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Abstract

The main goal of this paper is to describe a general
approach to the problem of understanding linguis-
tic phenomena, as they appear in lexical semantics,
through the analysis of large scale resources, while
exploiting these results to improve the quality of
the resources themselves. The main contributions
are: the approach itself, a formal quantitative mea-
sure of language diversity; a set of formal quanti-
tative measures of resource incompleteness and a
large scale resource, called the Universal Knowl-
edge Core (UKC) built following the methodology
proposed. As a concrete example of an application,
we provide an algorithm for distinguishing poly-
semes from homonyms, as stored in the UKC.

1 Introduction

The problem of language diversity is very well known in the
field of historical linguistics and has been studied for many
years. Language diversity appears at many levels. Thus, on
the level of phonology, while the use of consonants and vow-
els is a universal feature, the number and typology of these
vary greatly across languages [Evans and Levinson, 2009],
e.g., from the three vowels of some Arabic dialects to the 10—
20 vowels of the English dialects. In morphology, at one end
of the spectrum one finds analytic languages with very little
to no intra-word grammatical structure, such as Chinese. In
contrast, polysynthetic languages, e.g., some Native Ameri-
can languages [Evans and Sasse, 2002], have sentence-words
that other languages would express through phrases or sen-
tences [Crystal, 2004]. On the level of syntax, the various
possible orderings of subject, verb, and object have been one
of the earliest criteria in linguistic typology. Yet, it was shown
that not even these three basic categories are truly universal
[Aronoff and Rees-Miller, 2003].

This work has produced a large amount of relevant results
with, however, limited practical usability, at least from an Ar-
tificial Intelligence (AI) perspective. There are at least two
reasons why this has been the case. The first is that, even
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when using statistical methods, this research has traditionally
relied on low quantities of sample data, one main motivation
being the difficulty of producing high quality large scale lan-
guage resources. Large scale resources will always be very
diversified across languages, more or less complete, more or
less correct, more or less dependent on the subjective judge-
ments and culture of the developers. The second is that this
work has mainly focused on the syntactic aspects of diver-
sity with much less attention to (lexical) semantics. Exem-
plar of the state of the art is the recent work in [Youn et al.,
2016] which provides a quantitative method for extracting the
universal structure of lexical semantics via an analysis of the
polysemy of words. The study has been conducted on a data
set of 22 concepts in 81 languages.

At the same time, with the Web becoming global, the issue
of understanding the impact of diversity on (lexical) seman-
tics has become of paramount importance (see, e.g., the work
on cross-lingual data integration [Bella er al., 2017] and the
development of the large multilingual lexical resource Babel-
Ner [Navigli and Ponzetto, 2010]). The successes in this area
are undeniable, with still various unsolved issues. Thus, for
instance, the Ethnologue projectl, as of 2017, lists 7.097 reg-
istered languages while, to consider the most complete ex-
ample, as from [Navigli and Ponzetto, 20101, BabelNet con-
tains 271 languages. In this respect, it is worthwhile noticing
that the languages of the so called WEIRD (Western, Edu-
cated, Industrial, Rich, Democratic) societies, namely most
of the languages with better quality and more developed lex-
ical resources, cannot in any way be taken as paradigmatic
of the world’s languages [Henrich et al., 2010], while many
of the not so common minority languages, are disappearing
from the Web with obvious long term consequences [Young,
2015].

The work described in this paper mutuates goals and means
from both linguistics and Al. The main objective is to under-
stand linguistic phenomena, as they appear in lexical seman-
tics, through the analysis of large scale resources while ex-
ploiting these results to improve the quality of the resources
themselves, with a special focus on minority languages. The
proposed contribution improves the state of the art in Al as
it allows to develop better and better resources, but also in
linguistics as it paves the way to large scale case studies. The

'nttp://www.ethnologue.com
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main technical contributions are:

1. A formal quantitative measure of language diversity.
Similar languages will tend to share certain phenomena
while the same phenomenon shared by very diverse lan-
guages will be related to properties of the world rather
than to the properties of single languages. This fact can
be exploited to propagate properties across languages;

2. A set of formal quantitative measures of resource incom-
pleteness. The incompleteness of lexical resources will
always stay with us. The intuition is, therefore, to man-
age the bias it induces. Thus, within an experiment, the
selection of a language will be mediated with its level of
incompleteness in the features under consideration;

3. A general methodology for using the two measures de-
fined above;

4. A large scale linguistic resource, called the Universal
Knowledge Core (UKC), developed and used following
the methodology proposed;

5. As a prototypical example of application, an algorithm
for distinguishing polysemes from homonyms.

Notice that we do not consider the issue of incorrectness,
meaning by this the possibility that a word is given a (ob-
jectively recognized) wrong meaning. From how the UKC is
built we assume that the percentage of mistakes is very low.
Then the issue of incorrectness becomes an issue of inter-
evaluator agreement, an issue for which we are content with
any of the available alternatives. This is a consequence of a
general assumption which underlies all our studies on how
diversity appears in language and knowledge [Giunchiglia,
2006]. Following the approach taken by Millikan [Millikan,
2000] and Biosemantics in general, we see concepts as the
result of an “imperfect” biological process, where there is
no such thing as the ultimate representation of the world
[Giunchiglia and Fumagalli, 2016]. We assume that, simi-
larly to biological processes, language, like any other cultural
phenomenon, e.g., music or architecture, changes across peo-
ple and evolves in time (see also [Dawkins, 1976]). In this
respect, linguistic resources are like any other data collected
in biological experiments. We know they are always (par-
tially) incorrect, the issue is how to handle this by putting in
place the “right” data collection and measurement processes.

This paper is organised as follows. Section 2 describes
the key features of the UKC. Section 3 and 4 describe how
we quantify language diversity and resource incompleteness.
Section 5 describes the case study while Section 6 describes
its main results. Finally, Section 7 presents the related work.

2 The Universal Knowledge Core

We store linguistic data in a large scale multilingual knowl-
edge base, called the Universal Knowledge Core (UKC). In
the UKC the linguistic information is organized very simi-
larly to WordNet [Miller et al., 1990]. Thus, we have words,
synsets which store, for any word, its set of synonyms, senses
which map words to synsets, glosses which are natural lan-
guage descriptions of the intended meaning of the set of
words in the corresponding synset, and examples which are
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associated to glosses. Similarly to BabelNet, the UKC sup-
ports multiple languages while, similarly to WordNet, the
UKC has an unique identifier associated to each synset.

However, differently from WordNet and its derivatives,” the
UKC features a conceptual layer fully separated from lan-
guage. In this layer, concepts are associated unique ids and
are connected to language in one of three possible ways: (i)
the concept id is mapped (one-to-one) to a synset id, which
means that that concept is lexicalized in that language, (ii) the
concept id is declared to be a lexical gap for that language,
which means that that concept is not lexicalized in that lan-
guage, and (iii) the concept id is not mapped, which means
that we do not know what is the case. A new concept is added
only if there is at least a language where it is lexicalized. Fur-
thermore the “usual” lexico-semantic relations (e.g., hyper-
nym, meronym) are embedded in the conceptual layer and
connect concept ids, rather than synset ids. The conceptual
layer is a kind of semantic layer (in model-theoretic terms,
the domain of interpretation of the UKC lexicons) which pro-
vides a very powerful means for studying language diver-
sity, while, at the same time, enabling language independent
reasoning, as needed, for instance, in cross lingual and lan-
guage independent applications [Giunchiglia er al., 2012a;
Bella et al., 2017].

The overall organization of the UKC is represented in
Fig.1. Here, the English word bike has two meanings, as
verb and as noun, which are represented by two single word
synsets which, through their reference concepts, are con-
nected to the corresponding Italian words. In Italian we have
a lexical gap as there is no word for the verb o bike. The two
concepts, in turn, are connected in the graph of concepts.

The UKC is in continuous evolution. It is populated via the
import of freely available resources, e.g., WordNets or dic-
tionaries, which are preliminarily evaluated to satisfy certain
minimal requirements of (very high) quality, or via user input
[Giunchiglia et al., 2015]. Some relations in the UKC (e.g.,

2See, for instance, http://globalwordnet .org.
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Table 1: Language Distribution.

#Words #Languages Samples

>90000 2 English, Finnish
>75000 4 Mandarin, Japanese, etc.
>50000 6 Thai, Polish, etc.
>25000 17 Portuguese, Slovak, etc.
>10000 29 Islandic, Arabic, et.c
>5000 39 Swedish, Korean, etc.
>1000 66 Hindi, Vietnam, etc.
>500 85 Kazakh, Mongolian, etc.
>0 335 Ewe, Abkhaz, etc.

the fact that two senses are homonyms) are generated via rea-
soning tasks like the one described in this paper. The UKC
contains only a very minor number of instances, differently
from what is the case in BabelNet and in some applications
of the UKC [Giunchiglia ef al., 2012b], the main reason be-
ing our interest in studying language as such, without “clut-
tering” it with billions of instances. As a matter of fact, most
of the instances present in WordNet have been removed. As
of today, the UKC contains 335 languages, 1,333,869 words,
2,066,843 senses, and more than 120,000 concepts where, as
it should be expected, no concept is lexicalized in all lan-
guages.

Table 1 reports the distribution of words over languages.
Notice that 90% of the words belong to 50 languages, and
that 60% of the languages belong to three phyla (i.e., groups
of languages related to one another but less closely than in a
family), namely: 115 languages (e.g., Italian) to the Indo-
European phylum, 52 languages (e.g., Mongolian) to the
Ural-Altaic phylum and 36 languages (e.g., Malay) to the
Austronesian phylum.

3 Quantifying Language Diversity

The problem of quantifying the diversity of languages is not
new, see, e.g., [Bell, 1978; Youn et al., 2016]. Our ideas build
upon the work described in [Rijkhoff er al., 1993]. The main
goal of this work was to construct balanced datasets with the
goal of avoiding linguistic bias. Still sharing the same intu-
itions, we work in the other direction. Namely, we have the
data sets and we measure their diversity in order to exploit it
in the solution of well-known linguistic problems.

Diversity has many causes. To name some: genetic ances-
try (languages with common origins), geography (due to the
influence of physical closeness), culture (effects of cultural
dominance). In this paper we present a first attempt at quanti-
fying a global combined diversity measure in terms of genetic
diversity and geographic diversity. Given a language set L,
we define its combined diversity measure as follows:

ComDiv(L) = GenDiv(L) + SGeoDiv(L) (1)

In the equation above § € [0, 1] normalizes the effects of
genetic diversity over those of geographic diversity. We com-
pute the Relative (Combined) Diversity of two languages by
taking | £| = 2 and we (generically) say that two or more lan-
guages are similar when they are not diverse and we extend
this terminology to all forms of diversity. Let us define the
notions of genetic and geographic diversity.
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Figure 2: A fragment of the phylogenetic tree.

Languages are organized in a Language Family Tree which
represents how, in time, languages have descended from other
languages, starting from the ancestral languages [Bell, 1978].
A fragment of this tree is shown in Fig.2. This figure must
be read as follows. The root is a placeholder for collecting all
languages. Labeled intermediate nodes are sets of languages
(phyla or families) where the label is the name of the set.
Unlabeled intermediate nodes correspond to missing names
of language sets and serve the purpose of keeping the tree
balanced (crucial for the computation of diversity, see below).
Leaves denote languages. In general, we write 7 (£) to mean
the family tree 7 for the set of languages £ (when clear we
drop the argument from 7).

The idea behind the computation of genetic diversity is that
languages that split closer to the root (that is, further back
in time) will have more fundamental changes than those in-
volved in the more recent splits. We capture this intuition by
pondering each node n in the Language Family Tree by a real
number that decreases with the distance from the root. Thus
languages which split very early will generate multiple long
branches, thus increasing the overall diversity value. While
[Rijkhoff er al., 1993] used linearly decreasing weights, we

have chosen the inverse exponential of A~46Pth(") where the
depth of the Root is 0 and thus its weight is 1 and where, be-
low it, each phylum is weighted 1/, then 1/A2, and so on.
Furthermore we normalize GenDiv to be in the range [0,1].
More specifically, let 7(€) be the family tree of a reference
set of languages £, which in our case we take to be the lan-
guages in the UKC. Let £ C & be a set of languages for
which we want to compute the diversity level and 7 (L) the
corresponding minimal subtree of £. Then, the genetic diver-
sity of £ is taken to be 0 if |£| < 2, and, otherwise, defined
as:

AbsGenDiv(£) = > A~depthtn 4 )
neT
) _ AbsGenDiv(£L)
GenDiv(£) = AbsGenDiv(E) ©)

where AbsGenDiv is what we call the Absolute Genetic Di-
versity and AbsGenDiv(E) is the Reference Genetic Diver-
sity. To provide some examples, assume we take A = 2.
Then AbsGenDiv(€) = 88.127 and GenDiv(€) = 1, while,
with £; ={Hungarian, Italian, Polish, Russian, Basque} (the
languages in Fig. 2) we have AbsGenDiv(L;) = 3.469 and
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GenDiv(£,) = 0.039. Similarly, if we consider a less di-
verse subset including only Indo-European languages, e.g.,
Lo ={Italian, Polish, Russian} we have AbsGenDiv(Ls2) =
1.531 and GenDiv(L2) = 0.017. In this latter case, adding
other Romance languages, e.g., Spanish, Catalan, and Por-
tuguese, to Lo would increase GenDiv only to 0.022,

The definition of geographic diversity captures the intu-
ition that languages with speakers living closely to one an-
other tend to share more features and, in particular, a larger
portion of their lexicon. This can be explained both diachron-
ically (by the co-evolution of languages) and synchronically
(these people will deal with the same types of objects and
phenomena). As a first approximation, given that the UKC
contains languages from everywhere in the world, we cap-
ture this intuition by defining our geographic diversity mea-
sure based on the number of different continents on which
the languages in the reference data set are spoken. Then, the
geographic diversity of £ is taken to be 0 if |£| < 2, and,
otherwise, defined as:

B U, cr continentOf(1)|
#Continents
where continentOf(!) is the continent where [ is spoken.
It is important to notice that the computation of geographic
diversity through distance metrics alone is a gross over-
simplification. Topology and the roughness of terrain, for in-
stance, are important factors: mountain-dwelling people from
geographically nearby valleys may in reality be completely
isolated from each other. Historical periods of proximity are
also ignored by synchronic only approaches, e.g., the tempo-
rary mixing of tribes having migrated together through the
Eurasian Steppe to then settle at great distances from each
other. Still, at this stage, the values of diversity we compute
are good enough to produce interesting results.

GeoDiv(L) 4)

4 Quantifying Resource Incompleteness

We define two types of incompleteness, i.e., language incom-
pleteness, concept incompleteness and their corresponding
measures of coverage plus the notion of ambiguity coverage.

The notion of language incompleteness is a direct exten-
sion of the notion of incompleteness of logical languages and
theories. Given a reference domain of interpretation, in our
case the set of concepts, language incompleteness measures
how much of it cannot be named by the elements of the lan-
guage. We have the following:

AbsLanCov(l) = |Concepts(/)| )
|AbsLanCov(1)]
L —
anCov(() |Concepts(UKC)| — |Gaps({)| ©)
LanInc(l) = 1 — LanCov(!) @)

where Concepts(!) is the set of concepts denoted by the words
in [ and Concepts(UKC) is the set of concepts in the UKC
(i.e., the concepts denoted by the languages in the UKC).
|Concepts(UKC) is decreased by |Gaps(!)|, namely the num-
ber of lexical gaps in [ to take into account the fact different
languages “describe” different worlds. We call AbsLanCov
the Absolute Language Coverage. Table 2 (left) organizes the
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languages of the UKC into four groups, (a), (b), (c), (d), with
the first two being highly developed and the latter two being
highly under-developed.

The notion of concept incompleteness can be thought of as
the dual of language incompleteness. If the latter measures
how much of the UKC a language does not cover, the former
measures how much a single concept is covered across a se-
lected set of languages. Let, for any concept c, the Languages
of ¢ be the set of languages where c is lexicalized, defined as:

Languages(c) = U {llo(e,1) > 0} (8)
leL

where o(c, 1) returns either 1 or 0, depending on whether ¢
is lexicalized in [. Then we define concept coverage and of
concept incompleteness as follows:

AbsConCov(c) = |Languages(c)| )
AbsConC
ConCov(c) = —=0 ov(e) (10)
|Languages(UKC)|
Conlnc(c) = 1 — ConCov(c) (11)

In words: the absolute coverage of a concept is the cardinal-
ity of the set of languages where it occurs, its coverage is the
absolute coverage normalized over the number of languages
of the UKC (defined as Languages(UKC) with a slight abuse
of notation), its incompleteness is the complement to 1 of
its coverage. Figure 3 shows the distribution of concepts for
each value of AbsContCov(Concept) with Concept standing
for the sets of the concepts corresponding to the four parts of
speech (i.e., adjective, adverb, noun, and verb). As it can be
seen from the mean line, on average, concepts are lexicalised
across about 10.99 languages.

pos adjective l:l adverb D noun verb

9000 -
6000 -

30007 ‘nﬂ HHHu@“HUHU“UU?UUUUuuuuuuuvvv--""' =

0 -
0 10 20 30 40 50+
AbsConCov(Concept)

#Concepts

Figure 3: Concept distributions per AbsConCov value.

As it is well known, the key difference between logi-
cal languages and natural languages is that the latter, dif-
ferently from the former, allow words to denote more than
one concept. The occurrence of multiple concepts denoted
by the same word gives rise to the phenomenon of lexical
ambiguity, e.g., polisemy or homonymy. Let the 4-tuple
a =<l,w,c1,co> be an ambiguity instance for [, where c;
and ¢, are two concepts expressed by the same word w in the
language [. We define the notion of ambiguity coverage as:

AmbCov(a) = |Languages(cy) N Languages(cz)| (12)

The ambiguity coverage of an ambiguity instance mea-
sures the level of lexicalization of its concepts in the
UKC. The higher this value is the more evidence we have,



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Table 2: Language Groups.

Groups Language Incomplet #Words #Languag Sample Languag #Amblns AvgAmbCov
a LanInc(l) € [0.00;0.52 W € [50,001; +o00] 6 English, Finnish, ... 714,437 10.2
b LanInc(l) € [0.52;0.82 W € [20,001; 50, 000] 15 Dutch, Spanish, ... 1,969,436 12.8
c LanInc(l) € [0.83;0.99 W € [501; 20, 000] 64 Danish, Albanian, ... 117,213 18.4
d Laninc(l) € [0.99;1.00] W € [1;500] 250  Ewe, Abakhaz, ... 1,725 35.5
UKC _ Lanlnc(]) € [0.00;1.00] W € [1; +o0] 335 - 2,802,811 124
across languages, towards establishing the type of ambiguity. Table 3: An example of polysemy in English.
AmbCov(a) gives us the coverage of a single instance. How- # Language Concept 1 Concept 2 Types
ever, in order to have an overall coverage measure we need ! English bar bar polyseme
. 2 Italian barra bar derivational
to compute, for a given set of languages L, the overall set of 3 Mongolian 99K Gaap different
ambiguity instances AmblIns(L) and the average ambiguity 4 Chinese THNE T derivational
coverage AvgAmbCov(L), ngmely the average coverage of o Finmish baaritiski b compound
instances over the languages in £. We have the following: Types polyseme compound —_derivational ~orent
Languages 11 1 5 6

Amblns(L) = U U {ala =<1, w,c1,co >} (13)
leL a€l
AmbCov(a
AvgAmbCov(L) = ZGEAmbInS(ﬁ) ) (14)

|AmblIns(L)|

In other words, we compute AmblIns(L) by collecting all in-
stances across all languages in £ and AvgAmbCov(L) by
summing the average coverage of all instances and then by
dividing it by the number of these same instances.

Table 2 (right) reports the number of ambiguity instances
and their average number for the four language groups plus
the UKC. Notice how the average absolute ambiguity cover-
age is much higher for the under-developed language groups
(c), (d). In other words language coverage increases when the
average ambiguity coverage decreases, and vice versa: the
more developed a resource is the less ambiguity instances we
have. This fact, counter-intuitive at first sight, is most proba-
bly a consequence of the fact that, in practice, the first words
added to a language are the ones which are most commonly
used and therefore, the most ambiguous.

S Polysemy vs. Homonymy

The issue of Lexical Semantic Relatedness has been exten-
sively studied, see, e.g., [Budanitsky and Hirst, 2006]. How-
ever, all the work so far has mainly, if not exclusively, con-
centrated on its study within a single language while we focus
on how semantic relatedness propagates across languages. To
get an insight into the problem, consider the three examples
in Tables 3, 4, 5. These tables provide examples of the types
of semantic relatedness we consider. Notice that we distin-
guish between two types of morphological relatedness: com-
pounding,3 , namely the combination of free morphemes (as in
key + board — keyboard), and derivation namely the combi-
nation of a word with one or more derivational affixes (bound
morphemes) (as in play + -er — player).

3We use the term compounding to cover also idioms and collo-
cations where component words are separated by spaces: hot dog,
tax cut. This is justified by the fact that the presence or absence of
spaces is more a matter of language-specific orthographical conven-
tion than a semantic differentiator (e.g., English prefers multiword
expressons, German tends to use compounding, whereas some lan-
guages such as Chinese do not use spaces to separate words at all).

Concept 1: a counter where you can obtain food or drink.
Concept 2: an establishment where alcoholic drinks are served over a counter.

Table 4: An example of homonymy in English.

4013

# L Concept 1 Concept 2 Types

1 English melody, air air homonym

2 Italian melodia, aria aria homonym

3 Mongolian adANryy araap different

4 Chinese et =5 different

38 Turkish melodi hava different
Types h ym compound derivational different

Languages 6 0 0 32

Concept 1: a succession of notes forming a distinctive sequence.
Concept 2: a mixture of gases (especially oxygen) required for breathing.

The key observation is that diverse languages represent the
same semantic relatedness in diverse ways. Thus, for in-
stance, in Table 3, a polyseme in English corresponds to an
occurrence of derivational morphology in Italian and Chi-
nese, to an occurrence of compound morphology in Finnish
and to two distinct words in Mongolian.

Our goal is to establish whether any two concepts denoted
by a single word are polysemes of homonyms. The algorithm
we propose is based on the following intuitions:

e if two concepts are semantically related in diverse lan-
guages, then they are polysemes. In this case the diver-
sity of the two languages is evidence of the fact that se-
mantic relatedness derives from a property of the world,
which is what all languages denote.

e if two concepts are not semantically related in diverse
languages, then they are homonyms. The key idea is
that the occurrence of a homonym in a single language,
or in similar languages is a coincidence, a consequence
of some local, e.g., contextual or cultural, phenomena.

o Similar languages provide little support for the discov-
ery of polysemes and homonyms. At the same time, the
existence of polysemes and homonyms can be propa-
gated across similar languages.

But, how do we automatically recognize that two concepts
are semantically related? The idea is simple: if we have a big
enough number of diverse languages where the two words
denoting the two concepts are syntactically similar, then the
two concepts are semantically related. A consistent use of the
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Table 5: An example of compound morphology in English.

# L g Concept 1 Concept 2 Types

1 English tennis tennis player compound
2 Italian tennist tennista derivational
3 Mongolian TEHHHUC TEHHUCUUH derivational
4 Chinese Bk Bk F compound
25 Korean By HYU2M4 compound

Types polysemy compound derivational different
I 0 11 14 0

Concept 1: a game played with rackets by two or four players who hit a ball back
and forth over a net that divides the court.
Concept 2: an athlete who plays tennis.

similar words is evidence of semantic relatedness, as it also
the case in the examples in Tables 3, 5. The resulting algo-
rithm (see algorithm 1) takes in input an ambiguity instance
z and a multilingual resource and it returns one of three clas-
sifications for x: polyseme, homonym or unclassified. This
algorithm is structured as follows:

Step 1. (Lines 1-2). It initializes the set Lp of the languages
supporting the occurrence of a polyseme (Line 1) and it col-
lects in £ all the languages where ¢; and ¢, are lexicalized
(Line 2);

Step 2. (Lines 3-7). It tries to recognize = as a candidate
polyseme. This attempt succeeds if one of two conditions
hold: (i) the two words are the same, i.e., we have discov-
ered another case of polisemy in a new language or (ii) the
two words are morphologically related, as computed by the
function morphSim. If it succeeds it adds [ to Lp.

len(LCA (w1, w2))
max(len(wy ), len(ws)))

morphSim (w1, wy) = (15)

Our current implementation of morphSim, is a (quite prim-
itive) string similarity metric. For w; and ws to be related,
morphSim(wy, ws) must return a value higher than a thresh-
old Ths. The function len() returns the length of its input
while the function LCA() returns the longest common affix
(prefix or suffix) of the two input words: for example, ‘com-
pet’ is the LCA for the words ‘compete’ and ‘competition’.
Step 3. (Line 8) It creates the set Ly of the languages sup-
porting the occurrence of a homonym. Notice how Ly con-
tains the languages where w; and wy are different words.
Step 4. (Lines 9-14) z is classified. Notice that, for x, to be
classified as a polyseme, the combined diversity of £p must
be higher than Tp (where “D” stands for Diversity) while,
to be classified as a homynm, the combined diversity of Ly
must be higher than T, and lower than Ts (where “S” stands
for Similarity). We call Tp and Ts the Diversity Threshold
and the Similarity Threshold, respectively. The intuition is
that an ambiguity instance is a polyseme if it occurs in a “di-
verse enough” language set while it is a homonym if it occurs
in a language set where the languages supporting homonymy
are “diverse enough” and the languages supporting polisemy
are “similar enough”. One such example are the two homo-
nyms, one in English and one in Italian, in Table 4.

6 Results

We organize this section in three parts. First we describe how
we have learned the hyperparameters. Then we describe the

Algorithm 1: Lexical Ambiguity Classification

Input : & =<l,w, c1, c2>, an ambiguity instance
Input : R, a multilingual lexical resource

Output : label, an ambiguity class for the instance a.
Lp 0,

L < Languagesy, (c1) N Languages (¢2);
for each language | € L do
for each word w1 € Wordsr (c1,1) do
for each word we € Words (cz2,1) do
if w1 = wa or morphSim(w1,w2) then
Lp+— LpU {l} ;
Lyg <+ L— ﬁp;
if ComDiv(Lp) >Tp then
label + ’polyseme’ ;
else if ComDiv(Ly) >Tp and ComDiv(Lp) <Ts then
label < "homonym’ ;
else
label < ’unclassified’ ;
return [abel;

e w I U A W N =

-
R NN =S

results of the experiment. Finally we analyze the impact of
incompleteness on the experiment itself.

6.1 Algorithm Configuration

The hyperparameters to be identified are: the weight 3 of geo-
graphic diversity with respect to genetic diversity, the param-
eter A for the computation of genetic diversity, the diversity
threshold T’p and the similarity threshold Ts.

We have computed these values in two steps. First, we have
selected a grid of value configurations. The grid has been
built by taking, for each parameter, an increment of 0.1 within
the following ranges: A = [1.2;4.0] (higher values favour
more phyla in the language set), Tp = [1.0, 10.0] (the higher
the value the more diversity is required for polysemy and
homonymy detection), Ts = [0.3,1.7] (the lower the value
the more similarity is allowed for homonymy), 5 = [0.0; 1.5]
(the lower the less relative significance of geographic diver-
sity), Ty = [0.5,0.8]. The number of configurations which
have been analyzed is: 28 (variations on \) x 90 (variations
on Tp) x 15 (variations on Tg) x 16 (variations on 3) x 4
(variations on T;) = 2,419,200 configurations.

Then we have run algorithm 1 with three different methods
for computing genetic diversity namely, AbsGenDiv (and not
GenDiv: while being conceptually the same, it produced val-
ues for /3 less close to 0), the measure defined in [Rijkhoff ez
al., 1993] and Baseline, a simple algorithm where an ambigu-
ity instance is classified as a polyseme if £ contains at least
3 phyla and as a homonym if £ contains only 1 phylum. In
all three cases we have learned the parameters (A, 5, Tp, T,
Ths) using a training set of 173 polysemes and 146 homo-
nyms from three phyla. Since our ultimate goal is to gener-
ate high-quality knowledge, we have favoured precision over
recall, setting our minimum precision threshold to 95% and
maximising recall with respect to this constraint. The best
settings as well as the corresponding precision-recall figures,
as computed on the training set, are reported in Table 7. As it
can be seen, AbsGenDiv is uniformly better than Rijkhoff’s
and only loses to Baseline on the recall of homonym classifi-
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Table 6: Language coverage and classification results.

Tasks Resource Classification Results
Groups #Amblns Groups AvgAmbCov Polyseme % Homonym % Unclassified %
a 714437 | a 4.19 13.0 439 43.1
a+b 2,683,873 | atb 10.89 30.8 21.1 48.1
a+b+c 2,801,086 | atb+c 12.40 324 21.2 46.4
a+b+c+d* 2,802,811 a+b+c+d 12.43 32.4 21.2 46.4
a 714,437 | atb+c+d 10.28 31.6 36.1 32.1
b 1,969,436 | a+b+c+d 12.83 31.9 14.9 53.1
c 117,213 | a+b+c+d 18.47 46.3 29.1 24.4
d 1,725 | a+b+c+d 35.51 71.5 16.8 11.5
English (a) 197,502 | a+b+c+d 9.67 322 229 447
Slovene (b) 156,317 | a+b+c+d 12.18 355 27.0 374
Hungarian (c) 1,907 a+b+c+d 21.67 65.7 14.9 19.2
Haitian (d) 39 a+b+c+d 29.69 87.1 5.1 7.6

* a+b+c+d = UKC.

Table 7: Parameter configuration and comparisons.

Homonym Polyseme

Methods Recall  Precision F1 Recall  Precision F1
Baseline 59.58 58.00 58.77 17.64 100 29.98
Rijkhoff 12.71 95.65 22.44 11.56 95.23 20.61
AbsGenDiv 15.6 96.42 26.86 26.01 95.74 40.9
Baseline: no parameters.

Rijkhoff: 5 = 1.4, Tp = 47.2,Tg = 13.2, Ty = 0.5.

AbsGenDiv: 8 = 1.0,Tp = 2.52,Ts = 0.68, A\ = 2.7, Ty = 0.5

cation, which is not relevant, given our focus on precision.

6.2 Polysemy vs. Homonymy

The UKC contains 2,802,811 ambiguity instances across its
pool of 335 languages, These instances were automatically
generated and then given in input to the algorithm which,
in turn, generated 908,110 candidate polysemes and 594,115
candidate homonyms across all languages.

A sample of 640 cases, half being candidate homonyms
and half being candidate polysemes, were randomly selected,
which were equally divided across seven languages belong-
ing to six different phyla (English, Hindi, Hungarian, Ko-
rean, Kazakh, Chinese, Arabic). Seven native speakers were
selected as evaluators. All the evaluators, though not being
linguists by training, had previously had some exposure to
WordNet. They were provided with the glosses of the con-
cepts involved, they were asked the follwing question: “Do
you think meanings ¢; and ¢y of word w are related?", and
they had to provide a yes/no answer.

Table 8 provides statistics and accuracy values for each
of the languages evaluated. The average accuracy for find-
ing polysemes is 98.3%, even higher than with the training
set. Our explanation is that the evaluation dataset is more di-
verse than the training dataset, as it contains languages from
six phyla instead of three. The accuracy of homonym de-
tection is much lower (52.2%), but still significantly higher

Table 8: Classification accuracy.

Accuracy %
Languages #Polysemes  #Homonyms Total Hom.%  Pol.%
English 50 50 100 48 99
Kazakh 34 6 40 66 97
Hungarian 50 50 100 44 100
Hindi 50 50 100 92 98
Chinese 50 50 100 61 100
Korean 50 50 100 46 98
Arabic 50 50 100 26 100
Total 334 306 640 522 98.3
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than what one would obtain by random guessing. At the mo-
ment it is unclear whether this lower accuracy is because there
are many cases of occurrences of what we call isolated poly-
semes, namely polysemes occurring in a single language (or
a set of similar languages) or, more simply, a consequence
of the incompleteness of the UKC. It is a fact that accuracy
grows substantially if one increases the number of ambiguity
instances considered (see next section). This is a topic for
future investigation.

6.3 The Impact of Resource Incompleteness

We have organized this study following the various steps of
the algorithm. Table 6 shows how resource incompleteness
impacts the computation of ambiguity instances. It does it in
three parts (the three main rows): first by incrementally in-
creasing the languages being analyzed (by adding language
groups), then by analyzing the 4 language groups one by
one, and finally by analyzing some reference languages. The
Tasks column reports the languages being analyzed (thus, for
instance (a+b) means all the languages in groups (a) and (b).
The Resource column reports the resource over which the
analysis is performed. Thus, the first group corresponds to the
case where all the languages in the resource are considered;
the second group corresponds to the case where the languages
in a group are studied in the UKC (namely (a+b-+c+d)) while
the last group corresponds to the study of single languages in
the UKC. The third column provides the classification results.

The overall results show various facts: (i) from the first
column, the number of ambiguity instances grows with the
size of the languages considered (namely with the total num-
ber of words in a language set), as it should be expected; (ii)
from the second column, the average number of ambiguity
instances increases with the decrease of language coverage
also for single languages, thus confirming what discussed in
Section 4 (and reported in this table in the second row of this
column); (iii) the number of unclassified cases is quite high
and decreases with the decrease of the overall language cover-
age (see second row; remember that group (b) contains many
more languages that group (a), see Table 2), which seems co-
herent with the previous observation.

Table 6 links thee average number of ambiguity instances
with the classification results. Figure 4 refines this results by
showing how, limited to the language groups (a), (b), (c), (d),
and the UKC (as reported in the middle of Table 6), the min-
imal number of ambiguity instances (> 0,> 10,> 20,...)
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Figure 4: Classification results vs. required minimal number of ambiguity instances.

Table 9: UKC classification results from Figure 4.

UKC Classification Results
AmbCov  #Amblns Polyseme % Homonymy % Unclassified %
>0 2,802,811 32.4 21.2 46.4
>10 1,805,144 41.9 14.4 43.5
>20 325,322 553 11.6 329
>30 44,408 64.2 11.0 24.7
>40 9,556 71.5 10.2 18.1
>50 3,198 73.7 10.9 15.3

which are required for accepting an ambiguity instance as
such, impacts the classification results. It shows how, for all
the language groups, with the growth of the minimal number
of required ambiguity instances, the proportion of homonyms
tends to converge to a low percentage (below the 20%), while
the proportion of polysemes tends to converge to a very high
percentage (above the 70%), and the proportion of unclassi-
fied instances decreases substantially (below the 20%). This
is coherent with our expectation of a very low percentage of
honymyms, most likely below the 10%.

Table 9 provides the numeric quantification of the UKC
results graphically represented in Figure 4, together with the
extra information of the number of instances computed. It
can be noticed how increasing the minimal required number
of ambiguity instances consistently increases the percentage
of polysemes (up to the 73.7%), decreases the percentage of
homonyms (down to the 10.9%) as well as the percentage of
unclassified instances (down to around the 15.3%)

Table 10 refines the results in Table 9 by showing how
the accuracy with polysemes and homonyms grows with the
growth of AmbCov, namely with the growth of the number
of languages where the two concepts occurring in an ambi-
guity instance are lexicalized. It can be seen the accuracy of
polysemy is very robust while that of homonymy is highly
sensitive to the number of languages, converging to high lev-
els of accuracy.

Table 10: Classification accuracy vs. ambiguity coverage.

Accuracy %

AmbCov #Polysemes  #Homonyms  Total Hom. % Pol. %
>0 334 306 640 522 98.3
>10 267 297 564 529 98.5
>20 173 143 316 60.1 98.8
>30 103 33 136 69.7 99.0
>40 56 10 66 70.0 98.2
>50 30 7 37 71.4 100.0
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7 Related Work

The universality of linguistic phenomena has been in the fo-
cus of historical and comparative linguistics, as well as of the
related field of linguistic typology [Croft, 2002]. Universality
has been most famously researched on the syntactic level in
search of a universal grammar [Evans and Levinson, 2009]
but also in the lexicon. Classic quantitative approaches as
described in [McMahon and McMahon, 2005], such as lex-
icostatistics [Swadesh, 1955], mass comparison [Greenberg,
19661, or the recent paper [Youn et al., 2016] on the univer-
sality of semantic networks, perform comparisons on rela-
tively small (of up to a couple hundred entries) but very care-
fully selected word lists expressing the same meaning across
a large and unbiased language sample (e.g., the Swadesh list
[Swadesh, 1971]). Our research, on the contrary, takes the re-
sults of experts on genetic relationships as granted for our di-
versity measures. Beyond understanding the diversity of the
language sets we are working on—and thus evaluating the
scope of cross-lingual applicability of our results—we have
no a priori reason to exclude certain types of words or phe-
nomena from our experiments and can leverage entire lex-
icons available to us. The intuition is that the scale of the
resource will average out local biases.

The study of polysemy also has a long history, see,
e.g., [Apresjan, 1974; Lyons, 1977]. In particular, various
computational methods have been proposed for the prediction
and generation of polysemy instances from regular (produc-
tive) patterns [Buitelaar, 1998; Peters, 2003; Srinivasan and
Rabagliati, 2015; Freihat ez al., 2016]. Our study goes beyond
the limitation of regularity as our goal is not to create rules to
be applied over classes of concepts but, rather fo find widely
recurring polysemy patterns across multiple languages with
respect to specific concept pairs.

8 Conclusion

In this paper we have presented a general approach which al-
lows us to use large scale resources, in our case, the UKC, for
the solution of relevant language related problems and use the
results to improve the UKC itself. The proposed approach has
been applied to the discovery of homonyms, as distinct from
polysemes, in the UKC. Our current work is concentrated on
developing other case studies and on using them to validate
and refine the proposed methodology.
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