
Solving Probability Problems in Natural Language

Anton Dries†, Angelika Kimmig†, Jesse Davis†, Vaishak Belle‡, Luc De Raedt†
† Department of Computer Science, KU Leuven, Belgium

‡ University of Edinburgh, UK
{firstname.lastname}@cs.kuleuven.be

Abstract
The ability to solve probability word problems such
as those found in introductory discrete mathematics
textbooks, is an important cognitive and intellec-
tual skill. In this paper, we develop a two-step end-
to-end fully automated approach for solving such
questions that is able to automatically provide an-
swers to exercises about probability formulated in
natural language.
In the first step, a question formulated in natural
language is analysed and transformed into a high-
level model specified in a declarative language.
In the second step, a solution to the high-level
model is computed using a probabilistic program-
ming system.
On a dataset of 2160 probability problems, our
solver is able to correctly answer 97.5% of the
questions given a correct model. On the end-to-
end evaluation, we are able to answer 12.5% of the
questions (or 31.1% if we exclude examples not
supported by design).

1 Introduction
Since the early days of AI, people have been fascinated by
machines solving puzzles, exercises and exams that are used
to test the intelligence of humans, see [Hernández-Orallo et
al., 2016] for an overview. The ability to solve such problems
is an important cognitive and intellectual skill as it is evalu-
ated as part of academic admission tests such as SAT, GMAT
and GRE. Recently, there has been a surge of interest in math-
ematical and scientific problem solving. Most prominently,
[Kushman et al., 2014] study how to answer algebraic word
problems, which contain typical questions about the “rule of
three”. In later work, [Seo et al., 2015] have developed an ap-
proach to solving geometry questions that occur in SAT tests,
which involve both a textual and a schematic description of
the question.

There are essentially two requirements for successfully
solving such problems: (a) correctly parse and analyse the

1An online version of our system is available at https://
dtai.cs.kuleuven.be/problog/natural_language.

question phrased in natural language, and (b) solve the un-
derlying mathematical problem. The parsing and analysis of
natural language descriptions of such questions is receiving a
lot of attention in the empirical natural language processing
community. The standard approach is to assemble a corpus
of questions and then to learn how to correctly map onto a
mathematical problem definition.

Next on the agenda, then, is to solve the resulting mathe-
matical problem. While for high school algebraic questions
standard solvers can be used, more involved domains such
as geometrical reasoning have motivated the development of
special purpose solvers [Alvin et al., 2014; Seo et al., 2014].
While mathematical problem solving has been studied for a
long time [Mukherjee and Garain, 2008], probability prob-
lems have not received much attention yet. Actually, to the
best of our knowledge, there is only one very early approach
to solving probability questions [Gelb, 1971]. While Gelb’s
high-level approach is similar to ours, the various components
are tackled in substantially different ways, e.g. no learning in
the NLP part, no probabilistic programming in the solver part.
Furthermore, it is unclear how complex the questions can be
as the paper says “very basic probability problems” and we
were unable to obtain more information about this work.

This paper develops a fully automated approach to solving
exercises about probability that can be found in introductory
textbooks on discrete mathematics, see Figure 1 for an exam-
ple. The probability questions are formulated in natural lan-
guage and the task is to automatically answer these questions.
We develop a two-step approach for tackling this task. In the
first step, a question formulated in natural language is anal-
ysed and transformed into a high-level model specified in a
declarative language. In the second step, the high-level model
is transformed into a probabilistic program and solved using
the inference mechanisms of the underlying probabilistic pro-
gramming language. Probabilistic programming [De Raedt
and Kimmig, 2015] is an increasingly popular programming
paradigm in which declarative programming languages are
extended with probabilistic primitives and inference mech-
anisms. They allow concisely representing complex proba-
bilistic models and they support machine learning.

The key contributions of this paper are 1) the introduction
of a dataset of 2160 probability word problems as a chal-
lenge for AI, 2) the introduction of a declarative language
for specifying probabilistic problems, 3) an effective solver

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3981

Q1: In a group of 10 people, 60 percent have brown eyes.
Two people are to be selected at random from the group.
What is the probability that neither person selected will have
brown eyes?
Q2: Mike has a bag of marbles with 4 white, 8 blue, and 6 red
marbles. He pulls out one marble from the bag and it is red.
What is the probability that the second marble he pulls out of
the bag is white?

Figure 1: Example questions.

based on probabilistic programming, and 4) an initial version
of an end-to-end system for tackling the overall task. The
natural language component is deliberately kept simple, and
does not yet employ rich corpora for training such as [Seo et
al., 2015].

In Section 2, we introduce our modeling language for
probability problems; in Section 3, we develop a solver for
that language using the probabilistic programming language
ProbLog. Section 4 then describes the natural language com-
ponent, whose main task is to analyse the probability ques-
tion and to transform the natural language input into a formal
model that can be used by the probability solver to infer an
answer to the question. In Section 5, we evaluate the ap-
proach on a novel dataset of 2160 probability problems, and
we conclude in Section 6.

2 Modeling Probability Problems
We now introduce our formal modeling language for proba-
bility questions. In line with the mathematical problem solv-
ing literature [Hosseini et al., 2014], we consider entities,
their properties, and containers containing certain numbers of
entities with certain properties. We further consider actions
that relate containers into a probabilistic generative model,
which provides the mathematical basis for answering proba-
bility questions.

2.1 Entities, Properties and Containers
We start with the basic building blocks. Entities are objects
mentioned in the probability question, such as people or mar-
bles. They have properties based on attributes, such as color.
Each attribute A has a finite set of possible values Values(A),
where we assume that no two attributes share a value. Values
of attributes can be combined into properties using Boolean
operators. For instance, ((9∨10)∧♦) is a property of playing
cards based on rank and suit attributes. Containers are col-
lections of entities. Containers will be represented by multi-
sets, as this allows us to abstract away from the identity of en-
tities and reason about groups of exchangeable individuals in-
stead. For instance, in Q1, all persons with brown eyes are ex-
changeable. We restrict the discussion to (unordered) multi-
sets, but the same principles also apply to ordered containers,
i.e., sequences of objects, and our language supports both. We
denote the size of a multiset M by #M . For instance, in Q1,
one container is the multiset people with #people = 10. If
M is a container and ϕ a logical formula over possible values
of the attributes, we use ϕ(M) to refer to the sub(multi)set of
M of all entities in M that satisfy ϕ. For instance, in Q1, we
have a subset browneyes(people).

2.2 Actions
In probability questions, we can distinguish two kinds of con-
tainers: those for which information about properties of their
elements is given (such as the number of marbles of each
color in Mike’s bag), and those for which this information is
uncertain (such as the first marble pulled out of the bag). The
relationship between such containers is given through actions
that define new containers in terms of existing ones. For in-
stance, in Q2, we have an initial container bag, and two pull
actions that each create two new containers: one for the mar-
ble pulled from the existing container, and one for the marbles
that remain in the previous container. These actions introduce
uncertainty about the content of containers; we know the col-
ors of the marbles in the initial bag, but for the new contain-
ers, we only have probability distributions over the colors.

We capture this set of actions as a Bayesian network with
a node or random variable for each container, which takes the
content of the container as its value. Actions introduce arrows
directed from their input containers to their output containers,
that is, the first kind of container forms the (deterministic)
root nodes of the network.

Our modeling language defines each root node by provid-
ing an identifier for the container, the set of values of all rel-
evant attributes, and a set of linear equality constraints on
the sizes of subsets of the container defined through these at-
tributes. For instance, the root nodes for Q1 are given by

Values(eye) = {browneyes}
multiset group

#group = 10

#browneyes(group) = 0.6 ·#group

and those of Q2 by

Values(color) = {white, blue, red}
multiset bag

#white(bag) = 4

#blue(bag) = 8

#red(bag) = 6

The value of a root node R is the partition R1, . . . , Rn such
that all #Ri are known and n is maximal, i.e., no Ri can fur-
ther be partitioned while maintaining full knowledge of sizes.
Constraint systems for which this partition is not unique are
considered invalid, as a probability task needs to provide suf-
ficient information to uniquely derive the starting situation.
Note that this information can be partial, e.g., instead of spec-
ifying the number of cards for all combinations of values
for Rank and Suit, a task may just state that there are ten
cards, five of them are ♦ or ♥, and of those, one is a king or
queen. It is then the task of the solver to infer the partition
(♦∨♥)∧ (K ∨Q)(cards), (♦∨♥)∧¬(K ∨Q)(cards) and
¬(♦ ∨ ♥)(cards) from these constraints.

We now specify how the actions defining new containers
are modeled in our language:
If D is the result of drawing N elements without replace-

ment from an already defined multiset M , the model
contains two container definitions D = take(M) and
rest(D) = M \D, and the size constraint #D = N .

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3982

rest(first)

bag

first

snd

rest(snd)

{4-w,8-b,6-r}

{1-w}
{3-w,8-b,6-r}

{1-b}
{4-w,7-b,6-r}

{1-r}
{4-w,8-b,5-r}

{1-w}

{1-b}

{1-r}

{1-w}

{1-b}

{1-r}

{1-w}

{1-b}

{1-r}
bag first

rest(first) snd

Figure 2: Bayesian network structure for Q2 (left) and tree illustrat-
ing possible container content for relevant nodes (right).

If D is the result of drawing N elements with replacement
from an already defined multiset M , the model contains
D = takeReplace(M) and #D = N .

If D is the disjoint multiset union of a finite number k of
already existing multisets Mi, the model contains the
statement D =

⊔
(M1, . . . ,Mk).

Each definition of the form D = action(M) creating a new
multiset D from a set of multisets M adds a node D whose
parents are the nodes in M to the Bayesian network. For each
of these cases, it is straightforward to define and derive the
conditional probability distribution of the new nodes given
their parents in the network.

We can model this information for Q1 as
twopers = take(group)

rest(twopers) = group \ twopers
#twopers = 2

and for Q2 as
first = take(bag)

rest(first) = bag \ first
#first = 1

snd = take(rest(first))

rest(snd) = rest(first) \ snd
#snd = 1

The left part of Figure 2 shows the network structure for Q2.

2.3 Questions and Observations
Finally, we also need to model the observations (in Q2, that
the first marble is red) and questions (in Q2, whether the sec-
ond marble is white) in our probability problems, which we
want to answer based on the probability distribution over the
content of containers defined above. More specifically, both
observations and questions again refer to properties of ob-
jects, but now of objects in containers that result from ac-
tions. Furthermore, they are not restricted to linear equality
constraints on numbers of objects with certain properties, but
can refer to more complex constraints.

Specifically, our modeling language currently supports the
following kinds of constraints, where A(M) denotes the mul-
tiset of values attribute A takes on multiset M , and |A(M)|

denotes the number of different values in A(M) (the number
of count-value tuples):
size constraints of the form X c Y with c ∈ {=,≤,≥, <,>}

and X and Y size variables or non-negative numbers;
type constraints of the form |A(M)| = 1 or |A(M)| = #M

requiring all objects in M to have the same value for
attribute A or each a different one, respectively.

aggregation constraints of the form
⊕

(A(M)) c C or
Ψ(

⊕
(A(M))) with a numerical attribute A (i.e., the

objects in A(M) are numbers), an aggregate function⊕
∈ {min,max,

∑
,
∏
, avg} operating on multisets of

numbers, a comparison operator c ∈ {=,≤,≥, <,>}, a
constant C and a Boolean predicate Ψ (such as “is even”,
“is odd”).

sequence constraints of the form nth(M,N) ∈ A(M) re-
quiring that the N -th element of (an ordered non-root
node) M satisfies attribute A.

These types of constraints can be combined into arbitrary
Boolean formulas using ∧,∨,¬.

Our two examples use size constraints only. In Q1, the
question is #browneyes(twopers) = 0, and in Q2, we ob-
serve #red(first) = #first and ask for #white(snd) =
#snd.

2.4 Models
To summarize, the declarative modeling language for proba-
bility problems provides statements to declare a set of con-
tainers (i.e., multisets)M, a set of attributes A and their as-
sociated values, a set of size constraints S for the initial con-
tainers, a set of multiset relations R defining the other con-
tainers through actions, a set of observations O, and a set of
queries Q.

A valid set of such statements defines a joint probabil-
ity distribution P (M) over the set of containers M =
{M1, . . . ,Mn} it defines, as specified above. The probability
that a (question or observation) constraint C holds on a multi-
set Mi is then defined as usual as the sum of the probabilities
of those assignments M1 = m1, . . . ,Mn = mn for which
mi satisfies C.

3 Solving Probability Problems
Given a probability problem definition in the language of
Section 2, the task of the solver is to compute the condi-
tional probability of each question given all observations.
Note that every aspect of the Bayesian network we define de-
pends on the specific task: the network structure is given by
the containers and actions, the domains of the random vari-
ables depend on the attributes, the subset size constraints,
and the actions, and the parameters of the conditional dis-
tributions in turn depend on the domains of random variables
and the actions. Rather than materializing the Bayesian net-
work for use with traditional Bayesian network software, we
have implemented the solver in a probabilistic programming
language. This has two key advantages. First, the expres-
sivity of these languages allows us to implement the proba-
bilistic model at the abstract level, by providing generic tem-
plates for its building blocks (e.g., for defining the nodes

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3983

and probability distributions from the actions). Second, by
leaving all aspects of reasoning, including the instantiation
of the model for the given problem definition, to the prob-
abilistic programming system, we can take full advantage
of the developments in this field. Such systems have been
optimized to generate only those parts of the model that
are relevant to the query. This is akin to what happens
in statistical relational learning [Getoor and Taskar, 2007;
De Raedt et al., 2016], where only those parts of a template
graphical model relevant to answering a query are grounded
out.

Specifically, our solver is implemented in ProbLog [De
Raedt et al., 2007], and uses the following principles to im-
plement the building blocks of the abstract model.

Root nodes. For each root node of the Bayesian network,
the solver starts from the set of linear equality constraints
on the sizes of the corresponding container and its property-
based subsets in the input. It extends this equation sys-
tem with the relevant instances of the generic size constraint
that states that the size of a multiset union is the sum of
the sizes of its parts. For instance, in the case of Q2,
where we have a single attribute only, this adds the con-
straint #bag = #white(bag) + #blue(bag) + #red(bag) +
#othercolor(bag). Note that we add an explicit “other” value
to the listed values of the attribute. We do this because proba-
bility problems do not necessarily list all values exhaustively.
For instance, Q1 does not mention that there are people whose
eyes have other colors, but this information is necessary to
solve the problem. In Q2, the list of colors happens to be ex-
haustive, but if this problem would also state that the bag con-
tains twenty marbles, the solver would have to infer that there
are two marbles with a color different from the listed ones. In
general, we add such constraints for all ways in which we can
“sum out” the value of one attribute (in our example, color)
from a conjunction of values from different attributes. For in-
stance, if we consider a multiset cards, attribute color with
value red, and attribute type with value face, we get (abbre-
viating c(ards) and o(ther))

#c = #red(c) + #ocolor(c)

#c = #face(c) + #otype(c)

#red(c) = #(red ∧ face)(c) + #(red ∧ otype)(c)

#ocolor(c) = #(ocolor ∧ face)(c) + #(ocolor ∧ otype)(c)

#face(c) = #(red ∧ face)(c) + #(ocolor ∧ face)(c)

#otype(c) = #(red ∧ otype)(c) + #(ocolor ∧ otype)(c)

We then solve this extended system of linear equalities, sub-
ject to the additional constraints #ϕ(M) ≥ 0 for all its
variables, using a combination of standard constraint solving
techniques and a few domain specific steps that detect when
size variables whose property ϕ involves “other” values can
be set to zero.

Child nodes. For child nodes corresponding to multiset
union or multiset difference (for the rest of taking without re-
placement), the child’s content is deterministically computed
from the content of the parents.

For child nodes corresponding to the result of taking N el-
ements from the parent with or without replacement, the con-
ditional probability distribution is defined through a chain of
N probabilistic primitives, where each step copies or moves
a single element from the parent’s content to the child’s con-
tent.

Question and Observations. For the constraints used in
questions and observations, the solver contains definitions on
the level of multiset content that are used for evaluating them.

While the components as described so far fully capture the
model, and thus could directly be used for inference, we use
the power of the probabilistic programming language to in-
clude two program transformations that further increase effi-
ciency.

First, to exploit exchangeability even further, the solver
program avoids distinctions based on irrelevant properties.
This idea is central to lifted probabilistic inference [Poole,
2003; Niepert and Van den Broeck, 2014], and the use of
probabilistic programming allows us to benefit from the cor-
responding efficiency improvements with a grounding-based
inference engine. In Section 2, we have defined the content of
root containers based on maximally fine grained partitions, as
such partitions capture all the information available for such
a container. However, often only a small part of this infor-
mation is relevant to solve the specific task of interest. For
instance, assume the most fine grained partition describes a
deck of cards in terms of color, suit and value, and thus has
52 parts of size one each (such as red ∧ ♥ ∧ king), but the
constraints only mention color (e.g., same color) and queen.
In this case, it is sufficient to consider the partition based on
the properties black ∧ queen (two cards), black ∧ ¬queen
(24 cards), red ∧ queen (two cards), and red ∧ ¬queen (24
cards). In terms of the Bayesian network, this reduces the
number of possible values (and thus the size of the CPT) of a
child node that takes a single card from the deck from 52 to
four. Our solver therefore collects for each root node all prop-
erties appearing in questions or observations on the node or
its descendants, computes the smallest partition that allows to
check those properties, and uses this partition instead of the
maximal one.

Second, as only the parts of the model that satisfy the ev-
idence are relevant to answer conditional queries, we insert
tests for observation constraints on individual parent nodes
directly below these nodes. This is similar to the inline ob-
serve statements offered by some probabilistic programming
languages [Gordon et al., 2014], and allows the solver to
identify parts of the model that, while relevant to the uncondi-
tional query, can be safely ignored to answer the conditional
query, which often further speeds up inference. For instance,
in the case of Q2, Figure 2 shows on the right the possible val-
ues of all random variables relevant to answer questions about
snd, using the Bayesian network as shown on the left. As the
top two values for first violate the observation that the first
marble is red, the corresponding values for rest(first) and
snd are irrelevant. By inserting this constraint directly below
node first , we make this information available to the infer-
ence engine.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3984

4 Natural Language Processing
The goal of the NLP component is to convert the natural lan-
guage description of the problem into the formal description
outlined in the previous section. In this initial approach, we
focused on problems that explicitly mention groups of objects
and only contain a single action. We also combine the match-
ing of handcrafted templates with a simple neural network for
learning the role of the numbers occurring in the questions.

Extraction and classification of numbers. In the first step,
we use Stanford CoreNLP1 to generate multiple, alternative
parse trees for each of the sentences in the problem.

We then find all numbers in the problem based on Part-Of-
Speech tags. We also include some phrases that describe an
unspecified amount such as “the rest”, “the others”, etc. and
we handle compound statements involving numbers such as
“X percent”. For each number, we need to determine two
things:

1. Which container size, if any, does it specify? That is,
does it provide the size of the root multiset, the size
of a partition, the size of a selected set, or some other
number. This classification is based on a neural-network
classifier (using scikit-learn’s2 MLPClassifier) trained
on 200 randomly selected examples. As features, we
use 45 features that describe the structure of the parse
tree around the number (see Table 1 for a summary of
these features).

2. A textual description of the properties of the objects in
the container, see the text in Table 2. This description is
obtained by selecting a relevant subtree of the parse tree
based on a set of hand-crafted rules, based on the same
200 examples.

Additionally, if it is determined that a number refers to the
size of a partition or a selected set, we also extract a fragment
describing the parent multiset. Figures 3 and 4 show exam-
ples of such extraction rules. For numbers that specify the
size of a selection, we also determine whether the selection
is with or without replacement. Table 2 shows an example of
the output of this stage.

In this phase, we process each sentence individually. We
apply the classifier model and extraction rules to each of the
multiple alternative parse trees for the sentence being pro-
cessed. For each parse tree we compute a confidence score
which is the average classification probability of the neural
network for the numbers in the parse tree, that is, a parse tree
on which the neural network can make more confident pre-
dictions gets a higher score. After this phase, we only keep
the parse tree for each sentence with the highest score.

Find and parse the question. Next, we extract the ques-
tion from the problem by looking for the occurrences of the
word “probability” (or synonyms) in a question or imperative
context (e.g. “What are the odds that ...”, “Find the probabil-
ity of ...”). We then parse the question into a structured form
using a set of handcrafted rules. This structure can contain
quantifiers (e.g. “exactly 3”) and logical operators.

1http://stanfordnlp.github.io/CoreNLP/
2http://scikit-learn.org/

Table 1: Summary of binary features used for classification.

• There is an ancestor of type VP of Number in the parse
tree; ... of type PP ...; ... of type PP with preposition of
...; ... with preposition in...; ... with preposition with ...;
... with preposition from ...; ...
• There is an ancestor A of Number in the parse tree that

has a sibling mentioning the word and (indicating that
the number occurs in a list);
• The Number in the parse tree is the subject of a VP con-

taining a PP with preposition of; ... containing a PP with
preposition in; ... with; ... from;
• the Number occurs before a colon; ... after a colon.
• The Number occurs near the word replacement; ... near

the word random; ...
• The Number occurs in a question;
• The Number is a relative number;
• The Number is preceded by a quantifier (e.g. more than).

Table 2: Number extraction for “A jar contains 1 white, 2 red and
3 black marbles. One selects with replacement 3 marbles. Find the
probability that precisely one of those marbles is white.”

position word class text parent
1-4 1 part white a jar
1-7 2 part red a jar

1-10 3 part black marbles a jar
2-1 one ignore - -
2-5 3 take (wr) 3 marbles unknown
3-6 one ignore - -

Post-processing. In the last step, we post-process the
model to remove inconsistencies. In this phase, we match
• the properties in the partition descriptions and the ques-

tions;
• the multiset identifiers in the setup, actions and ques-

tions; and
• we add missing information such as implicit actions (e.g.

“what is the probability that a student ...” implies we take
one student from the root set).

5 Evaluation
Solver. In order to evaluate our system, we hired three
students to collect and label probability problems from
textbooks and online sources. This has resulted in 2376
probability-related problem descriptions. For 2160 (90.9%)
of these examples, we could derive a formal model (either
automatically from the labeling, or manually for 70 examples
which could not be labelled in our labelling system). The
other examples either require advanced mathematical knowl-
edge or contain constraints that we currently do not support.

Of the 2160, our solver could solve 2106 correctly within
a time limit of 60 seconds per task. The remaining 54 did
not complete within this limit. All cases that reach the time
limit have outcome spaces which are too large for the cur-
rent solver. Examples of such questions include “What is the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3985

Shhhhhh
((((((

NPhh((
DT
a

NN
jar

VPhhhhhhhh
((((((((

VBZ
contains

NPhhhhhhhJJ
(((((((

NPhhhh((((
NPhh((

CD
1

NN
white

,
,

ADJPhh((
CD
2

JJ
red

CC
and

NPhhhh((((
CD
3

JJ
black

NNS
marbles

Figure 3: Parse tree for an example sentence. The numbers are classified as partition sizes because they occur in a list. This list is part of a
verb phrase, so its subject is taken as the parent of this set.

Shhhhhhhhhh
c
c

((((((((((
PPhhhh((((

IN
in

NPhhh(((
NPhh((

DT
a

NN
group

PPhh((
IN
of

NPhh((
10 people

,
,

Shhhh((((
NPhh((

CD
60

NN
percent

VPhhh(((
VBP
have

NPhh((
JJ

brown
NNS
eyes

Figure 4: Parse tree with prepositional phrases. The number “60 percent” is the subject, its description is the VP attached to it (“have brown
eyes”), and its parent is the PP preceding it (“in a group of 10 people”).

probability of all digits in a seven digit phone number being
different?”, where the question refers to a sequence container
with 107 possible contents, of which 604 800 satisfy the con-
straint, or “What is the probability that the number of 2s or
3s seen in 240 rolls of a fair die is between 75 and 83, inclu-
sive?”, where after reducing the root partition to 2 ∨ 3 and
¬(2 ∨ 3) the step-based implementation of take actions faces
a tree of depth 240 and branching factor two. Clearly, such
examples require alternative, more abstract implementations
of take actions that exploit exchangeability with respect to the
order of drawing objects, e.g., based on the counting strate-
gies humans use to solve such tasks.

Language + Solver. We also verified how many example
could be solved directly from the English text. The NLP
extractor only supports a subset of the complete formal lan-
guage. For example, we excluded problems that are based
on events (e.g., coin tosses), require observations (e.g., Q2 in
Figure 1), or that have aggregate or sequence constraints. Be-
cause of this, only 869 out of the 2106 examples are supported
based on the problem structure or the constraints present in
them. Of these remaining examples, 31.1% (270, or 12.5%
of the total set of examples) were solved correctly, 138 pro-
duce a wrong result, and the rest did not produce any result
(because of an incomplete model). These number include the
200 training examples (of which 88 where solved correctly).

It must be noted that the language in the examples was
taken directly, without any further processing, from textbooks
and online sources. We performed a qualitative analysis on a
sample of the questions that could not be solved. Common is-
sues are the lack of background information, words that could
not be matched (e.g., “male” vs “men”), alternative phrasing
(e.g., “there are 13 of each suit”), and the use of constants
and enumeration. For example, in the question “John, Kevin,
Larry, Mary and Nancy all volunteered to so [sic] some math

tutoring. If their teacher randomly chooses two of the five
students, what is the probability of selecting the two girls?”,
it is impossible to determine that Mary and Nancy are girls
without extensive background knowledge.

The NLP component can clearly be improved, but it should
also be clear that probabilistic word problems pose some in-
teresting challenges from an NLP point of view.

6 Conclusions
Mathematical and scientific problem solving has a long and
distinguished history in AI and cognitive science. In this pa-
per, we developed an end-to-end fully automated approach
that provides answers to exercises about probability formu-
lated in natural language.

We provided a declarative language to encode probabil-
ity word problems, and a corresponding solver implemented
as a probabilistic program, which is a natural and emerging
framework for inference problems described on an abstract
level. While we restricted ourselves to a fragment of the nat-
ural language, we intend to explore richer subsets of natural
language in the near future. We are also considering further
refinements of the modeling language as well as the imple-
mentation of alternative probabilistic primitives in the solver
to capture an even wider range of problems.

Acknowledgments
Anton Dries and Angelika Kimmig contributed equally to
this paper. This work was supported through an IBM Fac-
ulty Award and by the Flemish Research Foundation (FWO-
Vlaanderen). The authors thank Liselot Beckwé, Monica
Brocca and Hannah Davidoff for their efforts in collecting
and labelling the data, and Hendrik Blockeel, Wannes Meert
and Guy Van den Broeck for inspiring discussions and sug-
gestions.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3986

References
[Alvin et al., 2014] Chris Alvin, Sumit Gulwani, Rupak Ma-

jumdar, and Supratik Mukhopadhyay. Synthesis of geom-
etry proof problems. In AAAI, pages 245–252, 2014.

[De Raedt and Kimmig, 2015] Luc De Raedt and Angelika
Kimmig. Probabilistic (logic) programming concepts. Ma-
chine Learning, pages 1–43, 2015.

[De Raedt et al., 2007] Luc De Raedt, Angelika Kimmig,
and Hannu Toivonen. ProbLog: A probabilistic Prolog and
its application in link discovery. In IJCAI, pages 2462–
2467, 2007.

[De Raedt et al., 2016] Luc De Raedt, Kristian Kersting, Sri-
raam Natarajan, and David Poole. Statistical relational ar-
tificial intelligence: Logic, probability, and computation.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 10(2):1–189, 2016.

[Gelb, 1971] Jack P Gelb. Experiments with a natural lan-
guage problem-solving system. In IJCAI, pages 455–462,
1971.

[Getoor and Taskar, 2007] Lise Getoor and Ben Taskar. In-
troduction to statistical relational learning. MIT press,
2007.

[Gordon et al., 2014] Andrew D Gordon, Thomas A Hen-
zinger, Aditya V Nori, and Sriram K Rajamani. Proba-
bilistic programming. In Proceedings of the on Future of
Software Engineering, pages 167–181. ACM, 2014.

[Hernández-Orallo et al., 2016] José Hernández-Orallo, Fer-
nando Martı́nez-Plumed, Ute Schmid, Michael Siebers,
and David L Dowe. Computer models solving intelligence
test problems: Progress and implications. Artificial Intel-
ligence, 230:74–107, 2016.

[Hosseini et al., 2014] Mohammad Javad Hosseini, Han-
naneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learn-
ing to solve arithmetic word problems with verb catego-
rization. In EMNLP 2014, pages 523–533, 2014.

[Kushman et al., 2014] Nate Kushman, Yoav Artzi, Luke
Zettlemoyer, and Regina Barzilay. Learning to automat-
ically solve algebra word problems. ACL (1), pages 271–
281, 2014.

[Mukherjee and Garain, 2008] Anirban Mukherjee and Ut-
pal Garain. A review of methods for automatic understand-
ing of natural language mathematical problems. Artificial
Intelligence Review, 29(2):93–122, 2008.

[Niepert and Van den Broeck, 2014] Mathias Niepert and
Guy Van den Broeck. Tractability through exchangeabil-
ity: A new perspective on efficient probabilistic inference.
In AAAI, 2014.

[Poole, 2003] David Poole. First-order probabilistic infer-
ence. IJCAI, 3:985–991, 2003.

[Seo et al., 2014] Min Joon Seo, Hannaneh Hajishirzi, Ali
Farhadi, and Oren Etzioni. Diagram understanding in ge-
ometry questions. In AAAI, 2014.

[Seo et al., 2015] Minjoon Seo, Hannaneh Hajishirzi, Ali
Farhadi, Oren Etzioni, and Clint Malcolm. Solving geom-
etry problems: Combining text and diagram interpretation.
EMNLP, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3987

