Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Fast Parallel Training of Neural Language Models

Tong Xiao', Jingbo Zhu', Tongran Liu*, Chunliang Zhang’
"NiuTrans Lab., Northeastern University, Shenyang 110819, China
Hnstitute of Psychology (CAS), Beijing 100101, China
{xiaotong,zhujingbo,zhangcl} @mail.neu.edu.cn, liutr@psych.ac.cn

Abstract

Training neural language models (NLMs) is very
time consuming and we need parallelization for
system speedup. However, standard training meth-
ods have poor scalability across multiple devices
(e.g., GPUs) due to the huge time cost required
to transmit data for gradient sharing in the back-
propagation process. In this paper we present a
sampling-based approach to reducing data trans-
mission for better scaling of NLMs. As a “bonus”,
the resulting model also improves the training
speed on a single device. Our approach yields sig-
nificant speed improvements on a recurrent neu-
ral network-based language model. On four N-
VIDIA GTX1080 GPUs, it achieves a speedup of
2.1+ times over the standard asynchronous stochas-
tic gradient descent baseline, yet with no increase
in perplexity. This is even 4.2 times faster than the
naive single GPU counterpart.

1 Introduction

Neural language models (NLMs) use continuous representa-
tions of words to predict their probability distributions. Sev-
eral good models have been developed, showing very promis-
ing results in many natural language processing (NLP) tasks.
The simplest of these uses feedforward neural networks to
learn a distribution over the vocabulary given a number of
history words [Bengio et al., 2003], whereas others resort to
recurrent neural networks (RNNs) for modeling sequences of
arbitrary length [Mikolov et al., 2010].

As in standard neural networks, a neural language mod-
el consists of multiple layers of neurons (or neural units). It
represents each word using a group of neurons, and the num-
ber of model parameters increases linearly as more words are
involved. Thus, the parameter set is huge for non-toy models
trained on real world data though they have stronger ability
for prediction. E.g., for a language model with 50k vocab-
ulary size and 1k internal layer size, the parameter number
is larger than 100 million. It is well known that it is slow to
train such big models using stochastic gradient descent (S-
GD). Several research groups have been aware of this and
designed good methods to speed up the learning process of
NLMs [Bengio and Senécal, 2003; Morin and Bengio, 2005;

4193

Mnih and Hinton, 2008; Mnih and Teh, 2012; Zoph et al.,
2016].

However, training time is still unsatisfactory on a single
device due to its limited computation capability. The next
obvious step is toward parallelized training, e.g., running the
work on a machine with two or more GPU cards. To do this, a
popular way is data parallelism where different GPUs process
different minibatches of samples in parallel. Unfortunately, a
naive adaptation of existing NLMs in the high-latency paral-
lelization scenario is inefficient [Bengio and Senécal, 2008].
The reason is that we have to accumulate the gradient for each
processor and then share the gradient for model update. The
process of gradient sharing requires huge data transmission
which is extremely slow between two GPUs or between a G-
PU and a CPU. It is found to take up to 50% of the time of
the back-propagation process in a minibatch'.

A solution to this problem is to minimize the data trans-
mission time. This motivates us to develop a sampling-based
approach to reducing data transmission for better scaling of
NLM training. In our approach, we sample a small portion
of data for transmission and share gradients on the selected
data. Beyond this, we apply the sampling method to gradient
computation of a single minibatch for further system speedup.
We experiment with the proposed approach in a state-of-the-
art RNN-based language model on three different sized tasks.
Experimental results show that it yields a significant scaling
improvement over the baseline. On four NVIDIA GTX1080
GPUs, it achieves a 2.1x speedup over the standard asyn-
chronous SGD method, yet with no increase in perplexity.
This is 4.2 times faster than the naive single GPU system.

2 Background
2.1 Neural Language Model

Neural language models resemble the general architecture
of neural network-based systems. They operate by creating
connections between neurons which are organized into dif-
ferent layers. A layer can be defined as a procedure that
maps an input vector = (z1, ..., Z,,)7 to an output vector
y = (y1,...,yn)T, like this

y = f(s) (1)

"The result was obtained on a machine with an Intel X99 main-
board and 4 GPUs. The minibatch size was set to 64.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

output layer -~

y = softmax(s) S

s=W,-x+b, AN

parameters: W, b, T~a .
hidden layer
y = tanh(s) -7
s=Wy-x+bp -7

(=== =

parameters: W, by,
1

A Recurrent Neural Network-based Language Model

‘—~-—»| output I

rock it </s> output word
S I -
output
4 4 4 distribution
| output | | output |

1 1 1

| hidden |—>| hidden |—>{ hidden |

I embedding] I embedding I I embedding I

B B B - one-hot

3 ‘1 00 0}___ '-..0 010: '-..0 00 1: representation
<S> rock it input word

| embedding layer J
\‘ y=s " !
Y s=We- -z
N parameters: W,
AN 1
N 1
\
: |
\ BE I
\ parameter server: lenew =0-n- <
AY
1
~
“H Wo. b, Wh,bh] | w.]e

/sh (P) fetch (F)
06 new

Processor 1
on GPU1 (Gl)

Processor 2
on GPU2 (G2)

Processor 3 o
on GPU3 (G3)

Figure 1:
represent the beginning and the end of a word sequence.

S =

W.-xz+b)

where the model parameters are the n x m weight matrix W
and the n-dimensional bias term b. W; ; represents the weight
of the connection from the j-th neuron in the input to the -
th neuron in the output. f(-) is an activation function that
generally performs a non-linear transformation on s before
passing it to the output.

A neural language model consists of three types of layers

e Input layer. It receives the one-hot representation of a
word and outputs its real-valued multi-dimensional rep-
resentation (called word embedding).

e Output layer. This layer produces the probability for
each word in the vocabulary by using the softmax func-
tion - f(s,) = exp(s;)/ 2, exp (sq1)

e Hidden layer. This layer is sandwiched between the
input and output layers. Its output is regarded as a high-
level representation of the input sequence. For a deep
representation, several hidden layers can be stacked.

Different topologies of these layers can lead to differen-
t networks. A feedforward neural network-based language
model takes a fixed number of history words as input and

An illustration of RNN-based language models and parallel training.

~ ~
o Update 1)
= || .E = || .E
N) a = — -9 -9 = —
£1l|e 2 l|e
2 2 O = pe g = =
S S E | |5 S S E||l=B
ol 2 2 B 2 2 =
£ £ £ E
E
G3 G2 Gl G3 G2 Gl
Synchronous Asynchronous
Training Training

tanh(-) = hyperbolic tangent function. <s> and </s>

predicts the next one. For variable-length sequences of word-
s, the recurrent neural network-based language model applies
the same recurrent layer over the sequence of word embed-
dings, and the representation of the entire sequence is encod-
ed in the output of the final hidden layer. See Figure ?? (top)
for a running example of a RNN-based language model.

The inference process (or forward process) of an NLM is
straightforward. E.g., in RNN-based LMs, we can pass vari-
ous vectors through the network and obtain P(wy w1 ...wg—1)
in the output layer corresponding to the k-th word. A popu-
lar method of training RNN models is stochastic gradient de-
scent. We run a backward process to calculate the gradients
for model parameters 6 with respect to the error (denoted as

E 57) namely back- propagation Then we update the model

by Onew =0 —1n - 69 , Where 7 is the learning rate.

2.2 Parallel Training

For faster training, a popular way is parallel SGD. In this
work we follow the framework presented in [Dean et al.,
2012]. It distributes training across multiple model instances.
Each model instance is assigned to a processor and is respon-
sible for processing a minibatch of samples. The processors
communicate with a centralized parameter server for model

4194

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

GPU1:
marks ¢ row selection matrix 7' original matrix W
TR - 3 1 9
0 1 0 0 0 O 0 .5 .2
1.1 0 051 0 O X -1 .1 3
O A 070 0,1 0 a7 2
0 Je e 0 3 4

GPU2:
matrix W’ matrix W’
for transmission on the target GPU
S 2 . S 2
= (/=1 1 3 transmit o 1 1 3
7T 2 a7 2

Figure 2: Sampling-based data transmission.

update, which keeps the latest state of all parameters of the
model. The parameter server can be sharded across sever-
al devices or machines, where each shard stores and applies
updates to a portion of the model parameters.

For a processor, before processing the minibatch, it asks
the parameter server for a current copy of the model parame-
ters. After processing the minibatch, it pushes the gradients to
the server and sends an update message. See Figure ?? (bot-
tom) for an illustration of the parallel training model used in
this work.

In general, there are two paradigms for parameter update.
The server can wait until all the processors finish their job-
s, and then refresh the model parameters after receiving the
gradients from the processors, i.e., the training runs in a syn-
chronous manner. Alternatively, processors can run in an
asynchronous way in which the server starts the update once
a processor finishes the upload of the gradient information
(Figure ??). Theoretically, asynchronous parallel training can
not guarantee good convergency as its synchronous counter-
part - but it is faster and shows good empirical results in many
large-scale systems.

Another way for fast parallel training is to overlap com-
munication and computation. This can be done by using the
multi-way data transmission model of modern GPUs. Note
that the problem discussed in this paper is orthogonal to the
method of overlapping data transmission and computation.
In the following we restrict ourselves to the model where no
such overlaps are employed.

3 Data Transmission via Sampling

In parallel training of NLMs, processing a minibatch re-
quires two programs: 1) we first employ the back-propagation
method to obtain the gradients for the minibatch, and then 2)
we upload the gradients onto the parameter server and wait
until the server finishes the update and sends back the new
parameters. The second program takes little time if we run
it on a single GPU with a high speed of on-chip data copy.
But it is not the case when we switch to the multi-GPU envi-
ronment. We observe that in a normal NLM setting, the data
transmission between two GPUs takes 50% of the time of the
back-propagation process. This means that we roughly have
50% inefficiency at best if we transmit the parameters with
no other cost.

A possible solution to the issue is that processors com-
municate updates with the parameter server occasionally,
rather than performing parameter update for every minibatch

4195

[Zhang et al., 2015]. Though it can reduce the total amount
of the transmitted data, we find that it is harmful to NLMs if
we delay the update of the model parameters. Because the
gradient matrices of softmax layers and hidden layers are big
and dense, we need to keep the update in a relatively frequent
fashion so that the learning can have reasonable convergence.

Here we present a method that balances the sending over
time. The idea is pretty simple - we only select a small (nec-
essary) portion of the data for transmission. Let W be an
n x m matrix we need to copy from a GPU to another?, and
W(i) be the i-th row of W. For rows of W, we generate an

n-dimensional vector t = (1, ...,t,)?, where t; = 0 or 1.
Then we transmit W,y only if ¢; = 1, and do not perform
data copy for W(; if ¢; = 0. Here we call ¢ the row-based
mark for data transmission.

More formally, let n’ be the number of the non-zero entries
of ¢, and wy be the index of the i'-th non-zero entry of t.
We define an n’ x n matrix T subject to Tjy ; = 1if j = wy,
otherwise T/ ; = 0. In other words, T} ; = 1 means that ¢; is
the 4’-th non-zero entry of ¢. Then, we define the transmitted
matrix W' to be:

W' = T xW 3)

Eq. (3) actually performs a transformation on W by select-
ing rows of W with a non-zero mark in ¢. To implement this
way of data copy between processor and server, all we need
is to transmit W’ from the source device and unpack it to W
on the target device. Other parts of the training procedure can
proceed as usual. See Figure 2 for an illustration of the data
selection and transmission in our method.

Note that the matrix multiplication in Eq. (3) is not heavy
because W’ is very sparse. Also, transmitting W' from a
processor to the server can be implemented via sparse matrix
transmission. Here we choose a straightforward method that
packs W’ into a continuous block of data and unpacks it on
the server end. Then the server can do sparse matrix opera-
tions after collecting the gradients from the processors. This
process is basically the same as that of the baseline system
and we can reuse the parameter fetching and pushing strate-
gies.

To determine which rows of a matrix are selected, we
choose different methods for different layers. In the softmax
layer, each row of the weight matrix corresponds to a word.

The matrix keeps either the model parameters or the gradients.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Rather than random sampling, a better way is to keep updat-
ing the model on the most frequent words, which can lead to
fast convergence. Also, the words in the minibatch can be
seen as positive samples that we intend to learn from. Thus,
we design the following sets of words to make the vector ¢

e We select the words in the minibatch, denoted as Vjqqe.

e We select p[%] of the most frequent words in the vocab-
ulary, denoted as V.

e We randomly select g[%] of the words in the vocabulary,
denoted as V3.

Then, we generate the union set Vg = Vigse U Vo U V3
and define that ¢; = 1 only if word; € V. The use of
V3 introduces randomness into training and makes the model
behave more stable on the test data. For hidden layers, we
generate ¢ in a random manner, where we only use parameter
q to control how often a row is selected to make t.

Another note on our method. For the embedding layer, the
gradient is non-zero only for columns of the input words. In
this case we employ a column-based method that transmit-
s the gradients or model parameters for the active columns
of the words in the minibatch. Though column-based data
transmission is applicable to all other layers, using row-based
transmission has several benefits (for softmax layers and hid-
den layers). First, a row in W is for an output neuron of the
layer. Row selection is essentially a process that randomly
omits the update of some neurons. This idea is similar to that
of Dropout [Srivastava et al., 2014], which has been proven
to improve the robustness of neural network-based models on
the unseen data. In addition, row-based copy is efficient be-
cause the data elements are stored in a block of contiguous
memory space’. This can ease its implementation in practical
systems.

4 Gradient Computation via Sampling

As we only transmit gradients for some of the neurons in a
layer, it is natural to save more time by discarding the com-
puting work of those neurons whose gradients are not sent to
the parameter server. This makes more sense for the softmax
layer whose weight matrix is huge. Generally, the big soft-
max layer is a bottleneck of the forward and backward pro-
cesses for NLMs. Therefore, we apply the sampling method
to gradient computation in the softmax layer.

Let g = (g1,..,9n)T be the gold-standard word probabil-
ity distribution for the softmax layer (g; = 1 if word; is the
correct answer), and F(g, y) be the error function given the
gold standard g and the layer output y. Here we choose cross
entropy as the error function. By using Egs. (1) and (2), we
compute the gradient of the error with respect to W ;:

9E(9,y)

8WZ j
Eq. (4) implies a two-step procedure - for each word (with
index %), we first calculate its output probability y; in the for-
ward phase, and then calculate %ﬁ’i’) for each (4, 75) in the

= Wi—g) “)

3We assume matrices are in a row-major order for storage.

4196

entry | PTB FBIS Xinhua

training (words) | 952K 4.94M 110M
validation (words) 76K 101K 115K
test (words) 85K 104K 118K

vocabulary size 15K 30K 40K

embedding size 512 512 1024
hidden size 512 512 1024
minibatch size 64 64 64

Table 1: Data and model settings.

backward phase. Given the fact that we only transmit aE(g y)

for word; € Vg, there is no need to compute the gradlent for
word; & Vg in the backward phase.

Also, we can obtain y; based on a sampled set of words in
the forward phase. Given the word indices for data transmis-
sion V,;;, we randomly select additional u[%] of the words in
the vocabulary (V,,). Then, we compute y; over the union set
of the two: Vy = Vi [V5, like this

exp(si) if word; € V.
i =4 Dwora, cv, P !)
0 otherwise

An efficient implementation of Eq. (5) is that we compute
{s; | word; € V;} and exclude {s; | word; ¢ V;} from
producing the output. It can benefit from faster operations on
smaller matrices*. In this work we also apply this method to

obtaining 2£ (g Y and aE(g Y) for further speedup.

Note that the method presented here basically shares a
similar idea as presented in [Bengio and Senécal, 2003;
2008]. Unlike previous work, we employ two different sam-
plers for the forward-backward process. We use a slightly
larger word set (V) to compute y; in the forward phase, and

a smaller word set (V;;) to compute % in the back-
i,j

ward phase. It seems like a procedure that introduces some
dummy words (i.e., words in V, controlled by p) into back-
propagation. In this way, the probability can be distributed to
these dummy words. It is very similar to the way of generat-
ing noise for robust training [Hoaglin et al., 1983]. In general,
such a method is very beneficial to learning statistical models
with good generalization ability.

5 Experiments

5.1 Experimental setup

We experimented with the proposed approach in a recurren-
t neural network-based language model. We chose asyn-
chronous SGD for the training framework. We ran all ex-
periments on a machine with four NVIDIA GTX1080 GPUs.
The quality of language modeling was measured by the av-
erage per-word log-scale probability (perplexity, or PPL for
short). Three different sized tasks were chosen for training
and evaluation.

“Instead, we can use sparse matrix operations, e.g, multiplica-
tion on sparse matrices. But we found that it was faster to operate
slimmed dense matrices.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

PTB FBIS Xinhua

Entry Valid. Test Speed | Valid. Test Speed | Valid. Test Speed

1 GPU | baseline 852 90.8 204 | 452 507 11.0 | 483 557 448
+ gradient comp. sampling | 86.7 87.2 269 | 450 49.1 154 | 48.6 557 6.27

baseline 843 889 336 | 462 51.8 167 | 485 568 7.03

2 GPUs | + data trans. sampling 88.1 86.2 39.1 48.8 502 214 50.1 542 8.64
+ gradient comp. sampling | 86.4 87.3 56.1 4777 500 29.0 494 551 11.6

baseline 87.0 874 40.8 | 455 51.0 209 | 47.6 560 846

4 GPUs | + data trans. sampling 869 87.0 654 | 48.0 498 363 | 479 563 151
+ gradient comp. sampling | 85.0 88.2 862 | 473 512 508 | 462 557 204

Table 2: Perplexity and speed [k words/second] results of different systems.

—@— baseline —H— + data trans. sampling —— + grad. comp. sampling
10.0 71— 6.0 L —
8.0 - 2.0 |
4.0 - n
6.0 -
4.0 2.0 1.0+ _|
2.0 L1 1 ooll—L | | ooll—L | |
1 2 3 4 1 2 3 4 1 2 3 4
(a) PTB (b) FBIS (¢) Xinhua

Figure 3: Speed [10k words/second] against GPU number.

e Penn Treebank (PTB). It is the standard data set used in
evaluating LMs. We used sections 00-20 as the training
data, sections 21-22 as the validation data, and sections
23-24 as the test data.

e FBIS. We used the Chinese side of the FBIS corpus
(LDC2003E14) for a medium sized task. We extract-
ed a 4,000 sentence data set for validation and a 4,027
sentence data set for test. We left the rest for training.

e Xinhua. For large-scale training, we generated a 4.5
million sentence set from the Xinhua portion of the En-
glish Gigaword (LDC2011T07). The validation and test
sets (5,050 and 5,100 sentences) were from the same
source but with no overlap with the training data.

For the FBIS and Xinhua tasks, we removed sentences of
more than 50 words from the training data. All Chinese sen-
tences in the FBIS data were word segmented using the tool
provided within NiuTrans [Xiao ef al., 2012]. We used vo-
cabularies of 15K, 30K and 40K most frequent words for the
three tasks. The out of vocabulary (OOV) words were marked
with a special UNK token. See Table 1 for a summary of the
data and model settings.

For RNN-based LM, we chose long short-term memory
(LSTM) for the recurrent unit [Hochreiter and Schmidhuber,
1997]. The weights in all the networks were initialized with a
uniform distribution in [-0.1, 0.1]. The gradients were clipped
so that their norm was bounded by 3.0. For all experiments,
training was iterated for 20 epochs. We started with a learning
rate of 0.7 and then halved the learning rate if the perplexity
increased on the validation set. In our sampling-based ap-
proach, we set u = 5% by default. For softmax layers, we set

p = 10% and ¢ = 10%. For hidden layers, we set ¢ = 90%,
which could prevent the system from disturbing the training
of the LSTM layer too much.

5.2 Results

We first compare the system speed by varying the number
of GPUs. Figure 3 shows that the standard asynchronous S-
GD method (baseline) has poor scaling due to the time cost
of data transmission. The NLM can be scaled up better when
sampling-based data transmission is employed. Also, the sys-
tem runs faster when the sampling method is applied to gradi-
ent computation in the back-propagation process. It achieves
over 1.3x speedups on a single GPU for all three of the tasks.
Under the 4-GPU setting, it achieves a speedup of 2.1x over
the asynchronous SGD baseline, and is even 4.2 times faster
than the naive 1-GPU counterpart. More interestingly, it is
observed that more speed improvements can be obtained on
bigger models (as in Xinhua). This is because that sampling
over a larger parameter set discards more data for transmis-
sion and thus saves more time.

Then we study the quality of various NLMs as measured by
perplexity (Table 2). We see that the perplexity of sampling-
based models is comparable to that of the baseline, and the
result is consistent under different settings of GPU number.
Moreover, we plot the learning curve on the validation set
of the Xinhua task. Figure 4 shows that our sampling-based
method has good convergence. The perplexity drops signif-
icantly in the first 5 epochs and tends to coverage in 8~10
epochs.

As the percentage of time spent exchanging parameters de-
pends on the size of minibatch, it is worth a study on how
our method performs for different sized minibatches. Figure
5 shows that the speed improvement persists under differen-
t settings of minibatch size. For smaller minibatches, larger
speed improvements are obtained because more time (in per-
centage) is spent on communicating gradients.

Also, we do sensitivity analysis on the hyper-parameters of
our method (p, ¢, and p). We find that it helps if we sample
less data in data transmission for the softmax layer. The sys-
tem can run faster by using smaller p and ¢ while it in turn
results in more training epochs to converge. The interesting
observation here is that using two-stage sampling in gradien-
t computation is promising (see Section 4). Figure 6 shows
that setting 1 around 0.03~0.05 leads to better convergence,
which indicates that introducing some noise into training is

4197

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

150 T T
oy baseline (1 GPU) —@—
5 100 baseline (4 GPUs) —A— | |
& + sampling (4 GPUs) —%—
&
50 =
20 40 60
training time (hours)
Figure 4: Perplexity against training time (Xinhua).
\
% 20 |10 O vaseline (1 GPU) N
3 15 ’[| [baseline (4 GPUs) ZZa
g 10 ’B ﬂ + sampling (4 GPUs) 222 |
3 5 |—| 7
o [27 1
e m oml | O
4 16 64

minibatch size

Figure 5: Speed against minibatch size (Xinhua).

good for generalizing the model on the unseen data.

In addition to vanilla SGD, the sampling-based method is
applicable to other training and data transmission paradigms.
For a further improvement we apply the 1-bit method [Seide
et al., 2014] on top of our system. We find that the 1-bit
method can speed up our sampling-based system, but with a
decrease of language modeling quality in the default setting
of sampling. We suspect that it is due to the loss of accuracy
for the model when we quantize a small portion of gradients.
For a comparable perplexity result, we enlarge both p and ¢
to 25% when the 1-bit method is employed. The final speed
up is 2.6x over the baseline on 4 GPUs. It is 5.2 times faster
than the single GPU baseline.

6 Related Work

It has been observed that increasing the scale of learning with
respect to training samples can drastically improve the per-
formance of NLMs [Jézefowicz et al., 2016]. In response,
it is natural to scale up training algorithms through paral-
lelization. In machine learning, many researchers have inves-
tigated parallel training methods for statistical models [Mann
et al., 2009; McDonald et al., 2010; Zinkevich et al., 2010;
Dean ef al., 2012]. Some of this research focuses on delayed
gradient updates, which can reduce the communication be-
tween machines [Langford ef al., 2009; Agarwal and Duchi,
2011]. Other groups work on problems with sparse gradients
and develop faster asynchronous stochastic gradient descent
in a lock-less manner [Niu et al., 2011]. These methods work
well for convex and/or sparse problems but have not been well
studied in the training of large-scale NLMs. We note that, de-
spite significant development effort, we were not able to have
good scaling for our NLM using existing methods; it was this
experience that led us to develop a model-specific method in
this paper.

In the context of language modeling, several research

4198

120 :
z 100| %
S g
£
£ 60|
40

training time (hours)

Figure 6: Learning curves in different settings of © (Xinhua).

groups have addressed the computational challenge in learn-
ing large vocabulary NLMs. They proposed good solution-
s to the problem, including importance sampling [Bengio
and Senécal, 2003; 2008], noise contrastive estimation [Mnih
and Teh, 2012], and hierarchical softmax [Morin and Ben-
gio, 2005; Mnih and Hinton, 2008]. Most of these focus on
the scaling problem on a single processor or running small
models in a multi-CPU environment. More recently, Zoh-
p et al. [2016] trained their 4-layer LSTM-based NLM by
laying each layer on a GPU. Though their model parallelis-
m method works for multi-layer RNNS, it is only applicable
to certain architecture where different parts of the model can
be processed in parallel. Another interesting study reported
that NLMs could be run on a GPU cluster [Jézefowicz et al.,
2016], but the details were missing. It is still rare to see in-
depth studies on scaling up the training of NLMs over modern
GPUs through data parallelism.

Another related study is [Seide er al., 2014]. They used
the 1-bit method to ease data transmission by quantizing gra-
dients. Actually, the 1-bit method and our sampling-based
method are two research lines that are compatible to each oth-
er. As is discussed in Section 4, they can work together for
a further speedup. Note that the idea of sampling is not new
in language modeling. E.g., our method of sampling-based
gradient computation and importance sampling [Bengio and
Senécal, 2003] are two variants on a theme. Unlike previous
work, we develop a different sampling strategy and use two
samplers for the forward and backward processes.

7 Conclusions

We have presented a sampling-based approach to scaling up
the training of NLMs over multiple devices. It reduces cost
data transmission and gradient computation in a distributed
training environment. We have demonstrated that on 4 GPUs
the proposed approach can lead to a speedup of 2.1+ times
over the standard asynchronous SGD, with no loss in lan-
guage modeling quality. It is even 4.2 times faster than the
single GPU baseline without sampling.

Acknowledgments

This work was supported in part by the National Science
Foundation of China (61672138 and 61432013) and the Fun-
damental Research Funds for the Central Universities. The
authors would like to thank anonymous reviewers, Fuxue Li,
Yaqgian Han, Ambyer Han and Bojie Hu for their comments.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Agarwal and Duchi, 2011] Alekh Agarwal and John C
Duchi. Distributed delayed stochastic optimization. In
Proceedings of the 25th Annual Conference on Neural
Information Processing Systems (NIPS), pages 873-881,
Granada, Spain, 2011.

[Bengio and Senécal, 2003] Yoshua Bengio and Jean-
Sbastien Senécal. Quick training of probabilistic neural
nets by importance sampling. In Proceedings of AISTATS,
2003.

[Bengio and Senécal, 2008] Yoshua Bengio and Jean-
Sébastien Senécal. Adaptive importance sampling to
accelerate training of a neural probabilistic language mod-
el. [EEE Transactions on Neural Network, 4:713-722,
2008.

[Bengio et al., 2003] Yoshua Bengio, Réjean Ducharme,
Pascal Vincent, and Christian Jauvin. A neural proba-
bilistic language model. Journal of Machine Learning Re-
search, 3:1137-1155, 2003.

[Dean et al., 2012] Jeffrey Dean, Greg Corrado, Rajat Mon-
ga, Kai Chen, Matthieu Devin, Q Le, Mark Z Mao, Mar-
caurelio Ranzato, Andrew W Senior, Paul Tucker, et al.
Large scale distributed deep networks. Information pro-
cessing systems, pages 1223-1231, 2012.

[Hoaglin et al., 1983] David C.
Mosteller, and John W. Tukey.
bust and Exploratory Data Analysis.
1983.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jiirgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735-17808, 1997.

Hoaglin, Frederick
Understanding Ro-
John Wiley,

[Jézefowicz et al., 2016] Rafal Jézefowicz, Oriol Vinyals,
Mike Schuster, Noam Shazeer, and Yonghui Wu. Ex-
ploring the limits of language modeling. CoRR, ab-
$/1602.02410, 2016.

[Langford er al., 2009] John Langford, Alexander J Smola,
and Martin Zinkevich. Slow learners are fast. In Proceed-
ings of the 23rd Annual Conference on Neural Information
Processing Systems (NIPS), pages 2331-2339, Vancouver,
Canada, 2009.

[Mann et al., 2009] Gideon Mann, Ryan T. McDonald,
Mehryar Mohri, and Dan Walker. Efficient large-scale dis-
tributed training of conditional maximum entropy models.
In Proceedings of the 23rd Annual Conference on Neu-
ral Information Processing Systems (NIPS), pages 1231—
1239, Vancouver, Canada, 2009.

[McDonald et al., 2010] Ryan McDonald, Keith Hall, and
Gideon Mann. Distributed training strategies for the struc-
tured perceptron. In Proceedings of Human Language
Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational
Linguistics, pages 456464, Los Angeles, California, June
2010.

4199

[Mikolov et al., 2Q10] Tomas Mikolov, Martin Karafiat,
Lukas Burget, Cernocky Jan, and Sanjeev Khudanpur. Re-
current neural network based language model. In Pro-
ceedings of INTERSPEECH, pages 1045-1048, Makuhari,
Chiba, Japan, September 2010.

[Mnih and Hinton, 2008] Andriy Mnih and Geoffrey Hinton.
A scalable hierarchical distributed language model. In
Proceedings of NIPS, pages 1081-1088, Vancouver, Cana-
da, December 2008.

[Mnih and Teh, 2012] Andriy Mnih and Yee Whye Teh. A
fast and simple algorithm for training neural probabilistic
language models. In Processings of the 29th Internation-
al Conference on Machine Learning (ICML), pages 1751—
1758, Edinburgh, Scotland, June 2012.

[Morin and Bengio, 2005] Frederic Morin and Yoshua Ben-
gio. Hierarchical probabilistic neural network language
model. In Proceedings of AISTATS, pages 246252, 2005.

[Niu er al., 2011] Feng Niu, Benjaminm Recht, Christopher
Ré, and Stephen J. Wright. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Proceed-
ings of the 25th Annual Conference on Neural Information
Processing Systems (NIPS), Granada, Spain, 2011.

[Seide et al., 2014] Frank Seide, Hao Fu, Jasha Droppo,
Gang Li, and Dong Yu. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of
speech dnns. In Proceedings of INTERSPEECH, pages
1058-1062, Singapore, September 2014.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E Hin-
ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning
Research, 15(1):1929-1958, 2014.

[Xiao et al., 2012] Tong Xiao, Jingbo Zhu, Hao Zhang, and
Qiang Li. NiuTrans: An Open Source Toolkit for Phrase-
based and Syntax-based Machine Translation. In Proceed-
ings of the 50th Annual Meeting of the Association for
Computational Linguistic (ACL): System Demonstrations,
pages 19-24, Jeju Island, Korea, July 2012.

[Zhang er al., 2015] Sixin Zhang, Anna Choromanska, and
Yann Lecun. Deep learning with elastic averaging sgd.
In Proceedings of the Twenty-ninth Annual Conference
on Neural Information Processing Systems (NIPS), pages
685—-693, Montréal, Canada, 2015.

[Zinkevich et al., 2010] Martin A. Zinkevich, Alex Smola,
Markus Weimer, and Lihong Li. Parallelized stochastic
gradient descent. In Proceedings of the 24th Annual Con-
ference on Neural Information Processing Sytems (NIPS),
pages 2595-2603, Vancouver, Canada, 2010.

[Zoph et al., 2016] Barret Zoph, Ashish Vaswani, Jonathan
May, and Kevin Knight. Simple, fast noise-contrastive es-
timation for large rnn vocabularies. In Proceedings of the
2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pages 1217-1222, San Diego, Cali-
fornia, June 2016.

