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Abstract
Neural Machine Translation (NMT) based on the
encoder-decoder architecture has recently achieved
the state-of-the-art performance. Researchers have
proven that extending word level attention to phrase
level attention by incorporating source-side phrase
structure can enhance the attention model and
achieve promising improvement. However, word
dependencies that can be crucial to correctly un-
derstand a source sentence are not always in a con-
secutive fashion (i.e. phrase structure), sometimes
they can be in long distance. Phrase structures are
not the best way to explicitly model long distance
dependencies. In this paper we propose a sim-
ple but effective method to incorporate source-side
long distance dependencies into NMT. Our method
based on dependency trees enriches each source
state with global dependency structures, which can
better capture the inherent syntactic structure of
source sentences. Experiments on Chinese-English
and English-Japanese translation tasks show that
our proposed method outperforms state-of-the-art
SMT and NMT baselines.

1 Introduction
Recently, Neural Machine Translation (NMT) with the
attention-based encoder-decoder framework [Bahdanau et al.,
2015] has achieved significant improvements in translation
quality of many language pairs such as English-German,
English-French and Chinese-English [Bahdanau et al., 2015;
Luong et al., 2015a; Wu et al., 2016]. In a conventional
NMT model, an encoder maps the source sentence of var-
ious lengths into sequences of intermediate hidden vector
representations. Then these hidden vectors are combined,
weighted by attention mechanism, and used by the decoder
to generate translations. In most cases, both encoder and de-
coder are implemented as recurrent neural networks (RNNs).

Currently, many methods have been proposed to improve
the sequence-to-sequence NMT model since it was first pro-
posed by [Bahdanau et al., 2015; Sutskever et al., 2014].
Previous work mostly focuses on addressing the problem of
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out-of-vocabulary words [Jean et al., 2015], designing atten-
tion mechanism [Luong et al., 2015a], and more efficient pa-
rameter learning [Shen et al., 2016]. These methods regard
sentences as sequences of words where the syntactic struc-
tures inherent in languages are neglected.

Recently, inspired by the successful application of source-
side syntactic information in statistic machine translation
(SMT) [Liu et al., 2006], [Eriguchi et al., 2016b] propose
a new attentional NMT model which takes advantage of the
source-side syntactic information based on the Head-driven
Phrase Structure Grammar [Sag et al., 1999]. They align
each target word with both source words and source phrases.
This kind of extension is effective to handle cases that one tar-
get word may correspond to a fragment of consecutive source
words. However, the long distance syntactic dependencies of
the source-side, which can be crucial to correctly understand
a sentence, are not explicitly concerned in all previous work.
Although, in theory, the encoder RNN is able to remember
sufficiently long history, we can still observe substantial in-
correct translations which are both fluent and grammatical
but violate the meaning of source sentences. Figure 1 shows
an incorrect translation example which relates to the source
syntactic structure. Though the translation is well formed
and grammatical, its meaning is inconsistent with the given
source sentence. The NMT model can not well capture the
dependency between word “(patients)” (subject) and “
(see the doctor)” (predicate). Even for the phrase atten-
tion based model, this kind of relations still can not be ex-
plicitly modeled as the words are inconsecutive and in long
distance. This demonstrates that it still remains a challenge
for NMT encoder to capture such subtle long-range word de-
pendencies for correctly understanding source sentences. Ac-
tually, syntactic dependency trees can well address and model
such long-distance word correspondence. In Figure 1, if the
dependency between the root word “(see the doctor)”
and its subject word “(patients)” denoted by a link can
be encoded by the NMT encoder, the NMT model is more
likely to generate a correct translation.

In this paper, we address the above problem and propose
to improve NMT by leveraging the source-side dependency
tree to explicitly incorporate source word dependencies into
NMT framework. Based on source dependency trees, we en-
rich each encoder state from both child-to-head and head-to-
child with global knowledge from the dependency structure.
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Source : 请 患者 携带 家属 去 就医
(please)    (patients)    (with)    (family)   (go)  (see the doctor)

Reference : Patients should go to see the doctor with their family

NMT : Patients should take their families to see the doctor

root

Figure 1: Example of incorrect translation from conventional NMT
system. The arrows refer to the dependency link in the dependency
tree.

Two extra sequences are extracted with structural knowledge
and encoded by another two RNNs which are used to im-
prove the encoder states. With the enriched source states,
the decoder generates target translation via attention mech-
anism in the same way as in most NMT models. We will
describe our method in detail in Section 3. We evaluate
our method on publicly available data sets with Chinese-
English and English-Japanese translation tasks. Experimental
results on Chinese-English task show that our model signif-
icantly improves translation accuracy over the conventional
NMT and SMT baseline systems. Experiments on English-
Japanese task also show that our method can achieve better
performance than the state-of-the-art tree-based NMT model
in [Eriguchi et al., 2016b].

The major differences between our work and previous tree-
based method [Eriguchi et al., 2016b] are in two folds:

(1) We model source word relations that are important for
understanding source sentences, however, they focus on the
mismatch problem that one target word may attend to a source
phrase (multiple consecutive words).

(2) Our model enhances the NMT by enriching each en-
coder state with global source dependency structure, however,
they improve NMT model by proposing a phrase level atten-
tion.

2 Background
Different from SMT consisting of multiple sub-models,
NMT is an end-to-end paradigm [Sutskever et al., 2014;
Bahdanau et al., 2015] directly modeling the conditional
translation probability p(Y |X) of the source sentence X =
x1,x2,x3,...,xn and the target Y = y1,y2,y3,...,ym with the
RNN encoder and the RNN decoder. The RNN encoder bidi-
rectionally encodes the source sentence into a sequence of
context vectors H = h1,h2,h3,...,hn, where hi = [~hi, ~hi], ~hi

and ~hi are calculated by two RNNs from left-to-right and
right-to-left respectively as follows,

~hi = fRNN(xi,~hi−1)

~hi = fRNN(xi, ~hi+1)

where fRNN can be a Gated Recurrent Unit (GRU) [Cho et
al., ] or a Long Short-Term Memory (LSTM) [Hochreiter and
Schmidhuber, 1997] in practice. In this paper, we use GRU
for all RNNs.

Based on target history and the source context, the RNN
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Figure 2: Overview of NMT framework with attention.

decoder computes the target translation in sequence by

p(Y |X) =
m∏
j=1

p(yj|y<j , H) (1)

Typically, for the jth target word, the probability
p(yj |y<j , H) is computed by

p(yj|y<j , H) = g(sj, yj−1, cj) (2)

where g is a nonlinear, potentially multi-layered, function that
outputs the probability of yi, sj is the j-th hidden state of
decoder RNN, computed by

sj = fRNN(yj−1, sj−1, cj)

cj is the source context which is calculated by the attention
mechanism. The attention mechanism is proposed to softly
align each decoder state with the encoder states, where the
attention score ajk is computed to explicitly quantify how
much each source word contributes to the target word at each
time step

ajk =
exp(ejk)∑n
d=1 exp(ejd)

(3)

The calculation for ejk can be in several ways [Luong et al.,
2015b], in this paper we compute ejk by

ejk = vTa tanh(Wasj−1 + Uahk) (4)

where va, Wa, Ua are the weight matrix. The final source
context cj is the weighted sum of all encoder states

cj =
n∑

k=1

ajkhk (5)

The overview of the attention-based NMT is shown in Figure
2. Although the attention mechanism is effective to model
the correspondences between source and target, the long dis-
tance syntactic dependencies in the source-side still remain a
challenged for a conventional NMT model.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4180



会议
(meeting)

意大利
(Italy)

欧盟
(EU)

部长
(minister)

举行
(holds)

在
(in)

文化
(culture)

(b)(a)

会议
(meeting)

意大利
(Italy)

欧盟
(EU)

部长
(minister)

举行
(holds)

在
(in)

文化
(culture)

(c)

会议
(meeting)

意大利
(Italy)

欧盟
(EU)

部长
(minister)

举行
(holds)

在
(in)

文化
(culture)

Figure 3: (a) The dependency tree for the Chinese sentence “(EU) (culture) (minister) (in) (Italy) (holds) 
(meeting)”. (b) Child Enriched Structure. (c) Head Enriched Structure. The dashed arrows denote the construction of the two syntactic
structures.

3 Our Method
To incorporate syntactic word relations into NMT, we pro-
pose to take advantage of the dependency tree to explicitly
model source word dependencies for NMT encoder. Depen-
dency tree is always used to characterize dependency rela-
tionships between words. Each word in the tree has a parent
word which it depends on, except for the root word. There are
no constituent labels in a dependency tree, the tree directly
models word dependencies and syntactic structures of arbi-
trary distance. Figure 3 (a) gives an example of a dependency
tree. Arrows point from the head node to its child nodes.
Given a source sentence X = x1, x2, .., xj , .., xn, where n is
the sentence length, and its corresponding dependency tree T ,
we denote wh as a possible head node in T , wh

l as the leftmost
child node (or a leftmost subtree) of wh, wh

r as the rightmost
child node (or a rightmost subtree) of wh, and wh

1 , ..., w
h
j as

the rest child nodes (or subtrees) of wh. All w belongs to X .
Based on the dependency tree T , two kinds of dependency
structures are extracted which are Child Enriched Structure
(CES) and Head Enriched Structure (HES). In this section,
we will introduce CES and HES respectively and how to in-
corporate them into NMT model.

3.1 Child Enriched Structure
In most previous work which attempts to leverage syntac-
tic structure in neural networks such as [Tai et al., 2015],
a bottom-up fashion is used to construct representations for
syntactic trees. That means leaf nodes are used as inputs
for the construction of head nodes. This kind of encoding
is good enough to make representations for the whole trees,
which can facilitate tasks like sentiment classification, pre-
dicting the semantic relatedness of two sentences and so on.
However, in the sequence to sequence generation tasks, es-
pecially neural machine translation, the generation of each
target word may depend on arbitrary source word. Thus each
source hidden state is expected to contain sufficient source
information which can contribute to a better decoding. In
contrast to the bottom-up fashion which leverages leaves to
enrich heads, we propose a child enriched structure (CES) to
enrich child nodes with global syntactic structures based on
the dependency tree. Two kinds of context are defined in this
structure

(1) wh is a direct context for wh
l .

(2) For a head node wh, its former child nodes (or subtrees)
are contexts for its latter child nodes (or subtrees). For
example wh

l is a direct context for wh
1 , wh

1 is a direct
context for wh

2 .

Figure 3 (b) gives a brief introduction of the two kinds of con-
text. For the head node “(minister)”, it is a context for
“(EU)” based on (1), and “ (EU)” is a context for
“(culture)” denoted by the dashed arrow based on (2).
When the child node is a sub-tree rather than a leaf node, for
example, “(minister)” and “(in)” are children of “
(holds)”, in this case the whole left-side subtree (left box)
should be a context for building the right-side subtree (right
box). To encode this kind of structure in NMT, we use an-
other sequence generated by the pre-order traversal from the
dependency tree. We find that this kind of traversal perfectly
caters to both (1) and (2) as illustrated by the path of dashed
arrows in Figure 3 (b).

3.2 Head Enriched Structure
In addition to child enriched structure, we also enrich the
head nodes with its child nodes in the head enriched struc-
ture (HES). For this structure, another two kinds of context
are defined,

(1) The first one is the same with the second one in CES.

(2) wh
r is a direct context for wh.

Figure 3 (c) gives a brief introduction of HES. For the con-
struction of sub-tree in the left box, “(EU)” is first re-
garded as context for its neighbor “(culture)”, then “
(culture)” is used to enrich “(minister)”. In addition,
the former sub-tree in the left box is context for its neighbor
sub-tree in the right box. To encode this kind of structure
for NMT, we use another sequence generated by post-order
traversal from the dependency tree which perfectly caters to
the above description of HES as illustrated by the path of
dashed arrows in Figure 3 (c).

3.3 The Computation in Encoder
We use two extra RNNs named CES-RNN and HES-RNN
to encode the two structural sequences in addition to the bi-
directional RNNs (bi-RNN). Thus for each source word xj ,
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Figure 4: Overview of our encoder. The bottom two sequences are
two possible sequences constructed according to CES and HES. We
omit the dependency tree of the source sentence X .

we have four hidden state vectors generated by the encoder.
We denote the two hidden vectors for word xj from the bidi-
rectional RNNs as ~hj and ~hj , and denote ~hl

j as the hidden
vector from CES-RNN, ~hh

j as the hidden vector from HES-
RNN. The final hidden vector hj used in the decoder is cal-
culated by the four vectors. We do not directly concatenate
them, because this may have the problem that the concate-
nated vector contains much more information than is neces-
sary for decoding. We apply a MLP function with a smaller
hidden size to the four recurrent states before the attention
model, as below

hj = tanh(Wh
~hj + Uh

~hj + Vh
~hl

j + Fh
~hh

j ) (6)

where Wh, Uh, Vh and Fh are weight matrices. This allows
the model to combine the hidden vectors and filter out re-
dundant information. The decoder and attention mechanism
of our model remain the same with the conventional NMT
model shown in Figure 2. We give an overview of the encoder
in Figure 4. Due to space limitation, the detailed structure of
our encoder is only illustrated at timestamp 3. The index k
is the last word in the CES sequence which may not be the
n-th word of X so as to d. Specially, the original sequence of
the source sentence X is the in-order sequence of the depen-
dency tree which indeed contains structural information from
a linguistic perspective. In the following sections, we refer to
our method as Source Syntax-aware NMT (SSNMT) model.

4 Experiments

We conduct experiments on the Chinese-English translation
task as well as the English-Japanese translation task where
the same data set from WAT 2016 ASPEC corpus [Nakazawa
et al., 2016] 1 is used for a fair comparison with other work.
In addition, we also evaluate the performance of our model in
terms of source sentence length.

1http://orchid.kuee.kyoto-u.ac.jp/ASPEC/

4.1 Setup
In the Chinese-English translation task, the bilingual train-
ing data consists of a set of LDC datasets 2, which has 1M
sentence pairs with around 24.5M Chinese words and 28.3M
English words. The development data set is NIST2003, and
the testing data are NIST2005, NIST2006, NIST2008 and
NIST2012 evaluation sets. All the English words are low-
ercased in training and testing.

In the English-Japanese translation task, we use top 1.5M
sentence pairs from ASPEC English-Japanese corpus. The
development data contains 1,790 sentences, and the test data
contains 1,812 sentences with single reference per source sen-
tence. For the Japanese side, we employ KyTea [Neubig et
al., ] as the segmentation method.

For the source-side dependency structures of both tasks,
we use two in-house developed arc-eager dependency parsers
based on work in [Zhang and Nivre, 2011] which are trained
on Penn Treebank and Chinese Treebank data respectively to
process the source data.

In the neural network training, we limit the vocabulary size
to 30K high frequency words for both source and target lan-
guages. All low frequency words are normalized into a spe-
cial token unk and post-processed by following the work in
[Luong et al., 2015b]. The size of word embeddings is set
to 512 for both tasks. The dimensions of hidden states for
all RNNs are set to 1024. All model parameters are ini-
tialized randomly with Gaussian distribution and trained on
a NVIDIA Tesla K40 GPU. The stochastic gradient descent
(SGD) algorithm is used to tune parameters with a learning
rate of 1.0 and a batch size of 128. In the update procedure,
Adadelta [Zeiler, 2012] algorithm is used to automatically
adapt the learning rate. We use the beam search strategy for
decoding with a beam size of 12.

Two baselines are used in our experiments which are a
phrasal system and a neural translation system, denoted by
HPSMT and RNNsearch respectively. HPSMT is an in-house
implementation of the hierarchical phrase-based model [Chi-
ang, 2005], where a 4-gram language model is trained using
the modified Kneser-Ney smoothing [Kneser and Ney, ] algo-
rism over the English Gigaword corpus (LDC2009T13) plus
the target data from the bilingual corpus. RNNsearch is an in-
house implementation of the attention-based neural machine
translation model [Bahdanau et al., 2015] using the same
parameter settings as illustrated before including word em-
bedding size, hidden vector dimension, beam size, as well as
the same mechanism for OOV word processing.

The evaluation results are reported with the case-
insensitive IBM BLEU-4 [Papineni et al., 2002]. A statistical
significance test is performed using the bootstrap resampling
method proposed by [Koehn, 2004] with a 95% confidence
level. For English-Japanese task, we use the official evalua-
tion procedure provided by WAT 2016.3, where both BLEU
and RIBES [Isozaki et al., 2010] are used for evaluation.
We also compare our method with previous tree-to-sequence
model proposed by [Eriguchi et al., 2016b].

2LDC2002E18, LDC2003E07, LDC2003E14, LDC2006E34,
LDC2006E85, LDC2006E92, , LDC2004T07, LDC2004T08

3http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index .html
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Settings NIST 2005 NIST 2006 NIST 2008 NIST 2012 Average
HPSMT 35.53 33.16 26.21 27.32 30.56
RNNsearch 37.01 38.64 30.05 28.74 33.61
SSNMT\HES 37.46 39.03 30.78 29.12 34.10
SSNMT\CES 37.62 39.10 30.50 29.51 34.18
SSNMT 38.01 39.85 31.01 29.82 34.67

Table 1: Evaluation results on Chinese-English translation task with BLEU% metric. The “Average” column is the averaged result of all
test sets. SSNMT\CES denotes SSNMT excluding CES and SSNMT\HES denotes SSNMT excluding HES.The numbers in bold indicate
statistically significant difference (p < 0.05) from baselines.

BLEU RIBES System Description
SMT Hiero 32.56 74.70 Moses’ Hierarchical Phrase-based SMT
SMT Phrase 29.80 69.19 Moses’ Phrase-based SMT
SMT T2S 33.44 75.80 Moses’ Tree-to-String Syntax-based SMT
[Eriguchi et al., 2016a] 31.52 79.39 Character-based decoder
[Luong et al., 2015a] 34.64 81.60 Single model and single layer
[Eriguchi et al., 2016a](d = 512) 34.91 81.66 Tree-to-string model
RNNsearch 34.83 80.92 Single model and single layer
SSNMT 35.85 81.64 Single model and single layer

Table 2: Evaluation results on English-Japanese translation task. All NMT methods are single models with single layer for both encoder and
decoder. Results from ensemble models are not listed.

4.2 Evaluation on Chinese-English Translation
We first evaluate our method on the Chinese-English transla-
tion task. The evaluation results over all NIST test sets against
baselines are listed in Table 1. SSNMT\HES denotes SS-
NMT excluding head enriched structure and only use CES,
and SSNMT\CES refers to excluding head enriched struc-
ture. Generally, all NMT models outperform HPSMT on the
average BLEU showing that NMT models usually achieve
better results than SMT model. Compared with RNNsearch,
our SSNMT with the two structural sequences performs bet-
ter with a gain of about 1 BLEU point on average, which
shows that the structural context provided by the two se-
quences bring a positive effect on a conventional NMT.

In addition, we also investigate the effects of the two se-
quences separately. According to Table 1, “SSNMT\HES”
and “SSNMT\CES” can improve the performance of
RNNsearch by about 0.49 and 0.57 BLEU point on aver-
age respectively. This demonstrates that the two sequences
can bring positive effect on NMT from different perspectives
where CES encodes structure information to each child node
and HES in contrast enriches head nodes with its children.

4.3 Evaluation on English-Japanese Translation
In this section, we report results on the English-Japanese
translation task. To have a fair comparison in the experiments,
we use the same training data and follow the pre-processing
steps recommended in WAT 20164 as well as the official eval-
uation procedure provided by WAT 2016.5 Table 2 shows
the comparison results from 8 systems with the evaluation
metrics of BLEU and RIBES. The results in the first 3 rows
are produced by SMT systems taken from the official WAT
2016. The remaining results are from NMT systems, among

4http://lotus.kuee.kyoto-u.ac.jp/WAT/baseline/dataPreparation
JE.html

5http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html

which the bottom two rows are taken from our in-house NMT
systems and others refer to the results in [Eriguchi et al.,
2016a]. It notes that the English-Japanese translation result
of [Luong et al., 2015a] is also taken from [Eriguchi et al.,
2016a]. All the results are from single models without en-
semble. According to Table 2, NMT results still outperform
SMT results, which is similar to our Chinese-English evalua-
tion results. Our RNNsearch can achieve comparable results
with the NMT model in [Luong et al., 2015a]. When adding
both CES and HES, SSNMT outperforms all the other NMT
models where 0.94 more BLEU point is achieved compared
with the previous tree-to-sequence model in [Eriguchi et al.,
2016b]. This demonstrates that the source-side long distance
dependencies captured by our method indeed have a positive
effect on the translation performance.

4.4 Effect on Long Sentences
In this Section, we make a further comparison between our
SSNMT and the RNNsearch baseline. As our method can
take advantage of source long distance dependencies, it is
more likely to generate complete translations and consistent
meaning with source sentences even though the source length
becomes longer. We evaluate the BLEU performance on the
test sets of the two tasks with respect to the length of source
sentences. Five groups of sentences are collected on the
Japanese test set and the merged Chinese test set of NIST
2005, NIST 2006, NIST 2008 and NIST 2012, where source
length ranges are {20-, 20-30, 30-40, 40-50, 50+}. The statis-
tic of the five groups is shown in Table 3.

Figure 5 shows the evaluation results on the Chinese-
English translation task. Clearly, our method always yields
consistently higher BLEU scores than the RNNsearch base-
line in terms of different lengths. When the length comes to
“50+”, our method outperforms the baseline most. This is be-
cause our method can encode source-side syntactic structures
and provide more global knowledge for each source state
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Length CH-EN EN-JE
20- 2,707 689
20-30 1,620 629
30-40 1,015 302
40-50 496 139
50+ 381 53

Table 3: Data statistic of the five groups. 20- refers to lengths shorter
than 20 and 50+ means lengths are longer than 50

which contributes to a better result. The BLEU results on the
English-Japanese test set is shown in Figure 6. There is the
same tendency for BLEU scores with the results on Chinese-
English task. Notably, on the “50+” group, our method still
outperforms the baseline most by a margin of 4.21 BLEU
points. This again shows the effective of our method on long
source sentences.
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Figure 5: BLEU evaluation on the Chinese-English test set with re-
spect to lengths of source sentence.
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Figure 6: BLEU evaluation on the English-Japanese test set with
respect to lengths of source sentence.

4.5 Translation Example
In this section, we give a case study to explain how our
method works. Figure 7 gives a translation example from
Chinese-English task. HPSMT and RNNsearch refer to the
translation results form our SMT and NMT baselines. It is
clear that the translations from NMT models are much better
than SMT. Compared with RNNsearch, SSNMT generates a
better translation. Though RNNsearch keeps most meaning
of the source sentence, it fails to identify the subject of the
whole sentence. In fact, the subject “(day)” has a long
attribute which may interfere the translation but can be clearly
modeled by the dependency tree (in the rectangle). Taking

[Source]         人类永久和平和稳定的一天即将到来 .
[Reference]   the day when mankind can enjoy eternal peace and stability will soon arrive.
[HPSMT]        human permanent peace and stability of the day dawns .
[RNNsearch] human beings permanent peace and stability will soon come here .
[SSNMT]        the day of mankind 's permanent peace and stability will soon come . 

稳定
(stability )

的
(of)

永久
(permanent)

一天
(day)

即将
(soon)

到来
(arrive)

和
(and)

.人类
(mankind)

和平
(peace)

root

Figure 7: Translation example from Chinese-English task. The top
of the figure shows the dependency tree of the source sentence.

this kind of information into account, our SSNMT can gener-
ate a more correct translation.

5 Related Work
Incorporating linguistic knowledge into machine translation
has been extensively studied in Statistic Machine Transla-
tion (SMT) [Shen et al., 2008; Liu et al., 2006]. [Liu et
al., 2006] proposed a tree-to-string alignment template for
SMT to leverage source side syntactic information. [Shen et
al., 2008] proposed a target dependency language model for
SMT decoder based on the target-side dependency tree.These
methods have successfully applied syntactic of either source
or target to SMT and show promising improvement.

Recently, the attention-based Neural machine translation
(NMT) becomes an emerging translation framework. The
attention mechanism in NMT enables the model to trans-
late while aligning each target with the source. However,
in most existing NMT models, source sentences are treated
as sequences where the syntactic knowledge is neglected.
Some effort has been done to incorporate source syntax
into NMT to enhance the attention model [Eriguchi et al.,
2016b; Hashimoto and Tsuruoka, 2017; Sennrich and Had-
dow, 2016]. [Eriguchi et al., 2016b] proposed a tree-to-
sequence attentional NMT model where source-side parse
tree was used and achieved promising improvement. [Sen-
nrich and Haddow, 2016] incorporated linguistic features to
improve the NMT performance by appending feature vectors
to word embeddings. [Hashimoto and Tsuruoka, 2017] pro-
posed a multi-task framework to learn both source parsing
and translation. Difference from previous syntax-based work,
in this paper we focus on improve NMT encoder with source-
side long-distance word dependencies.

6 Conclusion and Future Work
In this paper, we propose a simple but effective method to
incorporate source dependency structure into NMT encoder.
Our model can explicitly model word dependencies in the
source sentence. Experimental results show that our method
can achieve promising improvement over the conventional
NMT model and outperform the state-of-the-art tree-to-string
NMT model. In the future, along this research direction, we
will try to effectively leverage more information from the de-
pendency tree, such as arc-labels, pos-tag.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4184



References
[Bahdanau et al., 2015] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. ICLR 2015, 2015.

[Chiang, 2005] David Chiang. A hierarchical phrase-based
model for statistical machine translation. In Proceedings
of ACL 2005, 2005.

[Cho et al., ] Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase represen-
tations using rnn encoder–decoder for statistical machine
translation. In Proceedings of ENMLP 2014.

[Eriguchi et al., 2016a] Akiko Eriguchi, Kazuma
Hashimoto, and Yoshimasa Tsuruoka. Character-
based decoding in tree-to-sequence attention-based neural
machine translation. In Proceedings of WAT2016, 2016.

[Eriguchi et al., 2016b] Akiko Eriguchi, Kazuma
Hashimoto, and Yoshimasa Tsuruoka. Tree-to-sequence
attentional neural machine translation. In Proceedings of
ACL 2016, August 2016.

[Hashimoto and Tsuruoka, 2017] Kazuma Hashimoto and
Yoshimasa Tsuruoka. Neural machine translation
with source-side latent graph parsing. arXiv preprint
arXiv:1702.02265, 2017.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8), 1997.

[Isozaki et al., 2010] Hideki Isozaki, Tsutomu Hirao, Kevin
Duh, Katsuhito Sudoh, and Hajime Tsukada. Automatic
evaluation of translation quality for distant language pairs.
In Proceedings of EMNLP, 2010.
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