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Abstract
Label contamination attack (LCA) is an important
type of data poisoning attack where an attacker ma-
nipulates the labels of training data to make the
learned model beneficial to him. Existing work on
LCA assumes that the attacker has full knowledge
of the victim learning model, whereas the victim
model is usually a black-box to the attacker. In
this paper, we develop a Projected Gradient Ascent
(PGA) algorithm to compute LCAs on a family of
empirical risk minimizations and show that an at-
tack on one victim model can also be effective on
other victim models. This makes it possible that
the attacker designs an attack against a substitute
model and transfers it to a black-box victim model.
Based on the observation of the transferability, we
develop a defense algorithm to identify the data
points that are most likely to be attacked. Em-
pirical studies show that PGA significantly outper-
forms existing baselines and linear learning models
are better substitute models than nonlinear ones.

1 Introduction
The security of machine learning has been a critical concern
for adversarial applications such as spam filtering, intrusion
detection and malware detection [Li and Vorobeychik, 2014;
Zhao et al., 2016]. Attack techniques on machine learning
can be classified as two categories: exploratory attacks and
causative attacks [Barreno et al., 2010]. The exploratory at-
tack exploits the vulnerabilities of a classifier but does not
affect training. For example, hackers can obfuscate malware
code in order to bypass detection. The causative attack (also
known as poisoning attack) influences the training process by
manipulating the training data. This paper focuses on the la-
bel contamination attack, a type of causative attack that usu-
ally happens when labels of training data are collected from
external sources. For example, one can use crowdsourcing
platforms (e.g., Amazon Mechanical Turk) to collect labels
from human workers; Netflix relies on users’ ratings to im-
prove their recommendation systems; collaborative spam fil-
tering updates the email classifier periodically based on end-
users’ feedback, where malicious users can mislabel emails
in their inboxes to feed false data to the updating process.

This paper studies the label contamination attack against
a broad family of binary classification models. We focus on
answering three questions that have not been addressed by ex-
isting work. First, consider a highly motivated attacker with
full knowledge of the victim learning model, how to com-
pute the label contamination attack against the victim model?
Second, if the victim learning model is a black-box, how does
the attacker design effective attacks against it? Third, how to
defend against the label contamination attacks?

Previous work on label contamination attacks has three
limitations [Biggio et al., 2011; Xiao et al., 2012]. First,
they restrict the attacker’s goal to decrease the accuracy of
a victim learning model, whereas in reality the attackers may
have arbitrary objectives. Second, they focus on computing
attacks against Support Vector Machines (SVMs) and their al-
gorithms cannot generalize to other victim learning models.
Third, they assume that the attacker has full knowledge of
the victim learning model, which might be unrealistic in re-
ality. Regarding the defense against poisoning attacks, there
are generally two lines of research: robust learning focuses on
improving the robustness of learning algorithms under con-
taminated data [Biggio et al., 2011], and data sanitization fo-
cuses on removing suspicious data from training set [Chan et
al., 2017; Fefilatyev et al., 2012]. Most robust learning and
data sanitization techniques require a set of clean data, which
is used to develop metrics for identifying future contaminated
data. However, such techniques become useless when the set
of clean data is hard to obtain, or is contaminated by the at-
tacker.

In this paper, we make five key contributions. First, we ex-
tend the existing work on label contamination attack to allow
a broad family of victim models and arbitrary attacker objec-
tives. We formulate the optimal attack problem as a mixed-
integer bilevel program. Second, we exploit the Representer
Theorem [Kimeldorf and Wahba, 1970] and propose a Pro-
jected Gradient Ascent (PGA) algorithm to approximately
solve the bilevel program. Third, we propose a substitute-
based attack method for attacking black-box learning models,
which leverages the transferability of label contamination at-
tacks. To our knowledge, we are the first to study the transfer-
ability of poisoning attacks. Finally, we empirical analyze the
transferabilities with respect to five representative substitute
models and show that linear models are significantly better
substitutes than nonlinear ones.
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2 Related Work
Poisoning attack against machine learning algorithms has be-
come an emerging research in the field of adversarial ma-
chine learning [Barreno et al., 2006; Huang et al., 2011;
Kloft and Laskov, 2010; Lowd and Meek, 2005]. A pio-
neer work studies the poisoning attacks on Support Vector
Machines (SVMs), where the attacker is allowed to progres-
sively inject malicious points to the training data in order to
maximize the classification error [Biggio et al., 2012]. In
recent years, poisoning attack is generalized to many pop-
ular machine learning techniques, including feature selec-
tion algorithms [Xiao et al., 2015], autoregressive models
[Alfeld et al., 2016], latent Dirichlet allocation [Mei and Zhu,
2015a] and factorization-based collaborative filtering [Li et
al., 2016]. An algorithmic framework for identifying the op-
timal training set attacks is provided in [Mei and Zhu, 2015b].
Note that all of the aforementioned works assume that the at-
tacker has full knowledge of the learning model.

There has been existing work that studies the transferabil-
ity of evasion attack, a type of exploratory attack where the
attacker perturbs the legitimate inputs to induce the trained
classifier to misclassify them. The transferability of such an
attack means that the inputs perturbed to induce one classifier
can also induce other classifiers to produce misclassifications.
The transferability of evasion attack among deep neural net-
works (DNNs) is demonstrated by [Papernot et al., 2016b].
Then, an extensive study explored the transferability of eva-
sion attacks among five classifiers, including SVM, logistic
regression, decision tree, k-nearest neighbors and DNNs [Pa-
pernot et al., 2016a]. However, none of the existing work
studies the transferability of poisoning attacks.

3 Label Contamination Attacks
In this section, we first introduce the label contamination at-
tack against linear classifiers and formulate the optimal at-
tack problem as a bilevel optimization problem. Then, we
generalize our framework to solve the optimal attack against
nonlinear kernel machines. We begin by introducing the lin-
ear binary classification problem. Given a set of training data
D = {(xi, yi)|xi ∈ Rk, yi ∈ {−1,+1}}ni=1, a linear classi-
fier can be solved from the following optimization problem.

min
f∈H

C
n∑
i=1

L(yi, f(xi)) +
1

2
||f ||2 (1)

where f(xi) = wᵀxi + b is the decision function,
||f ||2 = ||w||2 is square of the `2 norm of w, H is the
hypothesis space, L is the loss function and C is the regu-
larization parameter. For a testing instance xi, its predicted
label is sgn(f(xi)). Without loss of generality, we denote
xi as (1,xi) and denote w as (b,w) so that f(xi) can be
equivalently represented by wᵀxi, where w ∈ Rk+1.

Attacker’s goal: Most existing work on poisoning attacks
assumes that the attacker’s goal is to decrease the classifier’s
accuracy [Biggio et al., 2012; Xiao et al., 2012]. A recent
work allows the attacker to have an arbitrary objective model
(a classifier) and the attacker’s goal is to make the learner’s

learned model close to the objective model [Mei and Zhu,
2015b]. However, they restrict the attacker’s objective model
to be a linear classifier. We extend their setting to allow the
attacker to have an arbitrary objective model, which is rep-
resented by a function f∗ : x → {−1,+1}. We define two
kinds of attacks regarding to the attacker’s incentives in real
world.

• Integrity attack. The attacker has some test instances
{xi}mi=n+1 and wants the labels predicted by the victim
model similar to that predicted by f∗. For example, a
spammer may only want certain spam to be classified as
regular ones. Note that {xi}mi=n+1 can be a mixture of
instances that the attacker has preference on and those
he is neural about.

• Availability attack. The attacker wants to decrease the
accuracy of the victim model. For example, an attacker
may want to disturb a recommender system by deceas-
ing the accuracy of its built-in classification models.

Attacker’s capability: In data poisoning attacks, an at-
tacker who takes full control of training data can create an
arbitrary victim model. However, in reality, the attacker usu-
ally faces some constraints. In this work, we assume that the
attacker can flip at most B labels of the training set D. We
denote by D′ = {(xi, y′i)}ni=1 the contaminated training set.
We introduce a binary vector z and denote y′i = yi(1 − 2zi)
so that zi = 1 means that the label of sample i is flipped and
zi = 0 otherwise.

3.1 Attacking Linear Classifiers
In this paper, we consider three linear classifiers: SVM, Lo-
gistic Regression (LR) and Least-squares SVM (LS-SVM),
but note that our methods allow general loss functions as
long as they are differentiable. The three classifiers can be
obtained by replacing the loss function L in Eq.(1) with the
following loss functions.
• Hinge loss (SVM): L1(yi, f(xi)) = max{0, 1−yif(xi)}
• Logistic loss (LR): L2(yi, f(xi)) = log(1 + exp(−yif(xi)))
• Squared hinge loss (LS-SVM): L3(yi, f(xi))=(1−yif(xi))2

For attacking linear classifiers, the attacker first reduces
his objective model f∗ to a weight vector w∗∈Rk+1. In
other words, w∗ can be viewed as a linear classifier that
is the closest to f∗. Specifically, in the integrity attack,
w∗ can be learned from Da

in={(xi, yi)|yi=f∗(xi)}mi=n+1.
In the availability attack, w∗ can be learned from
Da
av={(xi,−yi)|(xi, yi)∈D}ni=1. In both integrity attack

and availability attack, the attacker wants the learner’s learned
weight vector w as close to w∗ as possible. Since w and w∗

can be viewed as two hyperlines in a k+1-dimensional space,
intuitively, the attacker’s goal can be viewed as rotating w to
w∗. We assume that the attacker’s goal is maximizing the co-
sine of the angle between w and w∗ and define the attacker’s
utility function as:

U(w,w∗) =
wᵀw∗

||w||||w∗||
.

We formulate the optimal attack problem as the following
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bilevel program.

max
z

wᵀw∗

||w||||w∗||
(2)

s.t. f ∈ arg min
g∈H

C
n∑
i=1

L(y′i, g(xi)) +
1

2
||g||2 (3)∑n

i=1 zi ≤ B (4)

y′i = yi(1− 2zi), ∀i ∈ [n] (5)
zi ∈ {0, 1}, ∀i ∈ [n] (6)

One can obtain the optimal attack problem on specific linear
classifiers by replacing the loss function L in Eq.(3) with the
associated loss functions. Eqs.(2-6) is a mixed-integer bilevel
program, which is generally hard to solve. We will introduce
the PGA algorithm to approximately solve Eqs.(2-6) in Sec-
tion 4.

3.2 Attacking Kernel SVMs
A kernel machine applies a feature mapping φ : Rk → Rr
on training data so that the data could be more separable in
higher dimensional space (usually r > k). A kernel SVM can
be viewed as a linear SVM in the transformed feature space.
Since r can be arbitrarily large, instead of solving the primal
problem Eq.(1), one usually solves its dual problem:

min
α

1

2
αᵀQα−

∑n
i=1 αi (7)

0 ≤ αi ≤ C, ∀i ∈ [n] (8)

where Qij = yiyjφ(xi)
ᵀ
φ(xj). In practice, φ(xi)

ᵀ
φ(xj) in

Eq.(7) is usually replaced by a kernel function K(xi,xj) to
facilitate computation. We classify the kernel functions into
two classes: one with finite feature mapping (e.g., polynomial
kernels) and the other with infinite feature mapping (e.g., ra-
dial basis function kernels). We will introduce how to attack
these kernel SVMs separately.

For kernel SVMs with finite feature mapping, the at-
tacker first reduces his objective model f∗ to a weight vec-
tor w∗∈Rr+1. Similar to the linear classification case,
in the integrity attack, w∗ can be learned from Da

in =
{(φ(xi), yi)|yi=f∗(xi)}mi=n+1. In the availability attack, w∗
can be learned from Da

av={(φ(xi),−yi)|(xi, yi)∈D}ni=1.
For kernel SVMs with infinite feature mapping, we use the
technique of random Fourier features [Rahimi and Recht,
2009; Rahimi et al., 2007] to construct an approximate fi-
nite feature mapping. The random Fourier features are con-
structed by first sampling random vectors ω1, ..., ωq from
p(ω), where p(ω) is the Fourier transform of kernel function
K. Then, xi is transformed to φ(xi) with new features

φ(xi) = (sin(ωᵀ
1xi), cos(ω

ᵀ
1xi), ..., sin(ωᵀ

qxi), cos(ω
ᵀ
qxi)).

One can refer to [Rahimi et al., 2007] for detailed proce-
dures. The random Fourier features ensures φ(xi)

ᵀ
φ(xj) ≈

K(xi,xj). Note that the dimension of φ is 2q, where q is the
number of random vectors drawn from p(ω). The attacker
can construct his objective model w∗∈R2q+1 similarly to the
finite feature mapping case using the feature mapping φ.

Algorithm 1: Projected Gradient Ascent (PGA)
1 Input: Original training data D = {(xi, yi)}ni=1,

attacker’s objective model w∗, budget B, step size η,
iteration limit tmax;

2 Choose a random z0 ∈ [0, 1]n;
3 y′0 ← Flip(z0);
4 Train a classifier using training data {(xi,y′0)};
5 Initialize dual variables α0 and primal variables w0;
6 t← 1;
7 while Not converge and t < tmax do
8 zt ← Proj(zt−1 + η∇zt−1U);
9 y′t ← Flip(zt);

10 Retrain the classifier using training data {(xi,y′t)};
11 Update αt,wt;
12 t← t+ 1;
13 end
14 Output: Contaminated labels y′t.

Algorithm 2: Flip strategy
1 Input: z, original labels y, budget B;
2 Γ← Indices of Sort([z1, z2, ..., zn], ‘descent′);
3 j ← 1, y′i ← yi, ∀i ∈ [n];
4 while

∑n
i=1 zΓ(j) ≤ B do

5 y′Γ(j) ← −yΓ(j);
6 j ← j + 1;
7 end
8 Output: Flipped labels y′.

In order to obtain the optimal attack problem on kernel
SVMs, we need to replace the lower level problem Eq.(3)
with Eqs.(7-8) and add constraint Eq.(9) to the upper level
problem, which is derived from the Representer Theorem
[Kimeldorf and Wahba, 1970].

w =
∑n
i=1 αiy

′
iφ(xi) (9)

4 Computing Attacking Strategies
Inspired by [Li et al., 2016; Mei and Zhu, 2015b; Xiao et
al., 2015], we develop the PGA algorithm for computing ap-
proximate solutions of Eqs.(2-6) and show that PGA can also
compute attack strategies on kernel SVMs. We first relax bi-
nary variables zi to interval [0, 1] and solve the relaxed prob-
lem. PGA works by gradually updating zt along its approxi-
mate gradients until converge or the iteration limit is reached.
Since zt is a real number vector and retraining the classifier
requires y′t to be a binary vector, we construct a flip strategy
to project zt to y′t. The flip strategy is shown in Algorithm 2.
At each iteration, the projector Proj(z) first projects z to an
`∞ norm ball by truncating each zi into range [0, 1]. Then the
projected point is further projected to an `1 norm ball with
diameter B, which ensures that

∑n
i=1 zi ≤ B.

Steps 4 and 10 in PGA involve training process of the vic-
tim model. If the victim model is SVM, in step 4 and 10 we
solve the dual SVM problem Eqs.(7-8). If the victim model
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is logistic regression, we solve the following dual logistic re-
gression problem:

max
α

1

2
αᵀQα+

∑
i:αi>0

αi logαi+
∑

i:αi<C

(C−αi) log(C−αi)

(10)

0 ≤ αi ≤ C, ∀i ∈ [n] (11)

where Qij = y′iy
′
jxi

ᵀxj . If the victim model is least-squares
SVM, we solve the dual least-squares SVM problem:

(Q+ C−1In)α = 1n (12)

where In is the n×n identical matrix and 1n is the n-
dimensional vector of element 1. If the victim learning
model is kernel SVM, we solve Eqs.(7-8) with Qij =
y′iy
′
jφ(xi)

ᵀ
φ(xj). In step 5 (step 11) of PGA, α0 (αt) is

the solution of the problem solved in step 4 (step 10) and w0

(wt) is computed using Eq.(9).
In order to compute the gradient ∇zU in step 8, we first

apply chain rule to arrive at:

∇zU = ∇wU · ∇y′w · ∇zy
′ (13)

The first and the third gradient can be easily computed as:

∂U

∂wj
=
||w||2w∗j −wᵀw∗wj

||w||3||w∗||
(14)

∂y′i
∂zj

= −1(i = j)2yi (15)

where 1(·) is the indicator function. The second gradient
∇y′w is hard to compute since it involves an optimization
procedure. We leverage Eq.(9) to approximately compute the
second gradient. If the victim learning model is linear, Eq.(9)
is modified as w =

∑n
i=1 αiy

′
ixi. Taking the derivatives of

both sides we have:

∂wj
∂y′i

= αixij (16)

If the victim learning model is a kernel SVM, we can take
derivatives of both sides of Eq.(9) and obtain:

∂wj
∂y′i

= αiφ(xij) (17)

5 Attacking Black-Box Victim Models Using
Substitutes

In previous sections we introduced how to compute attacks
against a broad family of learning models. However, the at-
tacker may not have full knowledge of the victim learning
model in many real-world scenarios. Observing that an attack
targets on one learning model can also be effective on another
learning model even if the two models have different architec-
tures, the attacker can design attack against a substitute model
and then perform this attack on the victim learning model. A
good substitute model is the one that the attack against it is
also effective on a general family of learning models.

The effectiveness of substitute-based attacks on a vic-
tim model can be evaluated by the victim model’s accuracy

on a test set Dtest. In the integrity attack, Dtest can be
Da
in = {(xi, yi)|yi=f∗(xi)}mi=n+1 and in the availability at-

tack Dtest can be Da
av = {(xi,−yi)|(xi, yi)∈D}ni=1. As

discussed in Section 3, the attacker aims to increase the clas-
sification accuracy of the victim model on Dtest because the
attacker’s objective model w∗ is learned from Da

in and Da
av ,

with respect to integrity attack and availability attack. We de-
note by M = {M1,M2, ...,M|M |} the set of learning models
and by τi the attack against modelMi. We denote byMτi

j the
victim model Mj learned under attack τi. Then the effective-
ness of the attack against substitute Mi on victim model Mj

can be evaluated by accuracy(Mτi
j , Dtest). We will evalu-

ate the effectiveness of five substitute models on eight victim
models in Section 7.3.

6 A Discussion on Possible Defenses
The ultimate goal of adversarial machine learning is to de-
velop defense strategies based on the analysis of the attacker’s
strategic behavior. Regarding the label contamination attacks,
there are two main difficulties in developing defense strate-
gies. First, the attacker’s goal is hard to estimate. For ex-
ample, the attacker can perform integrity attack, availability
attack, or even a hybrid attack. Since the attacker’s strategy is
optimized with respect to his goal, it is difficult for the learner
to accurately estimate the attacker strategy without knowing
his goal. Second, most existing defense methods (e.g., robust
learning) require a set of clean data (true labels), and future
data will be judged based on the metrics developed using the
clean data. However, in practice, it is often expensive to ob-
tain enough true labels, especially when domain experts are
employed.

The analysis of data poisoning attacks provides opportu-
nities to develop alternative defense strategies in the future.
Here we discuss two possible future directions to develop de-
fense strategies. 1) Discovering the characteristics of poi-
soned data and identify the data that are most likely to be
attacked. For example, from Figure 1 we can see that the at-
tacked data basically form two clusters (one cluster with big
blue points and the other cluster with big red points). There-
fore, if we have successfully identified an attacked point, we
can look into its adjacent points. In addition, most attacked
points are extreme points, which indicates that the extreme
points are more likely to be attacked than those near centroid.
2) Game-theoretic modeling. Adversarial machine learning
can be viewed as a game between the learner and the attacker.
Previous work has applied game-theoretic analysis on test-set
attacks. For instance, Alfeld et al. [2017] model the test-set
attack problem as a Stackelberg game [An et al., 2015]. They
assume that the learner has a set of explicit defense actions,
such as verifying data with third parties, and try to compute
the optimal defense action. However, few work applies game-
theoretic analysis on poisoning attacks. Although the study of
poisoning attacks provide a framework to model the attacker
behavior, but the learner’s defense actions have not been con-
sidered in traditional poisoning attack setting. If we consider
defense actions, such as giving penalty on detected attacker
behavior, we might be able to develop realistic game models
and more secure learning algorithms.
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Figure 1: Decision boundaries (solid lines) of learned models under attacks with different attacker budgets. The dashed black
lines represent the attacker’s objective model. The attacker wants the points on the left side of this line to be classified as “red”
and the points on the right side to be classified as “blue”. The bigger red (blue) points are originally blue (red) and are flipped
by the attacker.

7 Experimental Evaluation
In this section, we evaluate the proposed attack and defense
algorithms and analyze the transferability of the attacks. We
compute attacks against three linear learning models: SVM,
logistic regression (LR), least-squares SVM (LS-SVM) and
two nonlinear models: SVM with polynomial kernel (POLY)
and radial basis function kernel (RBF). We will use five
public data sets: Australian (690 points, 14 features), W8a
(10000 points, 300 features), Spambase (4601 points, 57 fea-
tures) [Lichman, 2013], Wine (130 points, 14 features) and
Skin (5000 points, 3 features) 1. All training processes are
implemented with LIBSVM [Chang and Lin, 2011] and LIN-
LINEAR [Fan et al., 2008]. All attacks computed by PGA
are the best among 50 runs.

7.1 Integrity Attacks Visualization
We visualize the integrity attacks against SVM, LR, LS-
SVM, POLY, RBF computed by PGA. We set the regular-
ization parameter C=1 for all five models. We set the pa-
rameters d=2 for polynomial kernel and γ=0.1 for RBF ker-
nel. The training set is a 2-D artificial data set containing 100
points. We ignore the process of generating the attacker’s ob-
jective model and set it as an arbitrary one. Figure 1 shows
how the attacks under different attacker budgets can affect
the decision boundaries of victim models. We can see that
the victim learning models can be converted to models that

1Except Spambase, all data sets can be downloaded
from https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/.

are very close to the attacker’s objective model under only 20
flips. In addition, the attacked points with respect to differ-
ent victim models are highly similar, which indicates that the
attacks have transferability.

7.2 Solution Quality Comparison
We compute availability attacks against SVM using PGA and
compare our solution with two baselines. The first baseline
is a random flip strategy, where the attacker randomly flips
the labels of training data under his budget. For each data
set and budget, we compute the random attack for 50 times
and report the best out of them. The second baseline, Ad-
versarial Label Flip Attack on SVMs (ALFA) [Xiao et al.,
2012], is an existing algorithm that can compute attacks that
decrease the accuracy of SVMs. ALFA works by iteratively
solving a quadratic and a linear problem until convergence.
Figure 2 shows that the attacks computed by PGA signifi-
cantly outperform both baselines. On the W8a data set, the
attacks computed by PGA decrease the victim model’s accu-
racy from 90% to 30% with only 30% flips. We also find
that PGA scales significantly better than ALFA. Because in
each iteration of ALFA it solves two optimization problems
and their sizes grow with the number of data points, while in
each iteration of PGA it trains a linear classifier, which can
be efficiently implemented with LIBLINEAR.

7.3 Transferability Analysis
We compute availability attacks against the aforementioned
five substitute models using PGA and test the accuracy of
eight victim models under the attacks. The victim models
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Figure 2: Accuracy of victim model under different attacker budgets. x-axis is the percentage of flipped points and y-axis is the
accuracy of victim model on training set.

include the five substitute models and decision tree (DT), k-
nearest neighbors (KNN) and Naive Bayes (NB). The DT,
KNN and NB models are trained using MATLAB R2016b
Statics and Machine Learning Toolbox and all parameters are
set by default. We set the attacker’s budget as 30% of the
training points.

Table 1 shows the influence of the five attacks on the eight
victim models. First, we can see from the diagonal values that
if the substitute model and the victim model are of the same
type, the attack can significantly degrade the accuracy of the
victim model. Second, the performance of an attack designed
for a linear model on another linear victim model are com-
parable with the attack designed for the victim model, which
means that the attack designed for a linear model has a good
transferability when victim models are also linear. Third, the
attack designed for a linear model has a good transferabil-
ity when the victim model is nonlinear. However, the at-
tack designed for nonlinear models has a bad transferabil-
ity when the victim models are linear. For example, on the
Skin dataset, the attack designed for RBF can degrade the ac-
curacy of an RBF model to 0.38. However, an SVM victim
model under this attack can still achieve 0.94 accuracy, which
means that the attack barely has influence on the SVM model.
Fourth, on the Australian and the Skin dataset, the attacks
designed for the five substitute models have similar transfer-
ability when the victim models are DT, KNN and NB. How-
ever on the Spambase dataset, the attacks designed for linear
models have significantly better transferability than those de-
signed for nonlinear models. In conclusion, attacks against
linear models generally have a good transferability than that
against nonlinear models.

8 Conclusion
This paper studies label contamination attacks against clas-
sification models. We first focused on the problem of opti-
mal label contamination attack against a family of empirical
risk minimization models. We formulated each optimal at-
tack problem as a mixed integer bilevel program and devel-
oped the PGA algorithm to compute the near-optimal attacks.
Then, we considered a more realistic scenario where the vic-
tim model are a black-box to the attacker. In such a scenario,
we proposed a substitute-based attacking strategy for the at-
tacker. In the experimental part, we studied the transferability
of the label contamination attacks and demonstrated that the

SVM LR LS-SVM POLY RBF DT KNN NB
SVM 0.40 0.55 0.42 0.63 0.49 0.68 0.70 0.39
LR 0.55 0.53 0.48 0.59 0.49 0.69 0.70 0.33

LS-SVM 0.53 0.54 0.25 0.63 0.64 0.66 0.70 0.33
POLY 0.67 0.68 0.55 0.53 0.52 0.62 0.70 0.43
RBF 0.82 0.78 0.69 0.67 0.55 0.64 0.70 0.48

(a)Australian dataset.

SVM LR LS-SVM POLY RBF DT KNN NB
SVM 0.45 0.47 0.48 0.62 0.55 0.68 0.70 0.35
LR 0.54 0.48 0.48 0.63 0.67 0.69 0.70 0.33

LS-SVM 0.53 0.50 0.50 0.63 0.66 0.68 0.69 0.36
POLY 0.74 0.73 0.74 0.76 0.74 0.70 0.70 0.61
RBF 0.83 0.81 0.82 0.84 0.54 0.71 0.71 0.78

(b)Spambase dataset.

SVM LR LS-SVM POLY RBF DT KNN NB
SVM 0.56 0.59 0.58 0.59 0.58 0.71 0.70 0.56
LR 0.57 0.59 0.57 0.61 0.78 0.70 0.70 0.56

LS-SVM 0.46 0.52 0.51 0.50 0.46 0.67 0.69 0.46
POLY 0.90 0.60 0.69 0.52 0.77 0.69 0.75 0.45
RBF 0.94 0.90 0.88 0.91 0.38 0.76 0.69 0.58

(c)Skin dataset.

Table 1: Accuracy of victim models under substitute-based attacks.

substitute-based attacks can be very effective against black-
box learning models when appropriate substitute model is
chosen. We also discussed about possible defenses to miti-
gate data poisoning attacks.
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