
A Variational Autoencoding Approach for Inducing Cross-lingual Word
Embeddings

Liangchen Wei Zhi-Hong Deng⇤
Key Laboratory of Machine Perception (Ministry of Education),

School of Electronics Engineering and Computer Science, Peking University,
Beijing 100871, China

liangchen.wei@pku.edu.cn zhdeng@cis.pku.edu.cn

Abstract
Cross-language learning allows one to use training
data from one language to build models for an-
other language. Many traditional approaches re-
quire word-level alignment sentences from paral-
lel corpora, in this paper we define a general bilin-
gual training objective function requiring sentence
level parallel corpus only. We propose a variational
autoencoding approach for training bilingual word
embeddings. The variational model introduces a
continuous latent variable to explicitly model the
underlying semantics of the parallel sentence pairs
and to guide the generation of the sentence pairs.
Our model restricts the bilingual word embeddings
to represent words in exactly the same continuous
vector space. Empirical results on the task of cross
lingual document classification has shown that our
method is effective.

1 Introduction
Distributed representations have become an increasingly im-
portant tool in machine learning. Typically, word embed-
dings are trained to represent words in a continuous space
in an unsupervised way, which characterizes the lexico-
semantic relations among words. In many NLP tasks, they
prove to be high-quality features, in contrast to hand-crafted,
and thus expensive features. Successful applications of dis-
tributed representations include sentence modeling[Bengio et
al., 2003], sentiment analysis[Socher et al., 2011] and docu-
ment classification[Klementiev et al., 2012].
The use of distributed representations is motivated by the

idea that they capture semantics and syntax as well as encod-
ing similarity between words. Like words have synonyms in
the same language, word pairs across language also share re-
sembling semantics. Mikolov[Mikolov et al., 2013] observed
a strong similarity between vector spaces across languages
and suggested a linear cross-lingual mapping between the two
vector spaces is technically possible.
Recently, it is becoming more and more desirable to have

unsupervised techniques which can learn useful syntactic and
semantic features that are invariant to tasks or languages
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which we are interested in. With accurate joint-space em-
beddings of both language, one can develop abundant textual
resources from language A to build models for language B.
This is especially useful for transferring limited label infor-
mation from high-resources to low-resources languages, and
has been demonstrated effective for document classification
by Klementiev[Klementiev et al., 2012], whose model out-
performs a strong phrase based machine translation baseline.
Defining a joint space objective function is crucial at the

core of cross-lingual learning. Several models for training
cross-lingual embeddings have been proposed, usually start-
ing from a monolingual objective following cross-lingual ob-
jective as constraints. [Zou et al., 2013] learned word embed-
dings of different languages in separate spaces with mono-
lingual corpus and projected the embeddings into a joint
space. [Mikolov et al., 2013] learned a linear projection
from one embedding space to another. It was extended by
[Faruqui and Dyer, 2014], who simultanteously projected
source and target language embeddings into a joint space
using canonical correlation analysis. Bilingual autoencoder
for bags-of-words (BAE)[AP et al., 2014] reconstructed the
bag-of-words representation of semantic equivalent sentence
pairs. BilBOWA[Gouws et al., ] extended CBOW and skip-
gram models with minimizing differences between parallel
sentence pair representations. [Šuster et al., 2016] learned
multi sense word embeddings with discrete autoencoders.
Many of these models can be viewed as instances of a more
general framework for inducing cross-lingual word embed-
dings, which integrates monolingual objectives(similar words
in each language have similar embeddings) and cross-lingual
objectives(similar words across languages have similar repre-
sentations).
Inspired by the recent advances[Kingma and Welling,

2013; Rezende et al., 2014] in neural variational inference,
we propose a variational autoencoding model(BiVAE) to
cross-lingual learning. Unlike the framework mentioned
above, we explicitly model the underlying semantics of bilin-
gual sentence pairs(see Figure1). Similar to [Suzuki et al.,
2016], we make two assumptions about BiVAE:

• There exists a continuous latent variable z from this un-
derlying semantic space.

• This variable z, guides the generative process of the
equivalent sentence pairs x and y independently, i.e.
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Figure 1: Illustration of BiVAE as a directed graph model. x and
y denote the observable semantic equivalent sentence pairs. We
use solid lines to denote generative model p✓(x | z), p✓(y | z)
and dashed lines to denote the variational inference approximation
q�(z | x, y). Both ✓ and � are trainable parameters.

p(x, y | z) = p(x | z)p(y | z).
With this assumption, the following formulation charac-

terizes our probabilistic language model:

p(x, y) =

Z

z

p(x, y | z)p(z)d
z

(1)

This brings the benefits that the latent variable z serves as a
global variable capturing underlying semantics between par-
allel sentence pairs, thus forcing the words from different lan-
guage to be embedded in a unified vector space without the
help of extra alignment constraints. However the incorpo-
ration of it into the probabilistic language model brings one
challenge: the posterior inference in this model is intractable.
In order to address this issue, we propose the variational
encoder-decoder model to cross-lingual learning, motivated
by recent success of variational neural inference[Kingma and
Welling, 2013; Rezende et al., 2014]. We employ deep neu-
ral networks to model the posterior distribution of the latent
hidden variable as they are capable of learning highly non-
linear functions thus making the inference tractable. In order
to train model parameters efficiently, we apply a reparame-
terization trick[Kingma and Welling, 2013; Rezende et al.,
2014] on the variational lower bound which enables us using
stochastic gradient optimization during training. Specifically,
BiVAE has two essential components:
• A variational inference network infers the posterior dis-
tribution of z according to the encoded representation of
parallel sentence pairs(i.e. q

�

(z | x, y)).
• A decoder network reconstructs the observable sen-
tences conditioned on the inferred distribution of z(i.e.
p

✓

(x | z), p
✓

(y | z)).
Model details will be introduced in section 3. We train the

cross-lingual word embeddings with the proposed model and
apply these embeddings to a standard document classifica-
tion task and show that training with parallel corpus only, our
model performs comparably with previous reported state-of-
the-art models.

2 Background: Variational Autoencoder
In this section, we briefly review the VAE[Kingma and
Welling, 2013; Rezende et al., 2014]. The VAE is a gener-
ative model which is based on a regularized version of the

standard autoencoder. It modifies the autoencoder architec-
ture by replacing the deterministic function �

enc

with a learn-
able posterior recognition model, q(z | x). The VAE imposes
a prior distribution on the hidden variable z which enforces a
regular geometry over the hidden representation and makes it
possible to draw proper samples from the model using ances-
tral sampling. Intuitively, the VAE learns codes not as single
points, but as soft ellipsoidal regions in latent space, forcing
the codes to fill the space rather than memorizing the training
data as isolated codes.
Given an observed variable x, the VAE introduces a latent

variable z, and assumes that x is generated from z which can
be characterized by the following formula:

p(x, z) = p

✓

(x | z)p(z) (2)

where ✓ denotes the generative parameter of the model and
p(z) denotes the prior distribution of the latent variable z,
e.g Gaussian distribution. p

✓

(x | z) is the conditional dis-
tribution that models the generative process of x conditioned
on the hidden variable z, typically estimated via a non-linear
deep neural network.
The integration of z brings a challenge on the posterior in-

ference and VAE adopts two techniques to tackle this prob-
lem: variational neural inference and reparameterization.
Variational neural inference employs deep neural network

to approximate the posterior distribution of latent variable z,
which is parameterized by a diagonal Gaussian distribution:

q

�

(z | x) = N (µ(x), diag(�2(x))) (3)

where mean µ(x) and variance diag(�2(x)) are both nonlin-
ear functions of x parameterized with deep neural networks.
Reparameterization reparameterizes z as a function of µ

and � instead of using the standard sampling method. VAE
introduces a standard Gaussian noise variable ✏ for generat-
ing samples from q

�

(z | x), namely the reprarameterization
trick:

z̃ = µ+ � � ✏ (4)
VAE uses an objective which encourages the model to keep

its posterior distribution of z close to its prior distribution.
And this objective is a valid lower bound estimation on the
true log likelihood of the data, making VAE a generative
model. The objective takes the following form:

L
V AE

(✓,�;x) = �KL(q
�

(z | x) || p(z))+
E
q�(z|x)([logp✓(x | z)])  logp(x)

(5)

Maximizing the objective function is equivalent to maxi-
mizing the reconstruction likelihood of observable variable
x and minimizing the Kullback-Leibler divergence between
the approximated posterior and the prior distribution of latent
variable z.

3 Bilingual Variational Autoencoder
In this section, we introduce our proposed model in detail.
Formally, given the definition in Eq.1, the variational lower
bound of BiVAE can be formulated as follows:

L
BiV AE

(✓,�;x, y) = �KL(q
�

(z | x, y) || p(z))
+E

q�(z|x,y)[logp✓(x | z) + logp

✓

(y | z)]  logp(x, y)
(6)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4166



LSTMCell

LSTMCell

LSTMCell

LSTMCell

LSTMCell

LSTMCell

𝑥1 𝑥2 𝑥3

ℎ
ℎ𝐴

LSTMCell LSTMCell

LSTMCell LSTMCell

𝑦1 𝑦2

ℎ𝐵

𝑧

MLP

Neural Sentence Encoder

𝜇 𝑙𝑜𝑔𝜎2
Variational Inference Network

𝑧′

𝑉𝐴1 𝑉𝐴2 𝑉𝐴3 𝑉𝐴4 𝑉𝐵1 𝑉𝐵2 𝑉𝐵3 𝑉𝐵4

Decoder Network

LSTMCell

LSTMCell

𝑥4

LSTMCell

LSTMCell

𝑦3

Neural Sentence Encoder

Figure 2: Illustration of core structure of BiVAE. Variational inference network approximates the posterior distribution of z based on represen-
tation h encoded by bidirectional LSTM encoder. Decoder network projects the common hidden codes to BoW representation of observable
variables x and y.

where x and y denote observable semantic equivalent
sentences from each language respectively, p(z) is the
prior distribution of latent variable z, which is Gaussian
distribution here. q

�

(z | x, y) is our posterior approximator,
p

✓

(x | z) and p

✓

(y | z) represent the conditional distribution
of x and y conditioned on z. ✓ and � are parameters of
generative and inference neural networks respectively. Our
goal is to train high quality bilingual word features with the
proposed model.

3.1 Variational Inference Network
Neural sentence encoder
The neural encoders(see Figure2) aim at encoding the par-
allel sentence pairs into distributed representations. Follow-
ing [Bowman et al., 2015]’s approach, we adopt RNN to en-
code the parallel sentence pairs. But different from Bowman,
who encodes the monolingual sentences using vanilla RNN,
we adopt bidirectional LSTM as sentences are better sum-
marized with context both forwards and backwards. Given
an instance of parallel sequence pairs [wA

1 , w
A

2 , ..., w
A

TA
] and

[wB

1 , w

B

2 , ..., w

B

TB
], the forward LSTM reads the sequence

from left to right and the backward LSTM in the opposite
direction:

�!
h

i

A

= LSTMCell(
�!
h

i�1
A

,W

i

A

)
 �
h

i

A

= LSTMCell(
 �
h

i+1
A

,W

i

A

)
�!
h

i

B

= LSTMCell(
�!
h

i�1
B

,W

i

B

)
 �
h

i

B

= LSTMCell(
 �
h

i+1
B

,W

i

B

)

(7)

where W

A

2 R|VA|⇥dA and W

B

2 R|VB |⇥dB are lookup
matrix for words in language A and B respectively. | V

A

|
and | V

B

| denote vocabulary size, d
A

and d

B

denote di-
mension of the word embeddings, T

A

and T

B

denote length

of sequence A and B respectively.
�!
h

i

A

,
 �
h

i

A

,
�!
h

i

B

and
 �
h

i

B

are hidden representations at position i generated in two di-
rections. We call W

A

and W

B

lookup matrix as they learn
word features in separate vector spaces, we use them only for
sentence summarization. Finally, we concatenate the hidden
states at the last time step of each LSTM encoder to represent
the sentences:

h

A

= [
�!
h

TA
A

;
 �
h

1
A

]

h

B

= [
�!
h

TB
B

;
 �
h

1
B

] (8)

Variational neural inferer
Exactly modeling the posterior p(z | x, y) is intractable. Con-
ventional models typically employ themean field approaches.
However, due to its oversimplified assumption, it fails to cap-
ture the true posterior distribution of z. Following [Kingma
and Welling, 2013], we employ neural networks to approx-
imate the posterior distribution of z to get a tighter lower
bound and assume the approximator has the following form:

q

�

(z | x, y) = N (z;µ(f(h
A

, h

B

)),�2(f(h
A

, h

B

))I) (9)

where mean µ and standard variance � are outputs of neu-
ral networks based on sentence representations h

A

and h

B

.
Function f projects the separate representations of parallel
sentence pairs onto our concerned latent semantic space:

h = f(h
A

, h

B

) = g(W
z

[h
A

;h
B

] + b

z

) (10)

where W

z

2 Rdz⇥(dhA
+dhB

) and b

z

2 Rdz are connection
matrix and bias respectively, d

z

is the dimensionality of the
latent space, d

hA and d

hB are dimensionality of outputs of
variational encoders. g(·) is elementwise activation function
which we set Relu throughout our experiment.
We obtain the diagonal Gaussian distribution parameter µ

and �

2 through linear regression:

µ = W

µ

h+ b

µ

, log�

2 = W

�

h+ b

�

(11)
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where µ, log�2 are both d

z

dimension vectors.
To obtain representations of z, we employ the same tech-

nique as VAE and reparameterize it as:

z

0 = µ+ � � ✏, ✏ ⇠ N (0, I) (12)

During encoding, we reconstruct the parallel sentence pairs
based on sampled z

0 from q

�

(z | x, y)

3.2 Decoder Network
Given the latent variable z, decoder network defines the prob-
ability over the observable variables x and y. By sampling z

0

from the posterior approximator q
�

(z | x, y), we are able to
reconstruct x and y and estimate the expectation likelihood
term. We represent the reconstructed parallel sentence pairs
using one-hot BoW representations for the following reasons:
• By projecting the common distributed representations of
parallel sentence pairs, namely z, to each language’s vo-
cabulary, where we introduce two connection matrixE

A

and E

B

which can be viewed as word embeddings, we
obtain cross lingual representations of words embedded
in exactly the same vector space.

• Acceleration. Large scale learning requires efficient ap-
proaches. As our goal is training cross lingual word
embeddings instead of machine translation, we em-
ploy a softmax decoder by independently generating the
words(z ! [{x

i

}, {y
i

}]).
• Vanilla LSTM decoder is sensitive to subtle variation in
the hidden states, thus making it hard to train the neural
sentence encoder.

Inspired by [Miao et al., 2016], the conditional probability
over observable variables x and y is modelled by multino-
mial logistic regression with parameter shared across sen-
tence pairs:

p

✓

(x, y | z) =p

✓

(x | z)p
✓

(y | z)

=

|TA|Y

i=1

exp{zE
A

x

i

+ b

i

A

}
P|VA|

j=1 exp{zE
A

x

j

+ b

i

A

}
·

|TB |Y

i=1

exp{zE
B

y

i

+ b

i

B

}
P|VB |

j=1 exp{zE
B

y

j

+ b

i

B

}

(13)

where E

A

2 Rdz⇥|VA| and E

B

2 Rdz⇥|VB | learns joint-
space semantic word embeddings and b

A

, b
B

represent the
bias terms.
We use Monte Carlo method to estimate the expectation

term over the posterior in Eq.6 which typically has less vari-
ance than the generic estimator. The training objective for an
instance of parallel sentence pair (x, y) is defined as follows:

L̃

BiV AE

(�, ✓, x, y) = �D
KL

(q
�

(z | x, y) || p(z))

+
1

L

LX

l=1

(logp
✓

(x | z0
l

) + logp

✓

(y | z0
l

))
(14)

where z

0
l

= µ + � � ✏

l

, ✏
l

⇠ N (0, I). L is the number of
samples.
The first term is the Kullback-Leibler divergence between

the posterior and prior distribution of z, which can be in-
tegrated analytically[Kingma and Welling, 2013]. The KL-
divergence term can be interpreted as regularizing �, encour-
aging the approximate posterior to be close to the prior p(z).
And the second term can be interpreted as the negative ex-
pected reconstruction error of x and y. Since the objective
in Eq.14 is differentiable, we can jointly optimize the model
parameters ✓ and � using stochastic gradient optimization.
The model is implemented using Tensorflow[Abadi et al.,

2016], the model parameters of both generative process and
posterior estimator are trained jointly using ADAM[Kingma
and Ba, 2014]. We also apply dropout and batch
normalization[Srivastava et al., 2014; Ioffe and Szegedy,
2015] to the neural networks introduced in our model to re-
duce overfitting. We use 200 units for LSTM memory cell
and 40 units for latent variable z, consequently 40 units for
the word embeddings.

4 Experiment
In this section we present experiments which evaluate the
quality of induced cross-lingual representations. We evaluate
the embeddings in a standard cross-lingual document clas-
sification task which tests semantic transfer of information
across languages.

4.1 Cross Lingual Document Classification
We use an exact replication of the cross-lingual document
classification(CLDC) setup introduced by [Klementiev et al.,
2012] to evaluate the embeddings. The CLDC task setup is
as follows: A labeled data set of documents in some language
A is available to train a classifier, however we are interested
in classifying documents in another language B at test time.
As Klementiev noted, the aim of this task is not to provide a
state-of-the-art document classifier but rather to examine the
validity of joint semantic space model. Specifically, we train
an averaged perceptron classifier[Freund and Schapire, 1999]
on the labelled training data in the source language and then
attempt to apply the classifier to the target data. Documents
are represented as the tf-idf weighted sum of the embedding
vectors of the words that appear in the documents.

4.2 Dataset and Setup
As our joint space model utilizes parallel corpus only, we
train the bilingual embeddings for the English-German lan-
guage pair using Europarl v7 parallel corpus[Koehn, 2005],
and use the induced representations to classify a subset of
the English and German sections of the Reuters RCV1/RCV2
multilingual corpora[Lewis et al., 2004] that are assigned to
only one of four categories: CCAT (Corporate/Industrial),
ECAT (Economics), GCAT (Government/Social), andMCAT
(Markets).
We preprocess the corpus by lowercasing all the words, re-

moving all the punctuations and replacing all the digits with
0. We select the top words by term frequency appearing in
the corpus and keep the vocabulary size as | V EN |=40000
and | V DE |= 50000.
For the classification experiment, 15000 documents(for

each language) were selected randomly by Klementiev[Kle-
mentiev et al., 2012] from RCV1/RCV2 corpus. One third
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Model Data en! de de! en

Majority Baseline - 46.8 46.8
MT Baseline Europarl 68.1 67.4

Klementiev et al. Europarl+RCV 77.6 71.1
BiCVM Europarl 83.7 71.4
BAE Europarl+RCV 91.8 74.2

BilBOWA Europarl+RCV 86.5 75.0
BiSkip Europarl 90.7 80.3
CLSim Europarl+RCV 92.7 80.1
BiVAE Europarl 91.0 80.4

Table 1: Accuracy of cross lingual document classification. We
compare BiVAE embeddings to the best models from past work.
Data denotes the corpus utilized for inducing bilingual word em-
beddings. Numbers in boldface highlight the best scores per metric

of the selected documents(5000) were used as test sets and a
varying size between 100 and 10000 of the remainder were
used as training set. Another 1000 documents were kept as
development set for hyper-parameter tuning. A multi class
document classifier was trained for 10 epoch with English
documents and is used to classify German documents and
vice versa.

4.3 Results
Table1 summarizes results on the task of CLDC. We com-
pare the performance of our model with some baselines and
previous work. The Majority Class is a system where we
simply classify the test documents as the class with the most
training examples. The MT is a phrase-based machine trans-
lation system where test documents were translated into the
same language as training documents. We also summarize
some of the previous work. [Klementiev et al., 2012] pro-
posed to train two neural network languages models simulta-
neously along with a regularization term that encourages pairs
of frequently aligned words to have similar word embeddings.
BiCVM[Hermann and Blunsom, 2013] learned word embed-
dings via minimizing the compositional representations be-
tween parallel sentence pairs. BAE[AP et al., 2014] recon-
structed the bag-of-words representation of semantic equiva-
lent sentence pairs to learn word embeddings. Bi-Skip[Luong
et al., 2015] extended skip-gram model to bilingual circum-
stances where separate context of aligned word pairs were
jointly predicted. [Shi et al., 2015] proposed a matrix co-
factorization framework, CLSim, for learning cross lingual
embeddings.
From Table1 we conclude that our proposed model outper-

forms most previous work and performs comparably with the
previous state-of-the-art model, CLSim, with BiVAE tops the
accuracy of submission de ! en. But note that our model
is trained with Europarl corpus only while CLSim induce the
embeddings using both Europarl and RCV corpus.
Different from those approaches which start frommonolin-

gual objective learning embeddings in separate vector space
following cross lingual objective as constraints, BiVAE learns
word representations embedded in exactly the same vector
space without the help of explicit alignments. While on the
other hand, one drawback of BiVAE is that the learned fea-

Word Language Nearest neighbours

january En january, february, march
De januar, jänner, april

oil En oil, crude, slick
De Öl, erdöl, rohöl

man En man, woman, person
De mann, mensch, mannes

economy En economy, economics
De wirtschaft, weltwirtschaft

microsoft En microsoft, google, intel
De microsoft, google, intel

president En president, mr
De präsident, herr

market En market, internal
De markt, binnenmarkt

great En great, deal, huge
De großes, großen, enorme

communication En communication, feedback
De kommunikation, mitteilung

law En law, rule
De gesetz, rechtsstaat

Table 2: Example English words with nearest words in English (En)
and German (De) measured by Euclidean distance.

tures can not be enhanced with monolingual corpus due to the
structure of its probabilistic language model.

4.4 Qualitative Examples and Visualization
We find, for each English word, a list of top several English
and German words closest to it based on Euclidean distance
in a learned joint bilingual vector space. Our list of words
includes { january, oil, man, economy, microsoft, president,
market, great, communication, law}. Table 2 illustrates the
properties captured within and across languages. Bilingually,
our embeddings succeed in selecting the 1-best translations
for all words in the list. Monolingually, our embeddings pos-
sess a clearly good clustering structure, which reveals topic
nature of the semantic vector sapce.
Figure 3 gives a visualization of the joint vector space us-

ing t-SNE[Maaten and Hinton, 2008]. The English and Ger-
man words which are translations of each other are repre-
sented by almost the same point in the vector space, revealing
the semantic validity of the joint vector space.

5 Related Work
5.1 Cross-lingual Learning
Overall, approaches for training bilingual word embeddings
can be categorized into several classes: offline mapping,
monolingual adaption and parallel training.
In offline mapping, word representations are first trained on

each language independently and a mapping is then learned to
transform representations from one language to another. The
advantage of this approach is its speed as no further training
of word representations is required given monolingual word
embeddings. Word embeddings trained in this approach in-
clude [Mikolov et al., 2013] which utilizes translation pairs
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Figure 3: Visualization of joint semantic space using t-SNE. We
represent 10 high frequency En-De word translation pairs.

to learn linear mapping.
Monolingual adaption jointly optimize the monolingual

objectives of each language, with cross-lingual objective en-
forced as cross-lingual regularizer. One advantage of this ap-
proach is that it utilizes monolingual corpus in addition to
parallel corpus to enhance the learned features.
Unlike previous schemes fix representations on either one

or both sides, Parallel training leverage sentence aligned par-
allel corpus only and train a model to learn similar represen-
tations for aligned sentences. [Hermann and Blunsom, 2013;
AP et al., 2014] and the model proposed in this paper follow
this approach. One advantage of this approach is that models
can be designed to train word representations embedded in
exactly the same continuous vector space, avoiding explicit
alignment.
As introduced in section 1, cross-lingual word embeddings

can be applied to various NLP tasks, including semantic ap-
plications such as cross-lingual dictionary induction[Vulic
and Moens, 2013a; Mikolov et al., 2013] and CLDC[Kle-
mentiev et al., 2012] as well as syntactic applications such
as cross-lingual syntactic dependency parsing[Täckström et
al., 2012] and lexicon extraction[Vulic and Moens, 2013b].
We prove our embeddings effective in CLDC task but its ap-
plication remains to be explored in other cross-lingual NLP
tasks.

5.2 Variational Neural Inference
In order to perform efficient inference and learning in gener-
ative probabilistic models on large-scale dataset, variational
autoencoder was recently proposed by [Kingma and Welling,
2013; Rezende et al., 2014]. Different from conventional
mean field approximation, VAE employs neural network to
approximate the posterior distribution of latent variable and
optimize the model parameters with a reparameterized vari-
ational lower bound using the stochastic gradient optimiza-
tion technique. Following Kingma, semi-supervised VAE has
been proposed to model labeled dataset. Variational RNN has
been proposed to deal with sequential data, which have been
proved successful in speech modeling.

Variational neural inference has also shown strong perfor-
mance in text processing. [Miao et al., 2016] proposes a
generic variational inference framework for generative and
conditional models of text. [Bowman et al., 2015] imposes
a prior distribution on the hidden states of a standard RNN
language model, helping generating sentences from the latent
semantic space. [Zhang et al., 2016] introduces a latent vari-
able z to a standard neural machine translation framework to
guide the generation of target translations. To the best of our
knowledge, we are the first to introduce this technique to learn
cross-lingual word embeddings.

6 Conclusion
In this paper, we propose a variational encoder-decoder
framework for cross-lingual learning. By introducing the
hidden variable z, we learn cross-lingual word embeddings
in exactly the same continuous vector space instead of pro-
jecting them from separate spaces. We also conduct a stan-
dard CLDC task to evaluate BiVAE. Experiment results show
that BiVAE performs comparably with the previous reported
state-of-the-art model.
For future work, we are interested in modifying the varia-

tional neural decoder, e.g. LSTM decoder, to generate plau-
sible parallel sentence pairs from the latent semantic space.
With limited training corpus, we can train BiVAE to help
generate more semantic equivalent sentence pairs to enrich
the corpus in an unsupervised way.
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