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Abstract

Lexically and syntactically simpler sentences result
in shorter reading time and better understanding in
many people. However, no reliable systems for auto-
matic assessment of sentence complexity have been
proposed so far. Instead, the assessment is usually
done manually, requiring expert human annotators.
To address this problem, we first define the sentence
complexity assessment as a five-level classification
task, and build a ‘gold standard’ dataset. Next, we
propose robust systems for sentence complexity as-
sessment, using a novel set of features based on
leveraging lexical properties of freely available cor-
pora, and investigate the impact of the feature type
and corpus size on the classification performance.

1 Introduction

Lexically or syntactically complex sentences can be difficult
to understand for children [De Belder and Moens, 20101, non-
native speakers [Petersen and Ostendorf, 20071, people with
low literacy [Aluisio and Gasperin, 2010] or various kinds
of reading or cognitive impairments [Carroll et al., 1999;
Saggion et al., 2015]. Sentence simplification aims at trans-
forming such sentences into variants which are simpler to un-
derstand for the target population. In this process, regardless
of whether it is done manually or automatically, it is important
to: (T1) first identify sentences which might be complex and
simplify only them (especially in the case of automatic text
simplification, as automatic simplification of already simple
sentences can lead to a more complex output'); (T2) identify
the simplest or simple enough (i.e. the easiest —or easy enough—
to understand) variant for the target population among several
possible (manual or automatic) simplifications. Both tasks are
still done manually by expert human annotators, which makes
it expensive and time-consuming, and significantly limits the
field of text simplification and text accessibility.

To the best of our knowledge, the first task (T1) has not been
addressed so far (although the related task of complex word
identification (CWI) has been addressed in the SemEval-2016

!Similar has already been shown for complex word identification
task in lexical simplification systems [Paetzold and Specia, 2015].
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CWI shared task?). The second task (T2) has been tackled
in the QATS shared task [Stajner et al., 2016b], where the
participants were provided with 505 sentence pairs for training
and 126 sentence pairs for testing, both marked (among other
marks for grammaticality, meaning preservation and overall
quality) for their simplicity as bad (difficult to understand),
OK (somewhat difficult to understand), or good (easy to under-
stand). All sentence pairs were pairs of an original sentence
and their automatic simplifications by several automatic text
simplification (ATS) systems. This limited the application of
the proposed systems to assessing only the output of automatic
text simplification systems, and not original sentences or man-
ually simplified ones. Furthermore, a three-level scale might
not be enough to account for differences among many variants
of the same sentence.

To address all those issues, we first compile a ‘gold standard’
evaluation dataset (Section 3) which contains a high variety
of sentences (original sentences, manual simplifications, and
automatic simplifications) human evaluated for their simplic-
ity on a 1-5 level scale (enabling thus a more fine-grained
complexity assessment). By having all these three types of
sentences, our dataset —unlike the one offered by the QATS
shared task— allows us to jointly address both aforementioned
tasks (T1 and T2). Next, we propose robust systems based on
using a freely available language learners corpus and a novel
set of lexical complexity features (Section 4) to jointly address
both tasks (T1 and T2) on a 1-5 level scale.

Finally, we: (1) show that our newly proposed lexical com-
plexity features correlate well with human scores for sentence
complexity (Section 5.1); (2) find the minimal feature set
which leads to best classification performances (Section 5.2);
and (3) show that our approach performs equally well even
using a small-size (5,000-6,000 tokens) language learners cor-
pus and could thus be adapted to other languages where such
corpus exists or can be built (Section 5.3).

2 Related Work

Automatic assessment of sentence complexity has earlier been
addressed as a pairwise ranking problem for the complex-
simple English sentence pairs [Vajjala and Meurers, 2014;
2015; Ambati et al., 2016]. The proposed systems relied on a

*http://alt.qcri.org/semeval2016/task11/
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great number of features, some of which depend on language-
specific resources, such as psycholinguistic databases (e.g. the
average age of acquisition, word familiarity rating, concrete-
ness rating, etc.), or parsers (e.g. the number of subtrees and
number of constituents per tree). This makes them: (1) difficult
to adapt to different languages as many of the system compo-
nents might not be available (or may lead to significantly lower
performances) for other languages, and (2) difficult to adapt
to automatic assessment of automatically simplified sentences
(which are often ungrammatical and thus do not allow the use
of parser-based features).

Another shortcoming of those studies is that they were
only tested on the pairs of original and manually simpli-
fied sentences from the English Wikipedia — Simple English
Wikipedia (EW-SEW) corpus [Vajjala and Meurers, 2014,
Ambati ef al., 2016] and both the EW-SEW corpus and the
OneStopEnglish corpus [Vajjala and Meurers, 2015]. This
is a much easier task given that such sentence pairs usually
represent strong paraphrases of each other,? as in the following
example from the EW-SEW corpus:

EW: In women, the larger mammary glands within the
breast produce the milk.

SEW: The breast contains mammary glands.

In text simplification, however, the differences between
several possible versions of the same sentence are often much
more subtle; the difference in output sentences of two ATS
systems of similar architectures could be as little as using “put
on the throne” instead of “installed on the throne” [Stajner et
al., 2016b]. Therefore, a system for automatic assessment of
sentence complexity should ideally be sensitive even to such
subtle differences. Furthermore, the automatically simplified
sentences are often ungrammatical or have meaningless parts
due to erroneous lexical substitutions. Both contribute to the
sentence being perceived as more complex by the target user.

In contrast to the previously proposed features [Vajjala and
Meurers, 2014; 2015; Ambati et al., 2016], our (Iexical) fea-
tures have the advantage of requiring nothing but a language
learners corpus with same texts adapted to various reading
levels (and as will be shown later in Section 5.3, even a very
small corpus suffices). This makes our systems for sentence
complexity assessment — built upon those features — easily
adaptable to other languages, for which such corpus exists (or
can be built).

The winning QATS system [Stajner et al., 2016a] uses the
MT evaluation and MT quality estimation features, which are
all computed by comparing the given simplified sentence with
its original sentence, and are thus suitable only for evaluating
ATS systems (the task in which we have the original/reference
sentence) and cannot address the task of assessing complexity
of original sentences. Our systems, in contrast, do not need
the reference sentences, and thus can jointly address both
tasks: complexity assessment of original sentences (T1), and
complexity assessment of simplified sentences (T2).

3The EW-SEW dataset contains over 26% of strong paraphrases,
and only 29% of sentence pairs with subtle differences between the
original and simplified version [Stajner and Saggion, 2015].

3 Creation of Gold Standard Dataset

Given that human evaluation of sentence simplicity commonly
uses a 5-level Likert scale, e.g. [Woodsend and Lapata, 2011;
Saggion et al., 2015], we decided not to follow the 3-level
scale of the QATS shared task, but to compile a new dataset
with a 5-level scale, enabling thus a more fine-grained sentence
complexity classification.*

We randomly selected 150 sentences from various news
stories® previously used in building an ATS system [Stajner
and Glava§, 2017], and 150 sentences from various English
Wikipedia articles and automatically simplified them with
five different ATS systems, two fully-fledged systems [Wood-
send and Lapata, 2011; Angrosh er al., 2014] and three
lexical simplification systems [Paetzold and Specia, 2016;
Glavas and Stajner, 2015; Horn et al., 2014]. Apart from in-
cluding those 300 original sentences, we also included 150
manually simplified sentences from Simple English Wikipedia,
which correspond to the 150 original Wikipedia sentences.
Therefore, the dataset allows for jointly modelling sentence
complexity of original, manually simplified, and automatically
simplified sentences, building thus systems which can address
both tasks (T1 and T2) mentioned in Section 1. After discard-
ing repeated sentences (not all systems make changes to all
original sentences), we had a total of 1131 sentences. Each
sentence had 3-5 versions with subtle or more pronounced
differences (see examples in Table 1).

Next, we asked three non-native speakers with high level
of English (all studied at least 2 years in the UK) to evalu-
ate “how easy is the sentence to understand” on a 1-5 scale,
where 1 denotes very difficult and 5 very easy. Each annotator
evaluated all 1131 sentences (we asked annotators never to
annotate for longer than one hour without a pause in order to
avoid the fatigue effect). We did not provide any guidelines
as we did not want to bias their judgments towards any type
of features. All variants of the same original sentence were
presented one after another (in random order) to facilitate the
annotation process by enabling implicit relative comparisons,
and make the annotation as consistent as possible (in this way,
two sentences with subtle differences are next to each other).

The average pairwise inter-annotator agreement (IAA), mea-
sured by quadratic Cohen’s « (to account for different levels of
annotator disagreement as the task uses an ordinal scale), was
0.62 (0.58, 0.60, and 0.69, for each pair of annotators). After
obtaining the satisfactory IAA, similar to those in previous
TS evaluations [§tajner and Glavas, 2017], we averaged the
scores of three annotators and rounded them to the closest
integer to obtain the ‘gold standard’ 1-5 complexity scores
for each sentence (where 1 denotes a very complex, and 5
a very simple sentence). Several examples of sentences and
their ‘gold standard’ complexity scores are given in Table 1.
The distribution of sentences per score was the following: 217
scored 5, 309 scored 4, 283 scored 3, 210 score 2, and 112
scored 1.

“Data and code available at:
mannheim.de/sstajner/publications.
Shttp://takelab.fer.hr/data/evsimplify/

http://web.informatik.uni-
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Sentence

Score

The school was founded in 1943 in the ballots of Westminster School in Little Dean’s Yard, just behind Westminster Abbey.
The school was founded in 1943 in the buildings of Westminster School in Little Dean’s Yard, just behind Westminster Abbey.
The school was founded in 1943 in the precincts of Westminster School in Little Dean’s Yard, just behind Westminster Abbey.

Porcupines are the third largest of the rodents, behind the capybara and the beaver.
The porcupines include the third biggest rodent, after the capybara, and beaver, and are not to be confused with hedgehogs.

It was eventually certified gold by the RIAA in 2008.
It was then awarded gold by the RIAA in 2008.

BN W AW

Table 1: Examples of gold standard human scores for simplicity (differences between similar sentences are shown in bold).

Count Levell Level2 Level3 Level4 Level5
total unigrams 1,138,841 1,470,512 1,742,658 1,892,068 2,190,961
unique unigrams 28,904 36,361 45,441 51,914 55,892
unique bigrams 307,465 405,675 510,282 575,405 674,952
unique trigrams 702,715 934,767 1,152,266 1,277,984 1,495,966

Table 2: The number of unigrams and unique unigrams, bigrams and trigrams in the English Newsela corpus.

4 Approach

We use a freely available language learners corpus to learn lex-
ical properties on different text complexity levels (Section 4.1).
Based on those, we propose three simple methods for calculat-
ing phrase complexity level (Section 4.2) used for computing
sentence complexity features (Section 4.3).

4.1 Corpora

We use the English part of the Newsela corpora® to learn
lexical properties on different text complexity levels (the lists
of unigrams, bigrams and trigrams occurring at each level,
and their relative frequencies). The Newsela corpora contain
1913 original news articles in English and 244 in Spanish,
simplified to four different learning levels by expert human
editors. The applied manual simplifications are motivated
by the Common Core Standards [Porter et al., 2011] and the
Lexile3 readability score [Xu ef al., 2015]. The total number
of unigrams, and unique unigrams, bigrams, and trigrams on
each English Newsela level are shown in Table 2.

We choose Newsela corpus over the EW-SEW corpus for
two reasons: (1) the quality of simplifications in Newsela is
controlled and guided by detailed standards, unlike the Simple
Wikipedia whose quality is questioned by many researchers
[Xu et al., 2015]; and (2) Newsela offers five different com-
plexity levels instead of only two levels offered by the EW—
SEW corpus. Apart from Newsela corpus, two other corpora
with controlled quality and five levels of simplifications are
available for English, the WeeBit corpus [Vajjala and Meur-
ers, 2014] aimed at native English speakers of different age
levels, and the Cambridge English Exams corpora [Xia et al.,
2016] aimed at second language learners. However, those two
corpora are not appropriate for learning lexical properties of
different complexity levels as different levels do not contain
the same stories. Therefore, the lexical properties learned
from such corpora would not only be influenced by the text
complexity, but also by the topics of the stories.

Shttps://newsela.com/data/

4.2 Phrase Complexity Level (PCL)

We calculate the phrase complexity level (PCL) for unigrams,
bigrams, and trigrams by using three different methods:

1) Relative Frequency (RF) method relies only on the rel-
ative frequency of the given phrase in each of the five Newsela
levels. The PCL is defined as the Newsela level at which the
given phrase has the highest relative frequency.

2) Lowest Level (LL) method finds the first level (starting
from the simplest one) on which the given phrase occurs. Once
we find such a level, we assign it as the PCL and do not check
if the phrase occurs on any higher level.

3) Higher Levels (HL) method defines the PCL as the
Newsela level such that the given phrase occurs on that level
and all other more complex levels, but it does not occur on the
next simpler level.

In all three methods, we do not assign any PCL to the
phrases which do not occur in any of the five text levels. Those
phrases are not taken into account for calculating sentence
complexity features.

It is important to note that the HL method differs from the
LL method and is, actually, complementary to the LL. method,
as it often happens that some phrases do not appear on a
certain level but they appear at the levels above and below.
This is a common phenomenon in manual text simplification
because: (1) human editors tend to perform significant content
reduction during simplification [Saggion erf al., 2015]: (2) the
lexical choices often depend on syntactic choices [Drndarevic
et al., 2012]; and (3) even the same guidelines lead to different
lexical choices made by different human editors [Drndarevic
et al., 2012]. Therefore, low frequency phrases are sometimes
omitted on certain levels. In the English Newsela corpus, for
instance, there are 318 unigrams that appear both in Level 5
and in Level 3 but do not appear in Level 4. The unigram
healthiness appears only in Levels 3 and 5, and not in any
other. Therefore, it would be assigned the PCL 5 by the HL
method and the PCL 3 by the LL method.

The assumption behind all three methods is that all four
simplified levels contain simplifications of the same original
texts (Level 5); otherwise the calculated PCL would also be
influenced by the text topics and not only by their difficulty.
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Code Lexical complexity feature

max the maximal PCL found

min the minimal PCL found

avg the average PCL found

countl the number of phrases with level 1
count2 the number of phrases with level 2
count3 the number of phrases with level 3
count4 the number of phrases with level 4
count5 the number of phrases with level 5

Table 3: Lexical complexity features (calculated by each of the three
methods and for each of the three phrase lengths).

Therefore, they should only be applied on the corpora which
contain the same stories on each level.”

4.3 Sentence Complexity Features

For each sentence, we calculate eight lexical complexity fea-
tures (see Table 3) for each phrase length (unigrams, bigrams,
and trigrams) by using each of the three PCL methods. This
results in a total of 72 lexical features to which we add the
sentence length as a proxy for syntactic complexity. Note that
for discriminating between complex and simple texts, sentence
length has been shown to have a better discriminative power
than syntactic complexity features based on the use of a parser
[gtajner et al., 2013], while at the same time being applica-
ble on ungrammatical (automatically generated) sentences.
While calculating lexical features, we exclude those phrases
which do not appear in the whole English Newsela corpus.
This helps in differentiating between grammatically correct
and grammatically incorrect sentences, i.e. for grammatically
incorrect sentences the number of found phrases at different
PCL levels (the count features) will be lower than in similar
but grammatically correct sentences.

5 Evaluation

We perform three sets of experiments (Sections 5.1- 5.3) to
evaluate our approach.

5.1 Correlation with Human Scores

In order to assess the goodness-of-fit of our features to the
sentence complexity assessment task, we first calculate the
Pearson’s correlation between all our features and the ‘gold
standard’ human scores for this task (described in Section 3).

Out of 73 initial features (72 lexical features and the
sentence length), 57 features showed significant correlation
(p < 0.01) with the human scores for sentence complexity.
The number of unigrams with the PCL 5 (count5) obtained
using the RF method, and the sentence length, obtained the
absolute Pearson’s correlation score over 0.5 (Table 4).

The number of features significantly correlated (at a 0.01
level) with the human scores for simplicity, grouped by the
phrase length, PCL method, and feature type, is presented
in Table 5. Although none of the trigram-based features is
among the seven features with the highest correlation to the
human scores (Table 4), a great number of them still shows

"We also tried lemmatising all phrases and texts, but it did not lead
to any significant improvements over the non-lemmatised versions.
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Phrase Feature Method Pearson
unigram count5 RF —0.523

sentence length —0.504
unigram countl LL —0.499
unigram countl HL —0.472
bigram count5 RF —0.430
bigram countl HL —0.385
bigram max LL —0.307

Table 4: Seven features with the highest Pearson’s correlation (the
absolute value over 0.300) with human scores for simplicity; all
correlations significant at a 0.001 level.

Category Type #features
unigram 18 (out of 24)

Phrase bigram 20 (out of 24)
trigram 19 (out of 24)

Relative Frequency (RF) 21 (out of 24)

Method Lowest Level (LL) 17 (out of 24)
Higher Levels (HL) 19 (out of 24)
max 4 (out of 9)
min 5 (out of 9)
avg 4 (out of 9)

Feature countl 9 (out of 9)
count2 8 (out of 9)
count3 8 (out of 9)
count4 9 (out of 9)
count5 9 (out of 9)

Table 5: The number of features significantly correlated (at a 0.01
level) with the human scores for simplicity.

significant correlation with those. Out of the three PCL meth-
ods, the RF method produces the highest number of features
significantly correlated with the human scores. Out of the
eight feature types (Table 3), countl, count4, and count5 show
significant correlation with the human scores, regardless of
the PCL method and the phrase length (Table 4).

5.2 Classification Experiments

In order to find out which subset of our 73 features lead to the
best performing system on the sentence complexity task, we
experimented with five classifiers and various feature sets.
Baselines. The best performing system (and most of the
participating systems) of the QATS shared task cannot be ap-
plied on our task as they require reference sentences, which
are not available in our, more general, sentence complexity
task (where we also want to assess the complexity of original
sentences). Also, as we also want to assess automatically gen-
erated (often ungrammatical) sentences, we do not try to apply
previously proposed parser features to the pairwise ranking
task of the EW-SEW sentence pairs [Vajjala and Meurers,
2014; 2015; Ambeati er al., 2016]. Therefore, as there are no
existing systems addressing this task (the absolute sentence
complexity assessment of original, manually simplified, and
automatically simplified sentences, on a five-level scale), we
build a strong baseline using three features which have shown
the best performances in other similar tasks: sentence length
(in words), average word length (in characters), and average
word frequency in the whole Simple Wikipedia. The first
two features are commonly used in various readability for-
mulae (e.g. Flesch Reading Ease score [Flesch, 1949] or Fog
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Feature set (# features) Weighted F ROC area Accuracy Quadratic < RMSE
Ours-correlated only (57) 0.65 £+ 0.04 0.87 + 0.02 66.60 £+ 4.30 0.75 £ 0.01 0.31 +£0.01
Ours-all (73) 0.65 + 0.04 0.87 + 0.02 64.92 +£4.23 0.76 + 0.01 0.31 +0.01
Ours-lexical only (72) 0.66 + 0.04 0.87 + 0.02 65.67 + 4.08 0.77 + 0.01 0.31 +0.01
Strong baseline 0.53 £ 0.04* 0.77 £ 0.03* 53.06 £ 4.41* 0.61 £ 0.01* 0.36 £0.01*
Majority class baseline 0.12 £ 0.00* 0.50 + 0.00* 27.32 £0.27* 0.00 + 0.00* 0.40 £0.01*

Table 6: The classification results (arithmetic mean with standard deviation) for our three feature sets, and the two baselines. The best results
(by each evaluation metric) are presented in bold, and those which are significantly worse (p < 0.01, paired t-test) are presented with an “*’.

Experiments Feature set (# features) Weighted F; ROC area Accuracy Quadratic k RMSE
Only count features: countl ... count5 (45) 0.65 +£0.04 0.87 + 0.02 64.70 + 4.26 0.76 £ 0.01 0.31 + 0.01
Feature type Only aggregate features: max, min, avg (27) 0.56 £ 0.04* 0.80 £ 0.03* 56.19 £ 4.12% 0.55 £0.01* 0.34 £0.01*
Ours-lexical only (72) 0.66 + 0.04 0.87 + 0.02 65.67 + 4.08 0.77 + 0.01 0.31 + 0.01
RF (24) 0.62 + 0.05* 0.86 +0.02 * 62.60 + 4.67* 0.72 £ 0.01* 0.32 £ 0.01*
LL (24) 0.61 + 0.04* 0.84 + 0.02* 60.59 + 4.04* 0.66 + 0.01°* 0.32 £+ 0.01*
HL (24) 0.61 + 0.04* 0.85 + 0.02* 61.50 + 4.03* 0.68 + 0.01* 0.32 £ 0.01*
PCL method RF + LL (48) 0.64 + 0.04 0.87 + 0.02 64.38 +4.41 0.72 £ 0.01* 0.31 + 0.01
RF + HL (48) 0.65 + 0.04 0.87 + 0.02 64.62 +4.21 0.76 + 0.01 0.31 + 0.01
LL + HL (48) 0.64 + 0.04* 0.86 + 0.02* 63.86 + 3.84 0.72 £+ 0.01* 0.31 £ 0.01*
RF + LL + HL (72) 0.66 + 0.04 0.87 + 0.02 65.67 + 4.08 0.77 + 0.01 0.31 + 0.01
Unigrams only (24) 0.63 + 0.04 0.86 + 0.02 62.65 + 4.08 0.77 £ 0.01 0.31 + 0.01
Bigrams only (24) 0.59 4+ 0.04* 0.84 4+ 0.02* 58.76 + 4.29* 0.67 £ 0.01* 0.32 £ 0.01*
Phrase length Trigrams only (24) 0.46 + 0.04* 0.74 £+ 0.03* 46.07 + 4.38* 0.48 +0.01* 0.37 £ 0.01*
Unigrams+bigrams (48) 0.65 + 0.04 0.87 + 0.02 65.06 + 4.33 0.79 + 0.01 0.31 + 0.01
Unigrams+bigrams+trigrams (72) 0.66 + 0.04 0.87 + 0.02 65.67 + 4.08 0.77 +0.01 0.31 + 0.01

Table 7: The classification results (arithmetic mean with standard deviation) for features extracted using different feature types (count vs.
aggregate), different methods for calculating PC, and features extracted using different phrase lengths. The best results are presented in bold,
and those which are significantly worse (p < 0.01, paired t-test) than the best are presented with an “*’.

index [Gunning, 1952]) widely used for assessing text diffi-
culty. Given that the readability formulae are applied on the
text level and are not reliable on a sentence level, we just use
their components and not the formulae themselves. The word
frequency in the whole Simple Wikipedia has been used as
a stand-alone feature in the winning system of the SemEval-
2016 CWI task. Given that we assess the sentence complexity
instead of the word complexity, we use this feature as the
average word frequency in the Simple Wikipedia (averaged
over all words in the given sentence).

Classifiers. We used five different classifiers: Logistic [le
Cessie and van Houwelingen, 1992], SMOs — Weka imple-
mentation of SVM [Platt, 1998] with feature standardisation,
JRip rule learner [Cohen, 1995], J48 — Weka implementation
of C4.5 decision tree [Quinlan, 1993], and Random Forest
[Breiman, 20011, in a 10-fold cross-validation setup with 10
repetitions in Weka Experimenter [Hall e al., 2009]. The
Random Forest classifier significantly outperformed all other
four classifiers while preserving the same relative ranking of
different systems. Therefore, we only report the performances
of the Random Forest classifier, as the best one.

Evaluation. We evaluate all classifiers using the stan-
dard classification evaluation measures (weighted F; measure,
ROC area, and accuracy). Additionally, to account for the
fact that our classes are on an ordinal scale, we evaluate the
classifiers using the quadratic Cohen’s k statistic (quadratic x)
and root mean squared error (RMSE).

Overall Results. Table 6 shows the results of the two base-
line classifiers and our three systems, which use different sets
of features: all 73 features (Ours-all), only lexical features
(Ours-lexical only), and only those significantly correlated
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with human scores for simplicity (Ours-correlated only). All
our systems significantly outperform both baselines. Our best
system reaches a 0.66 weighted F-score, weighted ROC area
of 0.87, 65.67% accuracy, a 0.77 quadratic s, and a 0.31
RMSE, on average (the expert human annotators obtained a
0.62 quadratic x on the same dataset (see Section 3)). The ad-
dition of the sentence length to the set of lexical features (our
count features are not normalised with the sentence length and
thus implicitly account for sentence length), or filtering out
those features which do not show significant correlation with
the human scores, do not significantly influence classification
performances.

Influence of the Feature Type. It seems that the aggregate
features (min, max, and avg) do not to contribute to the overall
performance of the classifiers (Table 7), as similar classifica-
tion performances can be obtained by using only the count
features (countl, count2, count3, count4, and count5).

Influence of the PCL Method. It seems it is not necessary
to use all three PCL methods (Table 7). The use of the RF
method in combination with either of the other two methods
(LL or HL) results in classification performances comparable
to those of the system which uses all three PCL methods.

Influence of the Phrase Length. Using only bigram or
trigram features significantly decreases classification perfor-
mance (Table 7). More importantly, the use of only unigram
features, or their combination with the bigram features, leads
to almost equally good results as using all three phrase lengths.

Minimal Feature Set. Our previous sets of experiments
showed that the combination of RF and HL methods lead to
equally good results as the use of all three PCL methods, the
use of only the count features leads to equally good results
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Feature type Weighted F ROC area Accuracy Quadratic & RMSE
Unigram counts with RF+HL methods (10) 0.58 £+ 0.04* 0.84 £ 0.02* 58.50 £+ 4.39* 0.69 £ 0.01* 0.33 £0.01*
Unigram-+bigram counts with RF+HL methods (20) 0.63 £ 0.05 0.87 £ 0.02 63.32 + 4.63 0.73 £ 0.01 0.31 +0.01
Ours-all lexical features (72) 0.66 + 0.04 0.87 £ 0.02 65.67 + 4.08 0.77 + 0.01 0.31 + 0.01

Table 8: The classification results (arithmetic mean with standard deviation) for minimal feature set experiments. The best results are presented
in bold, and those which are significantly worse (p < 0.01, paired t-test) than the best are presented with an “*’.

as the use of all eight features, and the use of only unigram
features or their combination with bigram features leads to
equally good results as the use of all three phrase lengths
(Table 7). Therefore, we built two additional classifiers: (1)
using only the unigram count features obtained by using only
the RF and HL methods (10 features in total), and (2) using
the combination of unigram and bigram count features ob-
tained by using only the RF and HL. methods (20 features in
total). The first classifier performed significantly worse than
the best system (all 72 lexical features), but the second system
performed almost equally well as the best system.

5.3 Impact of the Corpus Size

In order to evaluate how easy it would be to adapt our system
to other languages, we explored what is the minimal size of
the corpus used to extract lexical properties on different levels,
which leads to satisfactory performances on this task.

Using the bootstrapping resampling method with 100 repe-
titions, we extracted Newsela subcorpora in 16 different sizes:
5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 500, 750, 1000,
1250, 1500, 1750 original texts (with their corresponding four
simpler versions). We then performed 1,600 classification
experiments on the ‘gold standard’ dataset, using the minimal
feature set (unigram+bigram counts with RF+HL methods
only) and obtaining the lexical properties each time from a dif-
ferent Newsela subcorpora. All experiments were performed
in a 10-fold cross-validation setup using the Random Forest.

Surprisingly enough, we did not find any significant (p <
0.01, paired t-test) differences between the performances of
the systems in which we extracted lexical properties from
smaller portions of the Newsela corpus (not even the subcor-
pora which consist of only 5 original texts) and the perfor-
mance of the system in which we extracted lexical properties
from the whole Newsela corpus (1913 original articles). The
smallest subcorpora (5 original texts) contained 4,657 tokens
(1,238 unique tokens) in the original texts (Level 5), and 2,399
tokens (658 unique tokens) on the simplest level (Level 1), on
average. These results show that we can obtain state-of-the-
art results even if we extract lexical properties from a small
corpus (4,000-5,000 tokens).

5.4 Our Approach on QATS shared task

One of the goals of the QATS shared task was to build 3-level
classification systems for complexity assessment of automati-
cally simplified sentences. We tested our system on the QATS
shared task, by first applying the CfsSubsetEval feature selec-
tion algorithm [Hall and Smith, 1998] to the QATS training
dataset (to select the best subset of our features) and then train-
ing the Random Forest classifier on the QATS training dataset
using only the best subset of features. Our classifier obtained
a 0.566 weighted F-score and 57.94% accuracy on the QATS
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test set, a performance comparable to the best ranked QATS
system (0.564 weighted F-score and 57.14% accuracy).

6 Conclusions

Automatic sentence complexity assessment could bring many
benefits to the fields of NLP and text accessibility. The systems
should be able to assess original sentences (to identify those
which need to be simplified) and manually and automatically
simplified sentences (to choose those which are easy enough
for the target reader). However, so far no systems have been
proposed which would jointly address those tasks.

We built a ‘gold standard’ sentence complexity dataset con-
taining original, manually simplified and automatically simpli-
fied sentences with human scores (on a 1-5 scale) assessing
their absolute complexity. We then addressed the absolute
sentence complexity as a five-level classification task and
proposed novel lexical complexity features based on using
nothing but a language learners corpus. The best classifier
obtained a higher IAA (quadratic Cohen’s x of 0.77) with the
gold standard marks than any pair of human annotators did
among themselves (ranging from 0.58 to 0.69).

Most importantly, we showed that our methods perform
well even if we use a very small language learners corpus to
extract lexical properties (a 4,000-5,000 token corpus). This
means that our approach could potentially be used on any
language for which such a corpus exists, or can be built.
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