
Finding Prototypes of Answers for Improving Answer Sentence Selection
Wai Lok Tam1∗, Namgi Han1,2

Juan Ignacio Navarro-Horniacek1,2,3, Yusuke Miyao1,2

1 National Institute of Informatics, Japan
2 The Graduate University for Advanced Studies, Japan

3 Livesense Inc., Japan
w.tam@i-globalsociety.com, {namgi, juan, yusuke}@nii.ac.jp

Abstract

Answer sentence selection has been widely adopted
recently for benchmarking techniques in Question
Answering. Previous proposals for the task are es-
sentially general solutions taking the form of neu-
ral networks that measure semantic similarity. In
contrast, the present paper describes a simple tech-
nique to take advantage of such general-purpose
tools for dealing with questions and answer sen-
tences without changing the base system. The tech-
nique involves replacing wh-words in input ques-
tions with a word denoting the prototype of all an-
swers. These transformed questions are passed as
input to an existing neural network built for mea-
suring semantic similarity. This technique is eval-
uated on two different neural network architectures
over two datasets: TrecQA and WikiQA. Results of
our experiments show improvement in overall ac-
curacy across most question types we are interested
in: ‘who’, ‘when’ and ‘where’-type questions.

1 Introduction
Answer sentence selection roughly corresponds to the pas-
sage retrieval stage of the standard Question Answering (QA)
pipeline. The upper part of figure 1 illustrates a typical ap-
proach found in previous literature. At the center it has a neu-
ral network which accepts a question and a candidate answer
sentence as input and assigns one of the two classes, correct
(”X”) and incorrect (”x”) based on their semantic similar-
ity score. The neural network is often based on Convolu-
tional Neural Network (CNN) [Krizhevsky et al., 2012] or
Long Short-Term Memory Network (LSTM) [Hochreiter and
Schmidhuber, 1997]. For this task, it is not necessary to pro-
vide a long answer to the question, rather a sentence contain-
ing a short answer is sufficient to make it correct answer, as
illustrated by the lower part of figure 1. Recent research on
the task carried out by [Yang et al., 2016] and [Rao et al.,
2016] focuses on revising network architectures for comput-
ing better semantic similarity.

∗The current affiliation of the first author: Institution for a Global
Society, Japan.

neural
network

x

√

David focus of our approach

focus of the standard deep
learning-based approach

Rahm Emanuel won
the race for mayor

Who is the
mayor of Chicago?

neural
network

x

√
Ezekiel is the third of
the latter prophets

Who is the mayor of
Chicago?

Figure 1: The Standard Deep Learning-based Approach and Our
Approach to Answer Sentence Selection

This paper presents a simple technique to boost the perfor-
mance of the neural networks for answer sentence selection,
without modifying the architecture of the base systems. In our
proposed method, the wh-words in the input questions are re-
placed by a named entity (NE) that is found to be a prototype
of the answers for the respective question type. Transformed
questions and original candidate answer sentences are given
as input to the neural networks proposed in previous literature
for computing semantic similarity. As shown in the lower
part of figure 1, our method replaces the wh-word in the in-
put question (”Who”) with another word (”David”) selected
from a set of named entities appropriate for who-type ques-
tions (”Person class”). In section 2 we introduce the motiva-
tion behind our method as well as the related works in answer
sentence selection used in our experiments. In section 3, we
explain the details of the two approaches to implement our
method for selecting the prototype from a list of NEs pro-
vided by a named entity recognizer (NER).

The proposed technique is evaluated on two datasets cre-
ated for benchmarking answer sentence selection: WikiQA
[Yi Yang, 2015] and TrecQA [Wang et al., 2007]. In sec-
tion 4 we describe our experiment setup and its results
over the two neural network architectures [Rao et al., 2016;
Tan et al., 2015] that we consider to be the most represen-
tative of recent work. The results we obtained, described in

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4103

...

output
state

x
 attention

weight
at

step tn

LS
T

M

 cos

LS
T

M
a

LS
T

M
a

LS
T

M

 po
ol

 poo
l

 poo
l

 cos

 pool

que
stion

answ
e

r

que
stion

answ
er

pairwise
objective

Figure 2: The Architecture of [Tan et al., 2015]

section 4.2, reveal that our technique improves accuracy of
both [Tan et al., 2015] and [Rao et al., 2016]. Possible ideas
to extend this work are described in section 5.

2 Related Works and Motivation
Recent proposals for the answer sentence selection task in-
clude a wide range of combinations of similarity measures,
different arrangement of layers of neural networks (LSTM vs
CNN vs Fully Connected Layers) and various ways to pass
the input to a neural network (passing a question and an an-
swer sentence separately to two networks or organizing them
into a matrix taken as input by a single network) [Rao et al.,
2016; Tan et al., 2015; He and Lin, 2016; He et al., 2015;
Yang et al., 2016; Feng et al., 2015; Tan et al., 2015;
dos Santos et al., 2016]. As it is described in section 4, we se-
lected two of the most relevant proposals, as the base systems
of our experimental setups.

The first one is [Tan et al., 2015], which is illustrated in
figure 2. The architecture proposed by them has two stacks,
each made up by a bidirectional Long Short Term Memory
network (bi-LSTM) and a pooling layer. The cosine simi-
larity function is applied to the output of each stack, obtain-
ing two similarity values. This is done by processing the in-
put with these two stacks twice, once with the input question
and a correct answer sentence and once again with the same
question and an incorrect answer sentence. We illustrate this
by duplicating the two stacks in figure 2, making it look like
there are four stacks. The cosine similarity between the ques-
tion and the correct answer sentence is compared with that
between the question and the incorrect answer sentence by a
pairwise objective function. The proposal is focused on a dif-
ferent way to compute the output state in the stack taking an
answer sentence. Each output state ha(t) is applied a weight
sa,q(t), whose computation, given in formula 1, takes into
account the question embedding eq .

sa,q(t) ∝ exp(wT
m tanh(waha(t) + wqeq)))) (1)

The second proposal which we would look into is [Rao
et al., 2016]. The network architecture proposed in the pa-
per comes in several variations. We illustrate one of these
variations in figure 3. The architecture has two stacks. Each

dense

LS
T

M

LS
T

M

sim
 cube

step sm after
reading word
wm from a
question

pairwise
objective

forward states

answ
er

qu
estion

an
sw

er

step tn after
reading word
wn from an
answer

backward states

Figure 3: The Architecture of [Rao et al., 2016]

stack is a bi-LSTM with pairwise word interaction model de-
scribed in [He and Lin, 2016] or a Multi-perspective CNN
[He et al., 2015]. The output of the two stacks are merged.
The merged output is first passed to a fully connected layer
(”dense” in figure 3) and then a pairwise objective function.
The gist of the pairwise word interaction model is illustrated
by the balloon. The output of the stack is a similarity cube
(”sim cube” in figure 3). Values in this cube are similarity
scores between the state in a pass (which can be either the
forward pass or the backward pass) after accepting a word
wm from the question and the state in a pass after accepting a
word wn from the answer. The similarity cube compares the
state in the forward pass after accepting a word in the ques-
tion. Similarity is measured in terms of the cosine distance,
the L2 Euclidean distance and the dot-product. The design
delivers state-of-the-art results on TrecQA. When testing on
WikiQA, some variations of the architecture also report re-
sults that come close to [He and Lin, 2016], which delivers
state-of-the-art performance on WikiQA.

Although the systems detailed in these proposals run on
QA datasets, they are designed for a more general purpose,
measuring semantic similarity between a pair of sentences.
Take the QA Matching Matrix with Value-shared Weights
proposed by [Yang et al., 2016] as an example. Their design
comes with two justifications: First, the design allows terms
in a question to interact directly with terms in an answer sen-
tence, which is not possible with LSTM. Second, the design
can handle non-local similarities, which CNN cannot capture.
These two points justify the design being suitable not only for
handling question-answer sentence pairs but also any other
pair of sentences. This is because not only a question-answer
sentence pair, but any other sentence pair, like a hypothesis
and its premise in textual entailment, can have non-local sim-
ilarities and be decomposed into parts which can be compared
with each other. It is evident that [Yang et al., 2016] is a gen-
eral solution for measuring sentence similarity, just like sev-
eral earlier designs framed as QA solution [Feng et al., 2015;
Tan et al., 2015; dos Santos et al., 2016] and many other neu-
ral networks built for the Semantic Text Similarity (STS) task
and Recognizing Textual Entailment (RTE) task.

We think a dedicated solution like the one proposed in this
paper has potential for making the general solutions work bet-
ter on the specific task of answer sentence selection. Our as-
sumption is that the capture of semantic similarity does not

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4104

work with wh-words as well as with other words found in the
answer sentences. In a word vector space model, the repre-
sentation of a word is determined by its surrounding words.
However, we assume that the words surrounding wh-words
in the kind of documents used for training such models, e.g.
Wikipedia, have very different distributions from the wh-
words observed in question sentences. Documents used for
training word vectors consist of an overwhelming majority of
declarative sentences, and wh-words found in declarative sen-
tences are mostly relative pronouns, which we suppose have
totally different distribution than those observed in questions.
Therefore their vectors are not easily related to any specific
surrounding words, and thus getting a less defined position in
the embedding space.

We look for hints on a dedicated solution from techniques
addressing specific needs of the three stages of the standard
QA pipeline: question processing, passage retrieval and an-
swer processing. We find the idea of answer type detection
[Li and Roth, 2005] inspiring. It is a technique applied at
the first stage of the pipeline for taking care of wh-words and
turning them into hints on the semantic classes of answers.
These hints are reused at the final stage, answer processing,
for ranking NEs, patterns, bigrams and sentences from pas-
sages retrieved in the second stage. Along the same line, our
technique focuses on treatment of wh-words and aims at pro-
viding hints for answer sentence selection in the form of pro-
totypes, words selected for replacing wh-words in questions
before passing them to a neural network for computing se-
mantic similarity.

The term “prototype” is borrowed from studies of cate-
gorization: how objects are put into natural categories by
linguists and cognitive psychologists [Lakoff, 1987; Rosch,
1973]. Prototypes are considered as a representative of cat-
egories. Following this idea, our proposal is aimed to find
a representative word vector for each category of answer
words.

3 Replacing Wh-words with Prototypes
Replacing wh-words with prototypes of answers is the core
part of our technique. Given a question and a candidate an-
swer sentence as shown in the lower part of figure 1, we
replace the crossed-out wh-word “Who” with the prototype
of answers to who-type questions “David”. The transformed
question “David is the mayor of Chicago” is passed together
with an unchanged candidate answer sentence to a neural net-
work. From this point onwards, the pairs are processed in the
same way as in the upper part of figure 1, which illustrates
what previous proposals do.

In this work, we focus on three question types: who-type,
when-type and where-type questions. Therefore, we require a
prototype for each of the three types of questions. A shortlist
of candidates for the prototype of answers to a question type
are created with the Stanford NER using the 7-class model
[Finkel et al., 2005]. Out of the seven classes, namely, Loca-
tion, Person, Organization, Money, Percent, Date and Time,
three lists of NEs are created, one for the Person class, one
for the Location class and one for the Time and Date class
combined. Entities assigned the Person class are candidates

Rahm Emanuel
won the race for mayor

Benjamin Franklin
is featured on the bill

David

[]

[]

Who is the mayor of
Chicago ?

Who is on the $100
bill ?

cos

cos
... [...]

∑
cos

Figure 4: Summed Cosine Similarity between an NE and Short An-
swers

for the prototype of answers to who-type questions. Entities
assigned the Location class are candidates for the prototype
of answers to where-type questions. Entities assigned either
the Time or Date class are candidates for the prototype of an-
swers to when-type questions. It is obvious that entities in the
Person class are possible answers to who-type questions, en-
tities in the Location class are possible answers to where-type
questions, and entities in the Time or Date class are possible
answers to when-type questions. In contrast, we cannot find
such clear connections between other NE classes and other
type of questions. Therefore, we do not make any attempt to
find prototypes of answers to the other question types. As a
result, the question words in questions of these types are not
replaced.

The prototype of answers to a question type is selected
from a list of NEs by two methods. The first method is to
select the entity with the maximum summed cosine similar-
ity to the short answer of each question in the training set.
We would call this method the ”short answer-based method”.
Formally, given a NE list E, a set of short answers A, the
prototype ê obtained by this method is defined as:

ê = argmax
e∈E

∑
a∈A

cos(e, a) (2)

A concrete example showing how summed cosine similar-
ity is calculated for the NE ”David” with this method is given
in figure 4. First, we obtain the cosine similarity (cos) be-
tween ”David” and the short answer to the first question in
brackets ”Rahm Emanuel”. Next, we compute the cos be-
tween ”David” and the short answer to the second question
”Benjamin Franklin”. The same computation is repeated for
short answers to all other questions (omitted in figure 4 and
represented by . . .). Finally, we sum up the results for all
NE-short answer pairs.

The second method is to select the entity yielding trans-
formed questions with the maximum summed cosine sim-
ilarity to the correct answer sentence of each question in
the training set. We would call this method the ”wh-word
substitution-based method”. Formally, given a NE list E, a
set of answer sentences S, a set of questions Q, each contain-
ing the wh-word w, the prototype ê obtained by this method
is defined as:

ê = argmax
e∈E

∑
s∈S,q∈Q

cos(e⊕ (q 	 w), s) (3)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4105

Rahm Emanuel won
the race for mayor

Benjamin Franklin
is featured on the bill

David Who is the
mayor of Chicago ?

David Who is on
the $100 bill ?

...

∑

...

cos

cos

cos

Figure 5: Summed Cosine Similarity between Questions with Wh-
words Replaced by an NE and Answer Sentences

where ⊕ is the concatenation operator and 	 is the operator
for an operation that removes operand on the right from the
beginning of the operand on the left.

A concrete example showing how summed cosine similar-
ity is calculated for the NE ”David” with this method is given
in figure 5. First, we replace the question word ”Who” in the
first question with ”David” and obtain the cos between the
transformed question ”David is the mayor of Chicago” and
the correct answer sentence ”Rahm Emanuel won the race
for mayor”. Next, we replace ”Who” in the second question
with ”David” and compute the cos between the sentence re-
sulted from the substitution ”David is on the $100 bill” and
the correct answer sentence ”Benjamin Franklin is featured
on the bill”. The substitution and computation are repeated
for all other question-answer sentence pairs (omitted in fig-
ure 5 and represented by . . .). Finally, we sum up the results
for all transformed question-answer sentence pairs.

The same method would deliver different results of the se-
lection process if given a different list of named entities or
if words denoting these entities are assigned different vectors
by different word vector space models. For this paper, we
use a single vector space model (Glove trained on Wikipedia
[Pennington et al., 2014]) but we would like to experiment
with our technique on different datasets producing different
lists of NEs.

Table 1 shows top-3 NEs selected as most prototypic of an-
swers to each of the question types we are interested in by the
two methods we have detailed so far. R+S stands for com-
bining our technique with the short answer-based method.
R+W stands for combining our technique with the wh-word
substitution-based method. The former can only be used on
WikiQA as TrecQA comes with no indication of short an-
swers.

4 Experiments
4.1 Experimental Setups
The purpose of our experiments is to evaluate the effective-
ness of the proposed technique on the two neural networks
introduced in section 2, over two standard datasets and in two
ways of sampling: splitting the data by question type and pro-
cessing all the data in a dataset as a whole.

The purpose of running experiments and control experi-
ments on two base systems is for generalizing findings from
results of our experiments across architectures. The first neu-
ral network chosen for our experiments is found in [Tan et al.,

WikiQA TrecQA
Wh-word R+S R+W R+W

David William Stenn
who George Robert Tonelli

Michael David Friedan
1975 1923 1947-1956

when 1949 1919 1929-1968
1974 1946 1917-1963

Jamaica Florida Fussen
where Greece Ohio Mlada

Europe Virginia 94086

Table 1: Prototypes of Answers to Three Question Types

WikiQA TrecQA
type train dev test train dev test

sp
lit

who 119 15 34 190 11 8
when 86 11 16 116 13 19
where 71 17 22 96 9 11

fu
ll target 276 43 72 402 33 38

other 597 83 171 827 45 51

Table 2: Experimental Data by Question Type

2015]. The neural network proposed in the paper is selected
for being a general design. Our experiments are run on a third
party open source implementation of the design.1 In this im-
plementation, settings unmentioned in the original paper are
determined by the developer and we follow these settings.

The second neural network on which we run our experi-
ments is taken from [Rao et al., 2016]. This neural network
is selected for the state-of-the-art performance it delivers.

The actual implementation of the design of [Rao et al.,
2016] on which we run our experiments is done by the first
author of the paper.2 All default settings except for the batch
size provided with the implementation are kept when running
our experiments. For batch size, we use the commented-out
value of 25 instead of 1.

The two networks accept data as it is or transformed from
two datasets. The first dataset is TrecQA [Wang et al., 2007],
which is well established for benchmarking answer sentence
selection. It is large but it does not provide any indication of
the short answer to a question. Therefore, we cannot use it
with the short answer-based method. The second dataset we
use is WikiQA [Yi Yang, 2015]. It is smaller but it comes
with short answers, making it a good test bed for our short
answer-based method. We break down the content of each
dataset by question types in table 2.

Out of each dataset, we create a split set and a full set.
The split set consists in the three subsets containing only the
who, when and where questions each. Each of these subsets
is divided into training set, development set and a test set de-
pending on where they come from in the original dataset.

From the split set, we create a control version of it, whose
content is left unchanged. We also create (an) experimental
version(s) of the split set, which come with question words

1https://github.com/codekansas/keras-language-modeling
2https://github.com/castorini/NCE-CNN-Torch

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4106

WikiQA TrecQA
Baseline R+S R+W Baseline R+W

who 0.685 0.783 0.692 0.629 0.734
when 0.681 0.674 0.687 0.811 0.829
where 0.692 0.766 0.769 0.894 0.922
target 0.686 0.755 0.714 0.798 0.836

Table 3: Results from Processing the Split Set with [Tan et al., 2015]

WikiQA TrecQA
Baseline R+S R+W Baseline R+W

who 0.708 0.701 0.702 0.775 0.781
when 0.616 0.589 0.664 0.895 0.921
where 0.613 0.600 0.616 0.894 0.864
target 0.659 0.646 0.667 0.869 0.875

Table 4: Results from Processing the Split Set with [Rao et al., 2016]

replaced by prototypes selected by the wh-word substitution-
based method and the short answer-based method, if applica-
ble.

From the full set, we also create a control version and
an experimental version. The control version is just the
dataset itself, without being split or changed. The exper-
imental version is a mix of transformed questions and un-
transformed questions. The mix is created by replacing
wh-words in who-type questions, when-type questions and
where-type questions with prototypes selected by the wh-
word substitution-based method and leaving other types of
questions unchanged.

Once we obtain results from training one model per type
with transformed data (the experimental version of the split
set), we compare them with the results obtained by training
different models with untransformed data (the control version
of the split set) on the same base system over each question
type. Experimenting with split data allows us to see whether
our technique is effective for handling question types we are
interested in.

Next, we experiment with mixed data (experimental data of
the full set) and compare the results with those obtained from
passing untransformed data as a whole (the control version of
the full set) to the same network. This would enable us to see
how far any effect identified in target question types would be
diluted when they are mixed with non-targets. It is any impact
left on the mixed data, with the same number and variety of
questions as the control version of the full set used for eval-
uating previous proposals, which matters in telling whether
our technique has an advantage over these proposals.

4.2 Results
The results we obtained on the experiment run over the split
set on the [Tan et al., 2015]-based system and the [Rao et
al., 2016]-based system are shown respectively in table 3
and 4. Columns labeled ”Baseline” give results in terms of
Mean Reciprocal Rank (MRR) yielded from passing untrans-
formed data type by type to the base systems. Columns la-
beled ”R+S” give results yielded from prototypes selected by
the short answer-based technique. Columns labeled ”R+W”

WikiQA TrecQA
Baseline R+W Baseline R+W

MRR 0.638 0.660 0.759 0.829
MAP 0.628 0.652 0.712 0.756

Table 5: Results from Processing the Full Set with [Tan et al., 2015]

WikiQA TrecQA
Baseline R+W Baseline R+W

MRR 0.665 0.685 0.849 0.870
MAP 0.650 0.675 0.751 0.811

Table 6: Results from Processing the Full Set with [Rao et al., 2016]

give results yielded from prototypes selected by the wh-word
substitution-based method. The last row gives the micro-
averages of the MRR of the above 3 rows.

We can see that combining our technique with prototypes
selected by the wh-word substitution-based method generally
works better than the baseline (the bolded numbers in table
3 and table 4 indicates the best result for each base system
on each dataset). The combination is also more stable than
the combination of our technique with the short answer-based
method. Row three to row five shows that it improves MRR
in handling at least two of the three question types. The last
row confirms that the combination of our technique with the
wh-word substitution-based method generally works in show-
ing that the micro-averaged MRRs of the combination exceed
those of the baseline in all cases.

Results produced by experimenting with the full set on the
[Tan et al., 2015]-based system and the [Rao et al., 2016]-
based system are given in table 5 and 6 respectively. Columns
labeled ”Baseline” show the results in terms of MRR and
Mean Average Precision (MAP) from running the systems on
the original data.

The results show that we still beat the baseline by a mar-
gin with the full dataset where only the ‘who’, ‘where’ and
‘when’-questions had their wh-words replaced by prototypes
(the rest of the questions remain unchanged as in the original
dataset).

5 Conclusions and Future Directions
In this paper, we proposed a pre-processing technique that
improves the performance of the state-of-the-art neural net-
works for answer sentence selection task. The proposed tech-
nique leverages typological information from a NER and a
word vector space model.

The technique can be summarized in the following three
steps: First, we find a named entity with the maximum cosine
similarity on all answer sentences for a question type. Next,
we substitute the wh-words (we focused on only ‘where’,
‘when’ and ‘who’) with the named entity selected in the pre-
vious step, which we call a prototype. Finally, we provide
the most probable answer based on the semantic similarity
measure we found between the questions with its wh-word
replaced and the answer sentences using the state-of-the-art
neural networks. We have proven the effectiveness of our
technique in improving performance to the answer sentence

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4107

selection task over two datasets, on two state-of-the-art sys-
tem architectures and in two ways of sampling.

For future works we propose two possible research direc-
tions: One direction can be, to use a better method to de-
termine the question type more precisely (e.g. to support
cases like “in what year” as when-type questions). The other
direction can be to generalize the technique using tags as
the prototype of the answer (like <PERSON>, <PLACE>,
<YEAR>, etc), but this would require to train the tags em-
beddings (e.g.: duplicating the dataset to train the word em-
bedding model but replacing the words in each answer cate-
gory by its tag (e.g. ‘David’ → <PERSON>, ‘London’ →
<PLACE>)) and thus it would lose the simplicity of the ap-
proach proposed in this paper, in which we are able to use the
current general word vector model.

References
[dos Santos et al., 2016] Cı́cero Nogueira dos Santos, Ming

Tan, Bing Xiang, and Bowen Zhou. Attentive pooling net-
works. CoRR, abs/1602.03609, 2016.

[Feng et al., 2015] Minwei Feng, Bing Xiang, Michael R.
Glass, Lidan Wang, and Bowen Zhou. Applying deep
learning to answer selection: A study and an open task.
CoRR, abs/1508.01585, 2015.

[Finkel et al., 2005] Jenny Rose Finkel, Trond Grenager, and
Christopher Manning. Incorporating non-local informa-
tion into information extraction systems by gibbs sam-
pling. In Proceedings of the 43rd Annual Meeting on As-
sociation for Computational Linguistics, ACL ’05, pages
363–370, Stroudsburg, PA, USA, 2005. Association for
Computational Linguistics.

[He and Lin, 2016] Hua He and Jimmy J. Lin. Pairwise word
interaction modeling with deep neural networks for se-
mantic similarity measurement. In NAACL HLT 2016, The
2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, San Diego California, USA, June 12-
17, 2016, pages 937–948, 2016.

[He et al., 2015] Hua He, Kevin Gimpel, and Jimmy Lin.
Multi-perspective sentence similarity modeling with con-
volutional neural networks. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing, pages 1576–1586, Lisbon, Portugal, Septem-
ber 2015. Association for Computational Linguistics.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, November 1997.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

[Lakoff, 1987] George Lakoff. Women, Fire and Dangerous
Things. University of Chicago Press, 1987.

[Li and Roth, 2005] X. Li and D. Roth. The role of semantic
information. Journal of Natural Language Engineering,
2005.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
1532–1543, 2014.

[Rao et al., 2016] Jinfeng Rao, Hua He, and Jimmy Lin.
Noise-contrastive estimation for answer selection with
deep neural networks. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge
Management, CIKM ’16, pages 1913–1916, New York,
NY, USA, 2016. ACM.

[Rosch, 1973] Eleanor Rosch. Natural Categories. In Cogni-
tive Psychology, volume 4, pages 328–350. Kluwer, 1973.

[Tan et al., 2015] Ming Tan, Bing Xiang, and Bowen Zhou.
Lstm-based deep learning models for non-factoid answer
selection. CoRR, abs/1511.04108, 2015.

[Wang et al., 2007] Mengqiu Wang, Noah A. Smith, and
Teruko Mitamura. What is the jeopardy model? a quasi-
synchronous grammar for qa. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 22–32, Prague, Czech
Republic, June 2007. Association for Computational Lin-
guistics.

[Yang et al., 2016] Liu Yang, Qingyao Ai, Jiafeng Guo, and
W. Bruce Croft. anmm: Ranking short answer texts with
attention-based neural matching model. In Proceedings of
the 25th ACM International on Conference on Information
and Knowledge Management, CIKM ’16, pages 287–296,
New York, NY, USA, 2016. ACM.

[Yi Yang, 2015] Chris Meek Yi Yang, Scott Wen-tau Yih.
Wikiqa: A challenge dataset for open-domain question an-
swering. In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing. ACL As-
sociation for Computational Linguistics, September 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4108

