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Abstract

Optimal heuristic search has been successful in
many domains where the cost of each action can
easily be obtained. However, in many problems, the
exact edge cost is expensive to compute. Existing
search algorithms face a significant performance
bottleneck, due to an excessive overhead associated
with dynamically calculating exact edge costs.

We present DEA*, an algorithm for problems with
expensive edge cost computations. DEA* com-
bines heuristic edge cost evaluations with delayed
node expansions, reducing the number of exact
edge computations. We formally prove that DEA*
is optimal and it is efficient with respect to the num-
ber of exact edge cost computations.

We empirically evaluate DEA* on multiple-worker
routing problems where the exact edge cost is cal-
culated by invoking an external multi-modal jour-
ney planning engine. The results demonstrate the
effectiveness of our ideas in reducing the com-
putational time and improving the solving ability.
In addition, we show the advantages of DEA* in
domain-independent planning, where we simulate
that accurate edge costs are expensive to compute.

1 Introduction

Heuristic search can tackle many difficult problems, includ-
ing puzzles, journey planning and route planning e.g., [Korf,
1985; Botea et al., 2013; Sturtevant et al., 2015]. Algorithms
such as A* [Hart et al., 1968] can be used to find optimal
solutions. Existing optimal heuristic search algorithms typi-
cally assume that edge costs are known a priori. For exam-
ple, the unit edge cost of 1 is used to find the smallest number
of moves to solve a sliding puzzle instance. In the Traveling
Salesperson Problem (TSP), the cost of an edge is typically
fixed, and edge costs are obtained with a negligible computa-
tional overhead (e.g., using table lookups).

However, in some domains, it is difficult to pre-compute
the exact edge costs. They must be computed dynamically,
during search. When dynamic edge cost computations are
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supported by a JSPS Grant-in-Aid.

expensive, optimal heuristic search faces a major challenge
stemming from an excessive overhead caused by edge cost
computations.

Consider the TSP in a setting where a city’s multi-modal
transport network is used for travel. The travel time between
two locations can depend on factors such as the departure
time and uncertain events such as traffic jams. Multi-modal
journey planning can provide travel times between two loca-
tions, with a given starting time, taking into account uncer-
tainty, such as potential missed connections due to variations
in the arrival and departure bus times [Botea er al., 2013].

Despite recent advances in optimal multi-modal journey
planning under uncertainty [Botea and Braghin, 2015; Kishi-
moto et al., 2016], computing the optimal travel time can
be expensive. For instance, Kishimoto er al. (2016) showed
cases where their journey planner needs 100 seconds and vis-
its 1 million nodes to compute one journey plan between two
locations for a given departure time. In addition, the optimal
travel time between two locations cannot be precomputed and
stored in a table due to prohibitively many combinations of an
origin, a destination, and a departure time.

We present Delayed Expansion A* (DEA¥*), an A* variant
that performs efficient, dynamic edge cost computations, dur-
ing heuristic search. With admissible estimates of exact edge
costs, DEA* can delay the computation of exact edge costs.
This way, DEA* reduces the number of exact edge computa-
tions while always producing optimal solutions. Besides the
main DEA* algorithm, we describe several search enhance-
ments such as dominance-based pruning, and caching.

Part of the evaluation focuses on a problem called
Multiple-Worker Routing Problem (MWRP). We introduce
MWRP and prove that MWRP is an NP-hard problem.
Besides MWRP, we demonstrate our ideas in domain-
independent planning problems, where we simulate that ex-
act edge costs might be expensive to compute. Our results
clearly show that our approach significantly reduces the com-
putational time and improves the solving ability.

2 Delayed Expansion A*

In this section, we present our algorithm DEA*. Consider
a problem P where edge costs are expensive to compute.
As said earlier, examples could include edges representing
a travel leg, from an origin to a destination, in a multi-modal
travel network characterized by uncertainty. If A* is used to
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Algorithm 1 DEA*
Input: no

1: Initialize OPEN < (), g(no) < 0, (Vn # no; g(n) < o0)

2: insert(ng, OPEN), Mark s as standard (i.e., not temporary)

3: while OPEN # () do

4:  n < deleteMin(OPEN)

5:  if n has a duplicate n’ € CLOSED and g(n’) < g(n) then
6: Continue
7:
8

else if n is temporary then
: g(n) < g(parent(n)) + cq(parent(n), n)
9: Adjust s(n), h(n), f(n) based on cq

10: insert(n, OPEN), Mark n as standard (i.e., not temporary)
11: Continue

12:  else

13: Add n to CLOSED, Update g(n) in CLOSED if better

g-value is found
14:  if nis a goal then

15: Extract and return solution

16:  Generate successors(n) based on ¢y,

17:  for each m € successors(n) do

18: gn < g(n) + cn(n,m)

19: g(m) < gn, parent(m) < n

20: insert(m, OPEN), Mark m as temporary

solve such a problem P, every time when A* traverses' an

edge in the search graph, the exact cost of that edge has to
be available. A* could compute these costs on demand, and
cache the results for a future reuse.

However, caching and reusing actual costs have a limited
usefulness. At the same time, heuristic admissible estimations
for travel times can often be provided much more quickly.
DEA* takes advantage of this, using heuristic estimates of
edge costs to delay or even avoid entirely the computation of
an accurate cost. Often, an optimal solution is found with no
need to compute accurate costs for all generated nodes. This
is where the advantage of DEA* stems from.

In the rest of this section we describe DEA*, provide an
example and perform a theoretical analysis of DEA*.

2.1 The DEA* Algorithm

Given a search node n, assume that n contains state informa-
tion s(n), a pointer to the parent node, a g-value g(n) that is
the sum of the edge costs from the initial state to n, a h-value
h(n) that is a heuristic estimation of the cost from n to reach
a goal, and a function f = g + h. DEA*’s heuristic func-
tion is admissible, never overestimating the optimal cost to
reach a goal, and thus ensuring solution optimality. In DEA*,
we distinguish between two types of edge costs, namely an
admissible heuristic estimation c¢;, and an actual cost c,.
Consider an edge (p, n) from a parent node to a successor
node. Using a heuristic cost for this edge could impact g(n),
s(n), h(n) and f(n), as follows. By definition, g is impacted,
as g is the sum of all edge costs of the path available from
the root to n. To show the potential impact on s(n), consider
a problem where some edges encode traveling legs from one
location to another. Assume further that the arrival time at a
current location is part of the state definition. Clearly, the ar-
rival time can depend on the cost of the incoming edge, i.e.,

'We say that A* traverses an edge if that edge is the transition
from a node currently being expanded to a successor.
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Figure 1: Example illustrating that standard A* computes an unnec-
essary actual edge cost of BD (c, = 1000).

on the travel time from a previous location to the current lo-
cation. The heuristic i(n) could be impacted because it typi-
cally is a function of the state information s(n).

Algorithm 1 shows DEA* in pseudocode built on top of
A*. For clarity, the pseudocode is based on a simple variant
of A*. A newly generated node n could be discarded straight
away if a duplicate n’ exists in CLOSED with f(n') < f(n).
The pseudocode does not show this, for simplicity.

In DEA*, when a node p is expanded (and thus a successor
n is generated), only the heuristic cost ¢y, of the edge (p, n) is
computed. Node data such as g(n), s(n), h(n), f(n) are com-
puted with the heuristic cost ¢, in use for the edge (p,n).

After being generated, n is enqueued into the OPEN list
based on the heuristic cost ¢;,. A node enqueued into the
OPEN in this fashion is called a temporary node. When a
temporary node n is popped from OPEN, the actual cost ¢,
of the edge from its parent is computed, and g(n), s(n), h(n)
and f(n) are updated accordingly. The node changes its sta-
tus from a temporary node into a standard node. The node is
re-inserted into the OPEN list with the new f value, and the
main cycle of DEA* continues.

2.2 Example

Fig. 1 illustrates differences between DEA* and A* on a toy,
4-node search graph. A* expands the nodes A, B and C' in
this order, during which it evaluates the actual cost of edges
AB, AC, BD and BC in this order. The computation of BD,
which yields a value of 1000, is unnecessary, since all other
edge costs are significantly smaller.

DEA* does not compute the actual cost ¢, of edge BD.
After the root node A is expanded, B and C' are enqueued
with f values based on ¢;, estimations of the edges from their
parent. Then B, whose f value is 3, is popped from the OPEN
list. Now the actual cost ¢, of the edge AB is computed, and
f(B) becomes 6 + 2 = 8. In this simple example, we as-
sume that the h value of a node stays constant (i.e, it does
not change when a node changes its status from temporary to
permanent). Node B is re-inserted into the OPEN, and node
C is popped out. Its f value increases from 5 to 10, which
triggers its re-insertion into the OPEN, with the new f value.
The process continues as shown in Fig. 1, with node D never
being popped from the OPEN.

As illustrated in Fig. 1, DEA* can perform more OPEN
list operations than standard A*. However, in scenarios where
edge cost computations, or even state heuristic computations
are expensive, OPEN list operations have a much smaller im-
pact on the overall running time.
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2.3 Theoretical Analysis
We prove two theoretical properties of DEA*.
Theorem 1. DEA* outputs optimal solutions.

Proof sketch. DEA* expands only regular nodes, i.e., nodes
computed with ¢, in use. Given DEA*, consider an underly-
ing A* that breaks ties among nodes in the OPEN in the same
way as DEA*. DEA* and the A* under consideration expand
the same set of nodes, in the same order.

Based on the two facts above, it follows that DEA* and the
corresponding A* compute identical solutions. (]

Given a node n, let n;, be its temporary version, and n,
its standard version. Let p be the parent node. Note that p
is already a standard node at the time when n is generated,
since nodes are expanded only after they become standard
nodes. Define g(n,) = g(p) + ca(p,na), and g(ny,) =
g(p) + cn(p,np). We say that the heuristic h is consis-
tent with respect to ¢y, if, for every parent-child pair (p,n),
h(p) < cn(p,np) + h(ny) and h(G) = 0 for every goal node
G. Assuming further that i(ny) < h(ng),Vn, if h is consis-
tent with respect to ¢y, it is also consistent with respect to ¢,
(i.e., standard consistency).

Theorem 2. Assume that A* and DEA* use a similar tie
breaking scheme, and that they use a heuristic h that is con-
sistent with respect to c,. DEA* cannot generate more nodes
with actual edge costs than A*.

Proof. Let c* be the optimal cost of a solution. The set of
nodes that DEA* generates using ¢, includes the set S7 of
all nodes n with f(ny) < ¢*, plus S, a subset of the nodes
n with f(np) = c*, depending on tie breaking. The set of
nodes generated by A* includes the set S of all nodes n
with f(parent(n)) < c¢*, plus Sy, a subset of all nodes n with
f(parent(n)) = ¢*, depending on tie breaking.

Let n be a node and let p be its parent. Then f(p) = g(p) +
h(p) < g(p) + cn(p,nn) + h(nn) = f(nn).

It follows that S7 C S3 and Sy C Sy, assuming a similar
tie-breaking scheme. O

3 The Multiple-Worker Routing Problem

MWREP is a realistic scheduling problem that requires finding
an optimal schedule for a set of workers to deliver services
to a set of customers residing at different fixed locations.
For simplicity and without loss of generality, we consider a
simple healthcare scenario where the customers are patients
and the workers deliver at-home care services such as nursing
care, medical care, and physical therapy. Each patient has an
appointment time when a worker should arrive and perform a
healthcare task. To visit and treat patients, a worker uses the
multi-modal public transport available in a city. Emergency
situations, where using an ambulance is more appropriate, are
beyond our focus. So is the rescheduling and the dynamic as-
signment or reassignment of tasks.

In a valid solution, all patients have to be treated. Tasks
can be performed later than their appointment time, but each
delay in performing a task degrades the quality of a solution.
The cost of a solution is the sum of all delays of all tasks.
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A task starting at its planned appointment time has no delay
(i.e., the delay is 0). Tasks starting later have a positive de-
lay. A task cannot start earlier than their planned appointment
time (i.e., even if the worker arrives early, they will have to
wait until the task is supposed to start).

For simplicity, the duration of each treatment is set to
0. Setting a deterministic task duration in MWRP does not
change MWRP’s computational difficulty. Considering non-
deterministic treatment duration remains future work.

More formally, a four-tuple (P, A, W, 7(z,y, t)) defines an
MWRP, where P = {p;|1 <14 < n} is a list of locations of
the patients, A = {a;|1 <i <n} is a list of appointment
times, W = {w;|1 <4 < m} is a list of initial locations of
workers and 7(z,y, t) is a travel time function between two
locations z,y € P U W with the start time ¢ € [0, 86400].2

It is important to note that in practice the travel time de-
pends on the start time, the schedules of the public transport
vehicles, and the other factors such as uncertainty about the
actual arrival and departure times of buses.

We show that solving MWRP optimally is NP-hard. We
define the MWRP-OPT problem as follows. The input is
an MWRP instance and a number k£ > 0. The question is
whether the instance has a solution whose cost (delay) D sat-
isfies D < k.

Theorem 3. MWRP-OPT is NP-hard.

Proof. We show this with a reduction from the single ma-
chine total tardiness problem (SMTTP), an NP-hard problem
[Du and Leung, 1990]. Given a set of jobs {1,2,--- ,n} to
be processed on a single machine and the processing time pt;
and due date d; of each job i, the objective is to find a sched-
ule for the jobs that minimizes the tardiness 7' = Y " | T},
where T; = max(0,C; — d;) and C; is the completion time
of job ¢ according to the schedule.

Consider an arbitrary SMTTP instance defined as above.
We construct an MWRP instance in polynomial time as fol-
lows. There is one worker and n patients. The appointment
time of patient ¢ is d;, and the duration of the appointment
(treatment) is 0. The worker walks between locations, and the
travel time from location j (j # 4) to location i is pt;.

It is easy to see that the tardiness 7" in the SMTTP instance
is equal to the total delay (i.e., the cost) D of the MWRP
instance. Thus, the SMTTP instance has a solution with T" <
k iff the MWRP instance has a solution with D < k. O

State Space Representation

We next define the state space used for solving MWRP. A
search state is represented by 3-tuple (B, T, L) where B =
{b;|1 < i < n} is a bit vector representing whether a patient
i has already been treated, T = {t;|1 < j < m} is a list of
current times of the workers and L = {I;]1 <4 < m} isalist
of locations of workers at time ¢;.

We define a single action schema, denoted by trear(i, j),
where ¢ is a patient and j is a worker. A treat action has the
following effects. The bit b; corresponding to patient 7 is set to
true. The current time ¢; of worker j is updated as follows. As
tasks do not start before the appointment time a;, the worker’s

286400 = 24 x 60 x 60 is the number of seconds in a day.
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time is set to either the arrival time, or the appointment time,
whichever comes later: ¢; <— max(t; + 7(l;, pi, t;), a;). Fi-
nally, the location [; of worker j is updated to the location p;
of the patient <.

The cost of an action is defined by the delay, namely
max(t; + 7(l;,pi,t;) — a;,0). This means that the delay is
0 when the worker arrives in time or earlier than the appoint-
ment time. Otherwise, the delay is positive.

A solution to an MWRP instance M is a sequence of ac-
tions treat(i, j) where every appointment is addressed with a
treat action. The solution cost is the sum of the action delays.
An optimal solution minimizes the total delay.

In this MWRP setting, the travel time between two loca-
tions (i.e., 7(+)) is not given a priori. In practice, the actual
travel time depends on multiple factors such as the origin, the
destination, the time of travel, and the uncertainty about the
multi-modal transportation network (e.g., exact arrival and
departure times for buses). Pre-computing accurate values for
all travel times often is impractical, due to many combina-
tions of origins, destinations, and departure times.

4 Search Enhancements in MWRP

We present a pruning strategy based on state dominance, an
admissible heuristic h, and other implementation details.

State dominance

We assume the following monotonicity over the arrival time
of a trip:

Assumption 1. For any start time t1 < to, it holds that t; +
T(.’L‘, Y, tl) S t2 + T(ZL', Y, t?)'

This implies the following property:

Proposition 1. The delay d(i, j) = max(t; + 7(l;,pi, t;) —
a;,0) is monotonically increasing over t;.

Given that the cost of a path is a sum of delays, we get the
following dominance criterion:

Definition 1. For two states s1 and s, we say that s; domi-
nates sy (denoted as s1 < sa) when ¥j,t;(s1) < t;(s2) and
Vi, 1i(s1) = lj(s2) and ¥i, bi(s1) = bi(s2).

For such states, the cost of an optimal path containing s
is no greater than the cost of an optimal path containing ss.
Thus it is safe to prune dominated states without losing the
optimality of the solution computed.

Note that DEA* does not apply the dominance relation-
ship when the dominating node is a temporary node. This
is because the current time of the temporary node could be
updated to a larger value when the node is reevaluated (i.e.,
when the node is converted into a standard node).

Admissible heuristic

We have implemented a variant of the h? heuristic [Haslum
and Geffner, 2000], adapted to MWRP. Since the computation
of h? requires the edge costs of all applicable actions avail-
able at the current state, a straightforward implementation re-
sults in extensive computations of accurate travel costs. We
address this bottleneck by using heuristic cost ¢j,. That is, the
computation of the h? heuristic uses heuristic estimations of
travel times, instead of accurate travel times.
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In our implementation, both accurate travel times and
heuristic travel times are obtained with the DIJA journey
planning system [Botea et al., 2013]. The heuristic estima-
tions are computationally cheaper than the actual travel times.
The results of invoking DIJA, both for heuristic and actual
times, are cached for a future reuse.

DIJA pre-computes a lookup table of admissible heuristic
estimates of travel times [Botea et al., 2013]. The system can
combine deterministic and non-deterministic search [Kishi-
moto et al., 2016]. Specifically, it can run a deterministic A*
that computes the travel time for an optimistic, best-case sce-
nario (e.g. buses arrive in time). Deterministically computed
travel times can be used as an admissible heuristic for an AO*
search that computes an uncertainty-aware, contingent plan.
We use the search result of DIJA’s A* to compute heuris-
tic travel times (cp). We denote this heuristic travel time by
7/(x,y,t). The function 7’ also satisfies the admissibility and
monotonicity criteria that hold for 7 in Proposition 1.

The h? heuristic is computed as follows: For each of every
combinations of two subgoals (treating the corresponding pa-
tients), compute the minimum cost sum (the sum of delays)
for achieving them, and return their maximum. The cost is
calculated based on ¢;,. Since ¢;, < cg, a h? heuristic calcu-
lated with ¢y, is a lower bound for a h? heuristic calculated
with ¢,, which is in turn a lower bound of the total cost from
the current state to a goal state. Thus, the h? heuristic com-
puted with ¢, is admissible.

As mentioned in Sec. 2, amending the cost of the edge from
the parent can impact the state, which contains the current
time of each worker. This change in the state can also trigger
a change in the heuristic value of that node. Thus, heuristic
functions might have to be computed twice for a node: once
when the node is temporary, and once after the node becomes
a standard node.

We can further enhance DEA* with a combination of the
h™* (aka the h' heuristic) and h? heuristics. Temporary
nodes are evaluated with h', and standard nodes with h2.
We chose this enhancement because it can be trivially im-
plemented in DEA*. In contrast, A* needs a significant mod-
ification to the algorithm in order to adopt this approach.

Finally, A*’s performance is often affected by the tie-
breaking strategy [Asai and Fukunaga, 2016]. Ties on the f
value are broken by preferring states with fewer untreated pa-
tients, and further ties are broken in the first-in-last-out order.

Other implementation details

DIJA’s AO* search produces an optimal contingent plan. In a
DIJA optimal contingent plan, there is one safe pathway, and
zero or more opportunistic pathways. All actions along the
safe pathway can be executed with a probability of 1, if the
traveler decides to follow that pathway. The safe pathway is
the slowest (i.e., has the largest travel time) among all path-
ways in the optimal contingent plan. Opportunistic pathways
are faster, but there is no guarantee that the traveler will be
able to follow them at the plan execution time.

For the actual edge cost function ¢, we currently use the
travel time of the safe pathway. Other options for implement-
ing c,, such as using the expected arrival time, are left as
future work. However, even with the current actual edge cost
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city nodes | segments || stops | routes | trips/day
Dublin 301,638 | 319,846 |1 4,739 | 120 7,308
Montpellier | 152,949 | 161,768 || 1,297 | 36 3,988
Rome 522,529 | 566,400 || 8,896 | 391 39,422
Table 1: Statistics of transport data used in experiments.
Blind R h? h'h?
City |W|||A*| DEA* |A*| DEA* | A* | DEA*||DEA*
Total 501 59 (68| 77 [81| 83 85
Dublin 12([14] 15 [15| 21 [19] 22 22
6 [[2] 4 |8 8 [12] 12 11
Montpellier 12 (16| 15 |17 17 |17| 15 18
6 [ 1 4 |[3] 5 |3 4 5
Rome 12 |[15] 18 [18| 19 |19] 19 20
6 [[2] 3 [7] 7 11| 11 9

Table 2: Number of solved instances in MWRP.

function, thanks to the opportunistic pathways, workers have
a chance of reducing their delays in practice.

5 Experimental Results

We evaluate DEA*’s performance in the MWRP and in
domain-independent planning. Experiments are conducted on
an Intel Xeon CPU cluster, with a time and memory limit of
one hour and 1.5 million in-memory states per instance.

Evaluation in the MWRP

We generated a total of 180 instances with the real road-map
and transportation data from three European cities (Table 1).
In each instance, there are either 6 or 12 workers, while the
number of patients was varied between 8-24. They do not
contain unrealistic configurations (e.g. 6 workers & 24 pa-
tients means that each worker attends 4 patients per hour on
average). The map roughly contains an area within a radius of
10km, 6km, and 10km from the city center in Dublin, Mont-
pellier and Rome, respectively. In these maps, the locations of
workers W and the locations of patients P are randomly se-
lected within a 2km radius circle in the city center. Appoint-
ment times are randomly set between 10—-11AM. Workers’
start times are fixed at I0AM.

Our evaluation includes three heuristics used in DEA*:
blind, K™ (aka h'), and h2. Compared to h2, h™* is faster
but less informative, since it returns only the maximum of the
minimum possible delay for each untreated patient. Table 2
shows the number of instances solved by A* and DEA*. In
terms of total coverage, DEA* always solves more instances
than A*, when they both use the same heuristic. That is, a
blind DEA* solves 9 more instances than a blind A*, DEA*
with Al solves 9 more instances than A* with h', and DEA*
with h2 solves 2 extra instances as compared to A* with h2.

Moreover, the combined use of Al and A2 enables DEA*
to solve two additional instances compared to DEA* (h?),
achieving the best solving ability (see h'h2 in Table 2). The
results clearly show the importance of our delayed node eval-
uation in the presence of expensive edge cost computations.

DEA*’s OPEN list is typically twice as large as that of A*.
If the edge costs are not too expensive to compute, the OPEN
list overhead outweighs the gains resulted from the delayed
edge computation, resulting in A* solving two more instances
than DEA* in Montpellier with h? in use.
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Figure 3: Comparison of the runtime spent for the external calls to
DIJA on instances solved by both A* and DEA*

The histogram shown in Fig.2 indicates the ratio of the
runtime spent by the external DIJA engine to the total time of
A* + DIJA. Despite integrating caching, the edge cost com-
putations are the main performance bottleneck in A*. In most
cases, irrespective of the heuristics used, calls to DIJA cover
more than 90% of the runtime of A* + DIJA.

Fig. 3 plots the runtime spent on the external calls to DIJA,
for the instances solved by both DEA* and A*. The time
spent by A* is plotted on the horizontal axis against DEA*
on the vertical axis on logarithmic scales. Points below the
y = « line indicate that DEA* outperforms A*. These figures
clearly show that DEA* successfully reduces the number of
expensive calls to DIJA. The average improvement to the total
runtime was 54% (blind), 123% (h™*), and 149% (h?).

Note that these two charts do not show the best performing
version of DEA*, namely DEA* with h'h2. The reason is
that in these charts we wanted to compare DEA* vs A* when
both algorithms use the same heuristic.

Evaluation in Domain Independent Planning

We consider the case where domain independent classical
planning needs to account for the expensive edge cost evalua-
tion. Current domain independent planners support the cases
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Figure 4: DEA* vs A* in domain independent planning.

where the exact edge costs are obtained easily. For this rea-
son, we simulate that accurate edge costs might be computa-
tionally expensive to obtain, and that a cheaper heuristic esti-
mation can be computed.

We implemented DEA* on top of the cost-optimal Fast
Downward planner based on the landmark-cut heuristic
[Helmert and Domshlak, 2009]. We selected domains with
non-unit action costs from the optimal tracks in past Inter-
national Planning Competitions. We then assumed that Fast
Downward can obtain the heuristic edge cost ¢, by subtract-
ing a constant ¢ from the actual edge cost c,, i.e. ¢, =
max(0, ¢, — ¢), as inspired from [Helmert and Roger, 2008].

We selected the following non-unit action cost domains:
barman, cybersec, elevators, floortile, openstacks, parc-
printer, pegsol, scanalyzer, sokoban, transport and wood-
working, and considered 20 instances in each domain. We ran
the solver with a time and memory limit of 30 minutes and
4GB per instance. hM is computed based on cy,, similarly
to the heuristics A' and h? implemented in MWRP.

In Fig. 4, the number of ¢, (i.e., exact edge) calculations of
A* for each instance is plotted on x-axis, against DEA* on
y-axis, on logarithmic scales. We show results obtained with
c = 8 and ¢ = 1, and DEA* significantly reduces the number
of exact edge cost computations. In terms of the improvement
factor (i.e. x/y), when ¢ = 8, the minimum factor is 1.6, the
mean 4.5 and the maximum 18. For ¢ = 1, the improvements
are even greater. The minimum improvement factor is 1.7, the
mean factor is 6.5 and the maximum one is 29.

6 Related Work

DEA* is related to Partial Expansion A* (PEA*) [Yoshizumi
et al., 2000] and Enhanced PEA* (EPEA*) [Goldenberg et
al., 2014]. However, these aim at different types of improve-
ments. PEA* addresses high memory requirements caused by
a large branching factor. For example, in the Multiple Se-
quence Alignment (MSA), the flagship application domain
of PEA*, the number of successors per state is O(2¢) where
d is the number of sequences to be aligned. PEA* generates
and evaluates all successors of a search state but keeps in
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memory only a partial subset of successors that look promis-
ing. As PEA* evaluates every successor, it requires that exact
edge costs are immediately available and thus node evalua-
tions are relatively cheap. On the other hand, DEA* addresses
the issue of expensive exact edge cost computations required
for obtaining the g-value. When a node n is generated, DEA*
uses a heuristic estimation of the cost of the edge from its par-
ent. The exact cost computation of that edge is delayed until
n is selected for expansion.

Lazy A* [Tolpin et al., 2013] improves and updates the
heuristic value. Although Lazy A* is similar in spirit to
DEA¥*, our focus is not on the node estimate, but on the edge
cost estimate which requires expensive computations.

Phillips et al. (2014) present PA*SE, a parallel A* for
robot motion planning domains. PA*SE is designed for do-
mains where generating successor states can be expensive.
E.g., in motion planning problems successor generation may
involve an expensive and precise collision checking proce-
dure. In contrast, DEA* is designed for domains where gen-
erating successors is not expensive, but computing the exact
cost of a parent—successor edge could be.

Deferred evaluation (DE) has been studied in satisficing
domain independent planning [Helmert, 2006; Richter and
Helmert, 2009]. When generating a successor of a node, DE
sets the heuristic value of the successor to that of the par-
ent, thus deferring the successor evaluation. As opposed to
DEA¥*, this related work assumes that edge costs are readily
available, and suboptimal solutions are allowed.

Decentralized, auction-based multi-agent coordination has
been studied in multi-robot routing problems [Kishimoto and
Sturtevant, 2008; Kishimoto and Nagano, 2016]. Edge costs
are dynamically computed via path-finding on road or game
maps. The similarity to DEA* is that edge costs can be ex-
pensive to compute. A key difference is that auction-based
techniques are suboptimal.

7 Conclusions

Heuristic search algorithms typically assume that the cost of
edges in the search graph are readily available. However, in
real-life domains, such as problems that involve traveling be-
tween various locations on a map, such a simplifying assump-
tion does not always hold.

We have introduced DEA*, capable to reduce the num-
ber of exact edge cost computations. We formally introduced
the Multiple Worker Routing Problem, a practical application
domain inspired from the healthcare industry. We provided
an NP-hardness result for MWRP. We evaluated the perfor-
mance of DEA* in MWRP and in domain-independent plan-
ning. The results demonstrate a significant performance im-
provement of DEA* as compared to A*.

As future work, Factored Planning [Amir and Engelhardt,
2003; Brafman and Domshlak, 2006; Asai and Fukunaga,
2015] could incorporate ideas from DEA*. This framework
automatically decomposes the input problem and solves each
subproblem to convert the subplans into macro actions. DEA*
could improve this potential bottleneck by replacing the sub-
problem solving with a partial computation of the plan.
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