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Abstract
Distributed Denial of Service (DDoS) attacks have
been significant threats to the Internet. Traditional
research in cyber security focuses on detecting e-
merging DDoS attacks by tracing network package
flow. A characteristic of DDoS defense is that res-
cue time is limited since the launch of attack. More
resilient detection and defence models are typical-
ly more costly. We aim at predicting the likeli-
hood of DDoS attacks by monitoring relevant text
streams in social media, so that the level of defense
can be adjusted dynamically for maximizing cost-
effect. To our knowledge, this is a novel yet chal-
lenging research question for DDoS rescue. Be-
cause the input of this task is a text stream rather
than a document, information should be collected
both on the textual content of individual posts. We
propose a fine-grained hierarchical stream model to
capture semantic information over infinitely long
history, and reveal burstiness and trends. Empir-
ical evaluation shows that social text streams are
indeed informative for DDoS forecasting, and our
proposed hierarchical model is more effective com-
pared to strong baseline text stream models and dis-
crete bag-of-words models.

1 Introduction
A Distributed Denial of Service (DDoS) attack employs mul-
tiple compromised systems to interrupt or suspend services
of a host connected to the Internet [Carl et al., 2006]. Vic-
tims are often high-profile web servers such as banks or cred-
it card payment gateways, and therefore a single attack may
cause considerable loss [Matthews, 2014]. DDoS attacks are
difficult to detect and predict [Bleakley and Vert, 2011]. Tra-
ditionally, the aim of a DDoS detection system is to detect
and distinguish malicious packet traffic from legitimate traf-
fic [Mirkovic and Reiher, 2004]. Because malicious traffic
occurs only after a DDoS attack has begun, there is limited
time to prevent damage. In practice, more dynamic defense
systems can be deployed for increased resilience to DDoS,
with increased cost.

∗This work has been done when the first author worked at SUTD.

Post Target
The Thai government is about to end their
citizens Internet freedom.

Thai Gov-
ernment

sooooooooooo basically they are all leaving
soon, sony is mad as hell. SONY

Table 1: Example tweets with attack targets.

Ideally, if the likelihood of DDoS attacks can be forecasted,
it can be used to guide configuration of a DDoS detection and
defense system over a certain period of time — when a DDoS
is more likely to happen, a more dynamic and costly config-
uration can be used; but when DDoS is unlikely, the defense
level can be reduced to maximize cost effectiveness. This pa-
per investigates the feasibility of forecasting the likelihood of
DDoS attacks before they happen by monitoring social medi-
a stream. Our motivation is that the attacked targets may be
mentioned unfavorably or arouse negative sentiments in so-
cial media text. Some examples are shown in Table 1. The
first tweet describes a future policy of the Thai government,
which led to a DDoS attack on the government website. The
second is a negative post towards SONY, and bursty negative
sentiment in similar posts can suggest possible DDoS attack-
s. Tweets may not contain hints to all network attacks but we
hypothesize that textual information on social media can help
network engineers to take necessary actions ahead of time.

Based on the above assumptions, the setting of our research
is to monitor tweet streams for a certain target of concern,
such as the Thai government and SONY. Our task is to pre-
dict whether a DDoS event is likely occur in the next day,
given the tweet stream over a historical period related to the
monitored target. We choose daily forecast as the time span.
Without loss of generality, our model can be used for differ-
ent time span granularity. This is an ambitious yet challeng-
ing task. Since the input is a text stream rather than a doc-
ument, an ideal model should capture both tweet-level infor-
mation and stream-level information such as burstiness and
sentiment over history.

We propose several deep learning models that induce
stream features automatically. Words are represented using
distributed vector embeddings injecting sentiment informa-
tion, and recurrent neural networks are used to cast tweet
streams of varying lengths into fixed-size vectors. We com-
pare flat recurrent stream models with a hierarchial stream
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model, which arranges infinity long tweets history into a
day-week-month hierarchical structure using neural networks
to automatically induce streams semantic information. Re-
sults show that text streams are informative for predicting
DDoS attacks. In addition, the hierarchical stream mod-
el that considers long and short term history is more ef-
fective compared to fully sentiment-based and flat stream
models. Our code and dataset are both available at http-
s://github.com/wangzq870305/ddos forecast.

2 Related Work
DDoS attacks have become significant threats to the Inter-
net. Effort has been made from both the academia and the
industry on their detection and defense [Carl et al., 2006;
Zargar et al., 2013]. Typical strategies monitor header infor-
mation of network packets, deriving an activity profile (which
can be the average packet rate of a network flow of consec-
utive packets with similar fields, such as address, port, and
protocol) [Mirkovic and Reiher, 2004]. DDoS can be detect-
ed by measuring network activity with all inbound and out-
bound flows. For example, change-point detection algorithms
isolate a change in traffic statistics caused by attacks. These
approaches initially filter target traffic data by the address,
port, or protocol, storing the resultant flow as a time series,
which can show a statistical change when a DDoS flooding
attack begins [Bleakley and Vert, 2011].

The key idea of most DDoS detection methods in cyber
security is to focus on malicious packet traffic. However, net-
work traffic will change only when a DDoS attack has begun.
Hence there is limited time to prevent damages. Our approach
predicts the likelihood DDoS attacks from social media text
before they begin, and hence can be used to complement and
guide network traffic monitor for DDoS defense.

In prior NLP research, the most relevant work is DDoS
event mention extraction, which extracts DDoS event men-
tions from social media. In particular, Ritter et al. [2015]
exploited expectation regularization to extract DDoS even-
t mentions from large amounts of raw tweets that contain the
keyword ‘ddos’. Chang et al. [2016] proposed a LSTM-
based neural model that learns tweet-level features automati-
cally, which improve the accuracies over the method of Ritter
et al. [2015]. Different from their work, which only considers
extracting DDoS related posts, we take a step further, aiming
to predict the likelihood of DDoS attacks according to tweet-
s. Meanwhile, Ding et al. [2015] proposed a deep learning
method for event-driven stock market prediction, where two
deep convolutional neural networks are used to model short-
term and long-term influences of events on stock price move-
ments, respectively. Our work is similar to the above work,
yet we use recurrent networks rather than CNNs to model
streams of texts, showing that they give better accuracies. To
our knowledge, we are the first to use a hierarchical RNN
model to render a text stream, and are the first to use text
mining for event prediction in the cyber security domain.

3 Basic Networks
We take Convolutional Neural Network (CNN) [Collobert et
al., 2011] and Long Short-Term Memory (LSTM) [Hochreit-

er and Schmidhuber, 1997] as two basic components in build-
ing our neural models. Below we specify the exact CNN and
LSTM variations that are used in this paper.

3.1 Convolutional Neural Network (CNN)
Given a set of input vectors {x1, x2, ..., xn}, denote:

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn (1)
CNN [Collobert et al., 2011] uses convolution functions to
compress x1:n into a feature vector. A convolution feature zi
is generated from a window of input xi:i+h−1 by:

zi = tanh(W · xi:i+h−1 + b) (2)
where the parameters W is a matrix, b ∈ R is a base term,
and tanh is a non-linear function.

The same convolution formula is applied toX1:n and a max
pooling operation is performed on to Z = [z1, z2, ..., zk] to
obtain a vector h, where

hj = max
i
Zj,i, 0 < j ≤ m (h ∈ Rm) (3)

For the rest of the paper, we use CNN(x) to denote the
CNN operation above on input X1:n to obtain h.

3.2 Long Short-Term Memory (LSTM)
LSTM [Hochreiter and Schmidhuber, 1997] models a recur-
rent state transformation sequence from an input sequence
{x1, x2, ..., xt} to a hidden state sequence {h1, h2, ..., ht}.
At each time step, an input gate, a memory gate and a out-
put gate, denoted as it, ft and ot respectively, are used to
obtain ht as follows:

it = σ(W (i)xt + U (i)hi−1 + b(i)) (4)

ft = σ(W (f)xt + U (f)ht−1 + b(f)) (5)
ot = σ(W (o)xt + U (o)ht−1 + b(o)) (6)
ut = tanh(W (u) + U (u)ht−1 + b(u)) (7)

ct = it � ut + ft � ct−1 (8)
ht = ot � tanh(ct) (9)

The above is the standard LSTM variation without cou-
pled input and forget gate or peephole connections. σ de-
notes the sigmoid function. For the rest of the paper, we use
LSTM(xt, ht−1) to denote the LSTM operation to obtain ht.

4 Task Definition
The main research question that we investigate is whether
tweet streams contain useful information for DDoS defense.
Our task is to predict the likelihood that a DDoS event will
occur to a certain target in day d, given the tweet stream over
a history period X related to the monitored target. X is a
sequence of NP days (X = {dNP

, ..., d2, d1}) immediately
before d, where d1 is the day before d and di > di+1. NP

can be arbitrary large. We choose to use a day model as the
basic model instead of a hour model or minute model, be-
cause tweets from a certain target on each hour and minute
are relatively few, and our DDoS defense system is best re-
configured daily. The set of tweets posted on di is denoted
as di = {t1, t2, ..., tNd

i }, where Nd
i denotes the number of

tweets of the day di. Each tweet consists of a sequence of
words tj = {w1, w2, ..., wN

t
j }, where N t

j denotes the length
of the tweet tj .
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Figure 1: Overview of the proposed framework.

4.1 Distributed Word Embeddings
In the input level, we represent each word wk with a K-
dimensional embedding [Mikolov et al., 2013], thus mapping
a tweet tj into a matrix

tj = {e(w1), e(w2), ..., e(wN
t
j )} (10)

Word embeddings capture distributed semantic informa-
tion, and are thus useful for representing tweet content and
bursty events. On the other hand, we find that modelling sen-
timent information explicitly in the input level can be useful
for DDoS forecasting also. We follow Vo and Zhang [2015],
using the sentiment-enriched embedding [Tang et al., 2014]
of words in sentiment lexicons as a second representation of
tj

tj = {es(ws1), es(ws2), ..., es(wsN
t
j )} (11)

In order to leverage both common word embeddings and
explicit sentiment information, we combine the two types of
embeddings by simply concatenation the two tweet represen-
tations above

tj = {e(w1), e(w2), ..., e(wN
t
j ),

es(w
s1), es(w

s2), ..., es(w
sNt

j )}
(12)

4.2 Neural Stream Models
For forecasting DDoS attacks, we use a tweet model to rep-
resent text-level features based on the tweet content, a day
model to capture daily tweet representations, and a stream
model to capture information over the daily stream history,
such as changes in bursty topics and sentiments. Hierarchical
stream representation is fed to a prediction model for DDoS
forecast. The overall architecture of our model is shown on
Figure 1.

Tweet Sub Model. We use a CNN to construct the tweet
model, representing text-level features for individual tweets.
CNN has been shown to give competitive results on sentence
modeling [Kim, 2014; Johnson and Zhang, 2015]. The input
is the sequence of words of tweet ti, and the output is a vector
representation of the tweet otweetj

otweetj = CNN(tj) =

CNN(〈e(w1), e(w2), ..., e(wN
t
j ),

es(w
s1), es(w

s2), ..., es(w
sNt

j )〉)

(13)

Day-level Sub Model. We treat all relevant tweets in
a day as a unit, and use a CNN to extract a unified daily

representation vector. In particular, odayj = CNN(dj) =

CNN(〈otweet1 , otweet2 , ..., otweetND
〉) is used for representing the

features of all the tweets in the day dj .
Stream Sub Model. As shown in Figure 1, daily tweets

form a consecutive sequence of vectorsOdayNp
, ..., Oday2 , Oday1 .

We use stream models to capture text stream information on
top of the day model. A simple stream model can be a one-
layer LSTM on the daily tweet sequence directly. On the
other hand, more sophisticated models can be exploited by
capturing richer features over a text stream. Without los-
ing generality, we use h = stream(oday, Oday1 ) to denote
the stream model output, which is a fix-sized vector h given
{OdayNp

, ..., Oday2 , Oday1 } of the day model. We use LSTM as a
basic component for streaming modeling. Different from dis-
crete models, a recurrent neural stream models can effectively
capture salient features from a daily tweet stream, yet retrain-
ing an infinitely long history without losing short or long term
data. In this study, we propose and compare three neural net-
work structures to this end. The discussion of stream models
will be described in the next section.

Prediction Sub Model. We use a softmax classifier to pre-
dict the attack label y based on h, where label probabilities
are calculated as:

p̂θ(y|X) = softmax(W (s)h+ b(s)) (14)

ŷ = argmax
y

p̂θ(y|X) (15)

For training, the loss function is the negative log-likelihood
of the true class labels y(k) at each node (k ∈ {0, 1}):

J(θ) = −1

2

1∑
k=0

log p̂θ(y
(k)|X(k)) +

λ

2
||θ||22 (16)

where the superscript k indicates the kth labeled node, and λ
is an L2 regularization hyperparameter.

We apply online training, optimizing parameters by using
Adagrad [Duchi et al., 2011]. In order to avoid over-fitting,
dropout [Hinton et al., 2012] is applied to word embeddings
with a ratio of 0.2. For LSTM stream models, we empirically
set the size of hidden layers to 32. For CNNs, the dimension
of the input layer is set to 128, and the output dimension of
convolution layers is 32. We train word embeddings using
the Skip-gram algorithm1 [Mikolov et al., 2013]. All of the
hyperparameters are turned in the development dataset.

5 Stream Model
Now we return to details of stream models. As mentioned in
the previous section, given a sequence of daily history tweet
vectors {odayNp

, ..., oday2 , oday1 }, the stream model calculates a
fixed sized vector h that encodes salient features from the
stream, such as bursty trends.

5.1 Vanilla Stream Model
As a baseline, we model a tweet stream by using an L-
STM to recurrently capture daily tweet history. Formal-
ly, given {odayNp

, ..., oday2 , oday1 } from the day model, we

1https://code.google.com/p/word2vec/
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Figure 2: Short- and long-term model.

obtain a corresponding sequence of hidden state vectors
{hdayNP

, ..., hday2 , hday1 }, where,

hdayt = LSTMDS(odayt , hdayt+1) (17)

From this sequence, the last hidden state vector hday1 is
used as the stream representation vector h, and fed to the pre-
diction model for forecasting the likelihood of DDoS attack
on day d.

5.2 Short- and Long-Term Stream Model
The vanilla stream model above can capture unbounded his-
tory features from a daily tweet stream. However, it does
not explicitly model the difference between short and long
term histories, which can be useful for two major reasons.
First, a contrast between short and long term history can re-
veal burstiness and trends. Second, the relative importance
of longer term history should be smaller compared to that of
shorter term history. To verify the above hypothesis, we de-
velop a stream model that captures short-term and long-term
histories separately with different LSTMs.

The structure of the proposed model is shown in Figure 2.
In particular, a weekly LSTM model is used to capture short-
term history {d7, d6, ..., d1}, and a monthly LSTM model is
used to capture long-term history {d30, d29, ..., d1}. Formal-
ly, for the weekly model, the hidden state vectors are:

hweekt = LSTMSL
week(o

day
t , hweekt+1 ),

t ∈ {7, 6, ...1}
(18)

For the monthly model, the hidden state vectors are:

hmontht = LSTMSL
month(o

day
t , hmontht+1 ),

t ∈ {30, 29, ...1}
(19)

The state vectors of the weekly and monthly models are
concatenated with the daily state vector oday1 into a single
vector h = [oday1 , hweek1 , hmonth1 ], which is fed to the DDoS
forecasting layer.

5.3 Hierarchical Stream Model
A drawback of the Short- and Long-Term Model above is that
the size of utilizing history is limited to 30 days. For captur-
ing infinitely long history without losing short and long term
difference, we propose a fine-grained stacked LSTM model,
arranging daily, weekly, and monthly history into a hierarchi-
cal structure. Figure 3 shows the model, which consists of
three stacked LSTM layers.

Day-level. The first layer is the same as the vanilla se-
quence model, which maps the daily tweet representation
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Figure 3: Hierarchical stream model.

sequence {odayNP
, ..., oday1 , oday1 } into a hidden state sequence

{hdayNP
, ..., hday2 , hday1 }. We call this model the day-level mod-

el.
Week-level. The second layer is stacked on top of the

day-level model, taking the sequence of hidden state vec-
tors of every 7 days, namely {oweekNW

, ..., oweek2 , oweek1 } =

{hdayDend
, ..., hdayD8

, hdayD1
} as input, where NW is the number

of weeks, and Dend = bNP /7c ∗ 7+1 is the last history day.
The weekly hidden state vectors are:

hweekt = LSTMWL(oweekt , hweekt+1 ) (20)

Month-level. The third layer is stacked on top of the
week-level model, taking the sequence of hidden state vec-
tors of every 4 weeks, {omonthNM

, ..., omonth2 , omonth1 } =

{hweekWend
, ..., hweekW5

, hweekW1
} as input, where NM is the number

of months, and Wend = bNW /4c ∗ 4 + 1 is the last history
week. The monthly hidden state vectors are:

hmontht = LSTMML(omontht , hmontht+1 ) (21)

The hierarchical state vectors are concatenated into a single
vector h = [hday1 , hweek1 , hmonth1 ], which is fed to the predic-
tion model.

The hierarchical stream model has several potential ad-
vantages. Compared to the flat vanilla model, it explicitly
captures history information of various degrees of granulari-
ty without constraining maximum history length. Compared
to the short- and long-term stream model, back-prorogation
training can be performed from the monthly layer to the
weekly and daily layer, allowing tight integration of infor-
mation by joint learning.

6 Experiments
6.1 Experimental Settings
Data. A DDoS event can be defined as a triplet (e, t, d),
where e,t,d denote event, target and date, respectively. For
building our benchmark dataset, we collect these three type-
s of information from ddosattacks.net, a DDoS news web-
site2. Most articles from the website correspond to an event
e, and we employ one annotator to read through each article
to extract the exact date d of the event. We use the Stanford

2http://www.ddosattacks.net/

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4154



Event e Target t Date d

Blizzard Battle.net Hit With
Major DDoS Attack Blizzard April 15,

2016
Hacker Redirects DDoS At-
tack to Israeli Intelligence
Site

Mossad,
Israeli

April 5,
2016

Hackers Target NASA with
DDoS Attack NASA March 23,

2016

Table 2: Example event triples.

Named Entity Recognizer3 to extract name entities from the
titles and contents of the news articles, and then manually
extract the target t of each event e. In the end, we use this
semi-automatic process to obtain 170 gold-standard events in
the form of (e, t, d). Each event turns out to have a unique
target, which demonstrates the sparsity of DDoS attack for
each target, and the challenge of our task. Some examples
are illustrated in Table 2.

Our goal is to monitor tweet streams for a certain target of
concern. Events of a target t are predicted daily using history
tweets that mention t. The target names are used as keywords
to search and collect the related tweets. History tweet data are
collected from August, 2015 to April, 2016, the same span
for collecting DDoS news event. For each target, we collect
about 200 posts per month4, obtaining 17760 tweets related
to all the 170 targets. Note that we only collect those tweets
which mention a target explicitly in order to make sure that
the tweets are related to the target.

We use 80 random targets for training, 60 for development,
and the remaining 30 for testing. For each target, there is
exactly one day in the dataset when a DDoS attack occurred,
which is regarded as a positive sample. The remaining days,
which do not see attacks, are considered negative samples.

Metric. We use the area under the precision-recall curve
(AUC) [Davis and Goadrich, 2006], where precision is the
fraction of predicted events that are correct, and recall is the
fraction of gold events that are predicted.

6.2 Development Experiments
Imbalanced data
Our data set is highly imbalanced, with the ratio between pos-
itive and negative samples being very small. We investigate
four typical strategies to address the issue, which include: 1)
under-sampleing-100, using 1:100 imbalanced positive and
negative samples. 2) under-sampling-1 [Li et al., 2011], us-
ing one sample of negative data for each positive data. 3)
over-sampling, re-sampling the positive data to make the
number of positive samples same as negative sample [Chawla
et al., 2002]. 4) cost-sensitive training [Sun et al., 2007],
where the cost weight for a negative sample is set to 0.01,
according to a 1:100 imbalanced ratio between positive and
negative samples, and the cost weight for a positive sample
is 1. SVM5 is taken as the basic classify model for all these

3http://nlp.stanford.edu/software/CRF-NER.shtml
4We use Google search to collect the history tweets.
5SVM light is used as the implementation for the SVM classifi-

er, http://svmlight.joachims.org/

Method AUC
under-sampling-100 0.099
under-sampling-1 0.162
over-sampling 0.134
cost-sensitive 0.141

Table 3: Performance of different imbalanced data classification
approaches.

approaches.
Table 3 shows the results on the development set. Al-

l imbalanced training strategies lead to better AUC compared
with the baseline approach. In addition, under-sampling
outperforms both over-sampling and cost-sensitive training.
which can be due to the fact that over-sampling yields mul-
tiple copies of the same features. This is consistent with the
observation of Li et al. [2011] on imbalanced sentiment clas-
sification. Among the performances of under-sampling with
different positive:negative ratio, a 1:1 ratio gives the best per-
formance. We thus use under-sampling with balanced sam-
ples in the following subsections. Note that the development
and test data are still imbalanced.

Correlation between tweets and DDoS events
As a baseline development experiment, we use a set of vanilla
stream models to verify the correlation between history tweet-
s and DDoS events. We compare six popular supervised clas-
sification models, which include:
• Neg-Term-count is the baseline sentiment-based model,

we count the negative words from tweets each day, fore-
casting an attack if the number of negative words is larg-
er than a threshold α, which is the average number of
negative words on training data.
• SVM is a basic SVM model with bag-of-word features.
• SVM-emb is uses word embeddings rather than one-hot

vectors for SVM features.
• SVM-emb-senti uses both common word embedding and

sentiment-enriched embeddings in Section 4.1.
• LSTM-emb is the proposed vanilla stream model using

skip-gram embeddings.
• LSTM-senti is the vanilla stream model with sentiment-

enriched word embeddings.
• LSTM-emb-senti is the vanilla stream model with both

both common word embedding and sentiment-enriched
embeddings.

History tweets over a week are used. The results are shown
in Table 4.

Is text useful for DDoS forecasting? As can be see from
Table 4. A first research question to consider is the feasi-
bility of stream DDoS forecasting. This services as a proof
of concept. A random baseline gives very low AUC, given
the sparsity of DDoS events. All text-based models outper-
form the random baseline significantly (p-value < 0.01 using
t-test), which demonstrates that text from social media is in-
deed informative for DDoS forecast.

Useful features. Next we study the sources of information
that are useful. Neg-Term-count is a rather strong baseline,
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Method AUC
Neg-Term-count 0.233
SVM 0.164
SVM-emb 0.212
SVM-emb-senti 0.254
LSTM-emb 0.259
LSTM-senti 0.232
LSTM-emb-senti 0.293

Table 4: Correlation between tweets and DDoS events.

Method AUC
LSTM-day 0.256
LSTM-week 0.293
LSTM-month 0.278

Table 5: Effectiveness of date range.

indicating that sentiment information is related to DDoS at-
tack event forecasting. As a baseline using all words, SVM
performs rather badly, showing the disadvantage of sparse
models. Embedding features outperform SVM, and give re-
sults close to Neg-Term-count. Comparison between SVM-
emb and SVM-emb-senti, and between LSTM-emb and LSTM-
emb-senti shows that sentiment information is highly useful
for DDoS event forecasting. Our final LSTM model outper-
forms other models significantly (p-value< 0.01 using t-test).
This indicates the potential of supervised learning for the spe-
cific task given a neural model with sufficient representation
learning power. In our case, LSTM can leverage non-local
semantic information for sentence representation beyond sen-
timent signals.

Influence of date range

We measure the influence of different history date ranges on
the vanilla LSTM stream model (Section 5.1). Shown in Ta-
ble 5, LSTM-week outperforms both LSTM-day and LSTM-
month. Intuitively, if the date range is too small, the stream
model cannot capture sufficient historical information for pre-
diction. However, a very large history date range may contain
noise and irrelevant information. This suggests the usefulness
of combining different history granularities.

Influence of stream models

We compare the different stream models in Section 5. In par-
ticular, LSTMV S is the vanilla stream model (Section 5.1),
LSTMSL is the LSTM based stream model with short and
long term history (Section 5.2), and LSTMHS is the hier-
archical LSTM stream model (Section 5.3). From Table 6,
we can find that both LSTMHS and LSTMSL outperform
the basic LSTMV S , which only considers daily text stream
information. This confirms the usefulness of combining d-
ifferentially historical ranges. In addition, LSTMHS , which
considers the hierarchical tweet structure, is more effective
than LSTMSL, which only considers tweet sequence over
a month. This demonstrates the advantage of LSTMHS by
considering unbounded history.

Method AUC

LSTMV S 0.293
LSTMSL 0.321
LSTMHS 0.346

Table 6: Effectiveness of stream models.

Method AUC
Neg-Term-Count 0.234
SVM 0.154
SVM-emb-senti 0.254
LSTMHS 0.305

Table 7: Final results on the test dataset.

6.3 Final Results
The final results on the test data set are given in Table 7. The
proposed hierarchical structure model LSTMHS brings sig-
nificant improvements compared to the baseline Neg-Term-
count and SVM-emb-senti models (p-value < 0.01 using t-
test), which is in line with the development experiments.
These results show the usefulness of leveraging social stream
text for assisting DDoS detection and defence. On the oth-
er hand, the absolute AUC of our models are lower than
0.5, which demonstrates that DDoS forecasting is a highly
challenging task. Nevertheless, our work can be regarded as
proof-of-concept, since both models significantly outperform
a random baseline without textual information.

7 Conclusion
We investigated the novel yet challenging task of DDoS fore-
casting using text streams from social media, which can be
used to augment DDoS attack detection methods in the cyber
security domain, by offering useful warnings before a DDoS
begins. We proposed a fine-grained hierarchial stream mod-
el using deep learning, which arranges infinity long tweets
history into a day-week-month hierarchy. Evaluation showed
that social text streams are indeed informative for DDoS fore-
cast, and our proposed hierarchical stream model is more
effective compared to flat baseline text stream models and
sentiment-driven models.
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