.01, 0.001} as in [Jung et al., 2012]. We vary the value
of i and examine how it affects the quality of the solutions.
We adjust the value of control parameter α in range [0, 1].

Figure 1 shows the influence spread yielded by the pro-
posed enhanced greedy policy on the NetHEPT dataset, as α
ranges from 0 to 1 with a step of 0.2. The x-axis corresponds
to the value of the control parameter α and the y-axis holds
the size of the influence spread achieved. We test the sce-
nario with varying edge propagation probability distributions

as discussed above. In particular, each edge is randomly as-
signed a propagation probability from i× {0.01, 0.001}. We
adjust the value of i from 1 to 8 and Figure 1(a)-(d) shows the
comparison of the influence spread under i = 1, i = 2, i = 4,
i = 8, respectively. In this set of experiments, the budget B
ranges from 30 to 60. The cost of each node is randomly as-
signed from [1, 10]. As expected, a higher budget leads to a
larger influence spread.

We observe that when i takes a smaller value, take i = 1
as an example, the advantage of performing adaptive seeding
with partial feedback is not obvious since the improvement
over influence spread does not increase much as α increases.
The reason behind this is that a smaller i indicates a low-
er probability for the edges to be alive, resulting in a lower
uncertainty about the status of the edges. In this case ob-
servations gained from partial feedback may not help much
since with high probability the estimation of influence spread
based on sampling technique matches the real propagation.
As shown in Figure 1, the advantage of taking adaptive seed-
ing based on partial feedback becomes obvious as i increases.
We observe that when i ≥ 2, a much larger influence spread
can be achieved based on partial feedback (α > 0) compared
to zero feedback scenario (α = 0). For example, when i = 4
with budget of 50, while the influence spread based on zero
feedback leads to a size of 57, the spread achieves a size of
87 based on partial feedback (α = 0.8), a 52.6% increase.

We also observe that a smaller α can lead to a significant
improvement on influence spread with a higher edge propa-
gation probability. For example, as shown in Figure 1, when
i = 2, a 10% improvement can be achieved with α = 0.6.
When i = 4, a 20% improvement can be achieved with
α = 0.4. This implies that given a social graph with moderate
edge propagation probability, it is worth to leverage the par-
tial observation of diffusion realization, since adaptive seed-
ing based on partial feedback leads to a significant improve-
ment over the size of influence spread.

8 Conclusion
To the best of our knowledge, we are the first to systematical-
ly study the problem of influence maximization problem with
partial feedback. Under independent cascade model, which
is one of the most commonly used models in literature, we
present a novel greedy algorithm with bounded approxima-
tion ratio. We also extend our results to incorporate inaccu-
rate estimations.
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