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Abstract
Omega-regular objectives in Markov decision pro-
cesses (MDPs) reduce to reachability: find a policy
which maximizes the probability of reaching a target
set of states. Given an MDP, an initial distribution,
and a target set of states, such a policy can be com-
puted by most probabilistic model checking tools. If
the MDP is only partially specified, i.e., some prob-
abilities are unknown, then model-learning tech-
niques can be used to statistically approximate the
probabilities and enable the computation of the de-
sired policy. For fully specified MDPs, reducing
the size of the MDP translates into faster model
checking; for partially specified MDPs, into faster
learning. We provide reduction techniques that al-
low us to remove irrelevant transition probabilities:
transition probabilities (known, or to be learned) that
do not influence the maximal reachability probabil-
ity. Among other applications, these reductions can
be seen as a pre-processing of MDPs before model
checking or as a way to reduce the number of exper-
iments required to obtain a good approximation of
an unknown MDP.

1 Introduction
Markov decision processes (MDPs) are one of the most
widely used tools for modelling decision-making under uncer-
tainty [Littman, 1996; Papadimitriou and Tsitsiklis, 1987].
They are widely used in areas of planning [Russell and
Norvig, 2010; Ding et al., 2014], model-based reinforce-
ment learning [Strehl et al., 2009], formal verification [Baier
and Katoen, 2008], robotics [Lahijanian et al., 2010], and
control [Bernstein et al., 2002]. Arguably the most fun-
damental question one can ask in an MDP is to maximize
the probability of reaching some target set of states from
a set of initial states. That is, to compute the maximal
reachability probability and a policy which — when imple-
mented on the MDP — achieves that probability. In the
artificial intelligence planning community, this problem is
also known as MAXPROB (see, e.g., [Kolobov et al., 2011;
Steinmetz et al., 2016]). A sample instance of the associ-
ated decision problem is as follows: “is there a policy to
ensure the probability of reaching state t from state s is at

least 10%?” More elaborate objectives defined with respect
to reward or cost functions have also been considered in the
literature [Puterman, 2005]. It can, however, be cumbersome
to map complex goals to an appropriate reward structure in an
MDP and thus find a control policy. To this end, linear tempo-
ral logic (LTL) has been commonly used as a way to formally
specify high-level goals (see, e.g., [Svorenová et al., 2013;
Lacerda et al., 2015]). It is known that maximizing the proba-
bility of satisfying several objectives, notably LTL objectives,
reduces to a reachability objective [Baier and Katoen, 2008].

In this paper we develop MDP reduction techniques that
preserve the maximal reachability probability. We first discuss
why such reductions are needed.
Need for reductions in model checking. Model checking is a
technique to formally verify properties of a model of a system
against a formal specification, given, for instance, as an LTL
formula [Courcoubetis and Yannakakis, 1995]. The advantage
of model checking is that it provides an automated way for the
user to verify if their specification holds in a model. Given an
MDP, initial states, and a target set of states, model checking
tools are able to compute the maximal reachability probability
in time polynomial in the size of the MDP [Kwiatkowska et
al., 2011; Dehnert et al., 2017].

Unfortunately, model checking is a model-based technique:
it assumes the MDP will be given in a completely specified
manner, i.e. all transition probabilities are assumed to be
known in advance. In practice, these values often come from
simulations or they are estimated by hand. If the accuracy of
these values is unknown, then the result of model checking
carries no relevant insight. Even if the transition probabilities
have some guaranteed probability of being accurate, the guar-
antees provided by model checking will depend on both the
precision and confidence parameters: the output will be only
probably approximately correct (PAC) [Valiant, 2013].

One way to mitigate these weaknesses is to determine which
transition probabilities affect the maximal reachability proba-
bility. It is known that not all transition probabilities impact
the maximal reachability probability [Ciesinski et al., 2008;
Brázdil et al., 2014]. If some transition probabilities are ir-
relevant, then the guarantees on the outcome of the model
checking process do not depend on the precision or confidence
related to those values.
Need for reductions in learning. Another way to deal with
partially specified MDPs is to use learning techniques [Kael-
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bling et al., 1996]. In this approach, and in order to obtain
a PAC output, the model (i.e., its transition probabilities)
are learned up to some precision with some desired confi-
dence and then the MDP is processed [Wen and Topcu, 2016;
Fu and Topcu, 2014]. A drawback of learning is that it re-
quires a large number of samples — and, in turn, a large
amount a time — to learn the transition probabilities with desir-
able precision and confidence parameters [Kawaguchi, 2016;
Kolter and Ng, 2009; Russell et al., 2015]. This is especially
the case for PAC learning algorithms like R-max [Brafman and
Tennenholtz, 2003] and E3 [Kearns and Singh, 2002]. While
these techniques provide attractive theoretical guarantees on
optimality, they require practically excessive amounts of sam-
pling and exploration [Kawaguchi, 2016; Kolter and Ng, 2009;
Russell et al., 2015].

Here, it is natural to ask which transition probabilities one
really has to learn and which ones can be left unexplored. If
some transition probabilities are known to have no effect on
the maximal reachability probability, then they can be omitted
from the learning phase without affecting the guarantees on
the output. We show that if the objective can be reduced to
reachability, then the entire MDP need not be sampled and the
MDP can be reduced to shorten necessary learning time and
still provide the same guarantees.

Our contribution. We provide reduction techniques for
MDPs to allow for more efficient reachability analysis and
learning without sacrificing any correctness. In other words,
given an MDP, initial states, and target states, we compute —
in polynomial time — a smaller MDP with equivalent maximal
reachability probability. We do this by removing distributions
— state-action pairs and the resulting transitions enabled with
non-zero probability — in the MDP that do not affect the max-
imal probability of reaching a target set of states from some
initial states. More precisely, our algorithm uses the graph
structure of the MDP (and can thus be used even if all the prob-
abilities are unknown) to determine if some distributions are
‘better’ than others. We then use this information to remove
sub-optimal actions (and, hence, distributions) from the MDP.
We illustrate the reductions using small examples and show
that we achieve reductions on MDPs with no end components
and unique extremal probability states (these notions will be
made precise in the sequel).

In two case studies from the well-known probabilistic model
checking tool PRISM, the reduction in the size of the MDPs
obtained by applying our techniques far outperforms current
reduction techniques. We also test the proposed techniques on
a model-based learning application with a classical gridworld
test setup and observe a large reduction in learning time.

Related work. Reductions in MDPs have been investigated
in formal verification. In [Ciesinski et al., 2008], the authors
collapse end components and states from which the proba-
bility of satisfying the specification is 0 or 1. These will be
presented in Sec. 3. The same techniques were also mentioned
in [Brázdil et al., 2014], where learning techniques are intro-
duced to aid model checking MDPs. The authors also provide
an algorithm to compute end components on the fly in the case
where they are not known beforehand. We assume, however,
that the graph structure of the MDP is known beforehand and

hence all end components can be computed.
Structure. In Sec. 2, we provide the definitions and notation
that will be followed in the paper. We present the known
reduction techniques from related works in Sec. 3, followed
by our novel techniques in Sec. 4. In Sec. 5, we present
experiments where the reductions were applied on established
model checking case studies from the PRISM tool as well
as learning in a gridworld. We conclude and provide future
directions in Sec. 6.

2 Preliminaries
We follow notation from [Littman, 1996; Puterman, 2005].

2.1 Markov Decision Processes
We denote by D(X) the set of all probability distributions
on a finite set X , i.e. all functions f : X → [0, 1] such that∑
x∈X f(x) = 1. For f ∈ D(X) we denote by supp(f) the

support of f . That is, the set {x ∈ X | f(x) > 0}.
Definition 1. An MDP is a tuple M = (S,A, δ) where S
is a finite set of states, A is a finite alphabet of actions,
δ : S × A → D(S) is a (partial) probabilistic transition
function that assigns to a state s and an action a ∈ A a prob-
ability distribution over the successor states. We abbreviate
δ(s, a)(s′) by δ(s′|s, a).

Pictorially, the states of an MDP will be represented by
circles; a distribution δ(s, a), by an arrow leaving state s with
multiple heads — one per state s′ ∈ supp(δ(s, a)) — having
its tail labelled with a and every head pointing to s′ with the
value δ(s′|s, a).
Same-support functions. Two probabilistic transition func-
tions δ, δ′ are said to have the same support if supp(δ(s, a)) =
supp(δ′(s, a)) holds for all pairs (s, a) ∈ S × A. We write
supp(δ) = supp(δ′) to denote this.
Runs and policies. A run from state s0 is a (possibly infinite)
sequence % = s0a0s1a1s2a2 . . . of states and actions such
that for all i ≥ 0 we have δ(si+1|si, ai) > 0. A policy
corresponds to a way of selecting actions based on the history
of states and actions. We focus on deterministic stationary
policies, since these are known to be sufficient for reachability
probability optimization [Condon, 1992; Puterman, 2005].
Formally, a (deterministic stationary) policy is a function π :
S → A which assigns to every state an action.

A run % is consistent with a policy π if it can be ob-
tained by extending its finite prefixes using π. Formally,
% = s0a0s1a1 . . . is consistent with π if for all i ≥ 0 we
have that ai = π(si) and δ(si+1|si, ai) > 0.
Reachability probability. Given an initial distribution ι ∈
D(S), a policy π, and a target set of states T ⊆ S, the
reachability probability Pδ,πι [Reach(T )] of π is the proba-
bility that a run starting from a state s, sampled from ι, and
consistent with π will reach a state from T . This defini-
tion can be formalized by a standard construction of a prob-
ability measure induced by π over the set of all runs (see,
e.g., [Puterman, 2005]). The maximal reachability probability
is Valδι (T ) := maxπ Pδ,πι [Reach(T )].

Irrelevant distributions. For every initial distribution ι and
target set T , we are interested in the set of state-action pairs
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Figure 1: Two MDPs with action alphabetA = {a, b}: an MDP with
EC ({s, t}, {s 7→ a, t 7→ a}), on the left, and the same MDP after
collapsing ECs, on the right

(s, a) ∈ S × A for which changing the distribution δ(s, a)
— without changing its support — will not change the value
Valδι (T ). Formally, we consider an arbitrary probabilistic
transition function δ′ such that: (i) δ(t, b) = δ′(t, b) for
all (t, b) 6= (s, a) and (ii) supp(δ(s, a)) = supp(δ′(s, a)).
We say δ(s, a) is irrelevant if, for all such δ′, it holds that
Valδ

′

ι (T ) = Valδι (T ) — where Valδ
′

ι (T ) refers to the maxi-
mal reachability probability in the MDP (S,A, δ′).

3 Well-Known Reductions
We recall the most widely used reductions applied to MDPs
before computing maximal reachability probability from an
initial state to a target set of states. Note that there are other
obvious optimizations, such as removal of states not reachable
from the initial state, that we do not describe here.

For the remainder of this section, we consider a given MDP
M = (S,A, δ) and a target set of states T .

3.1 End Components
An end component (EC) is a pair (Q,α) where Q ⊆ S and
α : Q→ 2A is a mapping from states to actions such that: by
playing an action α(q) from state q ∈ Q, with probability 1,
the next state reached will also be in Q. Formally, we require
that for all q ∈ Q, the following holds: (i) α(q) ⊆ A is
non-empty. (ii) If there are q′ ∈ S and a ∈ α(q) such that
δ(q′|q, a) > 0 then q′ ∈ Q. (iii) For all q′ ∈ Q there is a run
s0a0 . . . an−1sn from q going to q′ (i.e., s0 = q and sn = q′)
such that ai ∈ α(si) for all 0 ≤ i < n.
Lemma 1 (From [De Alfaro, 1997]). In an EC of an MDP,
for all states, there are policies to reach any other state in the
EC with probability 1.

Collapsing ECs. The collapsing of ECs into a single state is
a common optimization used in tools for model checking LTL
properties in MDPs [Baier and Katoen, 2008; Ciesinski et al.,
2008]. Intuitively, this can be done because all the states from
the same EC have the same maximal reachability probability
(this follows from Lemma 1).
Proposition 1. For all ECs (Q,α), for all q ∈ Q, and for all
a ∈ α(q), the distribution δ(q, a) is irrelevant.
See Fig. 1 for an example of how collapsing EC removes
irrelevant distributions.

3.2 Extremal Probability States
Transitions from states with maximal reachability probability
0 or 1 are also irrelevant. Both sets of states can be computed,
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Figure 2: Two MDPs shown, for clarity, actions and some probabil-
ities have been omitted: an MDP with no ECs (on the left), and a
smaller MDP with equivalent maximal reachability probability from
s to fin (on the right)

even if the probabilities are not known, using graph-based
algorithms [Courcoubetis and Yannakakis, 1995]. This op-
timization is also well-known and standard in probabilistic
model checking tools. Since, for such states, either a policy
exists such that we certainly reach the target set or there is no
way to reach the target set of states, clearly transitions leaving
them (more precisely, the transitions defined by state-action
pairs with them) are irrelevant.
Proposition 2. For all (s, a) ∈ S × A such that
Valδ{s7→1}(T ) ∈ {0, 1}, the distribution δ(s, a) is irrelevant.

Collapsing extremal probability states. The above result
allows us to assume, without loss of generality, that the MDP
has exactly one unique target state fin with maximal reacha-
bility probability 1. (If this is not the case, then we redirect
all transitions going to those states so that they lead to fin .)
Similarly, we can assume there is exactly one state, fail , with
maximal reachability probability 0.
Example 1 (Other irrelevant distributions). Consider the left-
hand MDP shown in Fig. 2. Although the transition probabil-
ities for transitions among states s, p, q, t are not given, it is
clear that for any policy π, we have Pδ,π{s7→1}[Reach({t})] = 1.
In words, t is unavoidable from s, regardless of the probability
values that are not shown. Hence, the maximal reachability
probability — with respect to s as initial state and fin as target
state — only depends on the choice of action from t. Thus, only
distributions δ(t, a), for a ∈ A, are not irrelevant, and the
MDP can be simplified by transforming it into the right-hand
MDP in the figure. Unfortunately the states do not form an EC
and, therefore, we cannot obtain the right-hand MDP using
the existing reduction rules only.

In the next section we will describe new reduction rules
which help, in particular, to achieve the transformation de-
scribed in the previous example.

4 New Reductions
We now describe new reductions based on a binary relation on
the distributions that can be inferred from the directed graph
of a given MDP M = (S,A, δ) and target state fin .

4.1 A Preorder on Distributions
For any two state-action pairs (p, a), (q, b) ∈ S ×A, we say
(q, b) is always (strictly) better than (p, a) if, for all probabilis-
tic transition functions δ′ with supp(δ′) = supp(δ),

Valδ
′

δ′(p,a)(fin) ≤ Valδ
′

δ′(q,b)(fin) (1)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4275



(resp. <). We then write (p, a) E (q, b) (resp. /) to denote the
fact. Given a state-action pair (p, a) and a set P ⊆ S ×A, we
lift the relation E (resp. /) to sets by letting (p, a) � P (resp.
≺) denote the fact that, for all probabilistic transition functions
δ′ with the same support as δ, there exists some (q, b) ∈ P
such that Equation (1) holds.

Lemma 2. The binary relation E is a preorder. If (p, a) ≺ P
(resp. �) and P ⊆ P ′, then (p, a) ≺ P ′ (resp. �).

Choosing actions based on the preorder. The main idea
behind how we will use the relations /,≺ is quite intuitive.
If, at a state s, there is a choice of playing actions a, b ∈ A
and (s, b) is always better than (s, a), then we remove the
possibility of choosing action a. More precisely, if (s, a) ≺
{(s, b) | b ∈ A}, then we can set δ(s′|s, a) to 0 for all s′.
Regardless of the actual values of the probabilities, any policy
maximizing the reachability probability will not play a.
Probability-1 shortcuts. For convenience, in the sequel we
assume that for all states s, t ∈ S, if Valδ{s7→1}({t}) = 1, then
for all (t′, a) ∈ S×A with δ(t′|t, a) > 0 there is some b ∈ A
such that δ(t′|s, b) = δ(t′|t, a). This assumption is at no loss
of generality. If it does not hold, we can apply (in polynomial
time) the following pre-processing to the MDP. If from s there
is some policy to ensure reaching t with probability 1, then
using fresh actions we add shortcuts from s to the distributions
δ(t, a) that can be ‘chosen’ from t.

Example 2. In the left-hand MDP from Fig. 2, we would add
shortcuts from s to both distributions available from t. Note
that to obtain the desired transformation for this MDP, all
that remains is to somehow establish that the newly added
shortcuts are always better than the unique state-action pair
that was originally available from s (to justify removing the
latter).

In what follows we give two sufficient conditions for estab-
lishing the ‘always better than’ relation.

4.2 Sufficient Conditions for the Preorder
Both conditions rely on the notion of separating set.
Separating sets. Consider a set of state-action pairs P ⊆
S × A. If all runs starting from a state sampled from ι and
reaching the state t ∈ S go through some state-action pair
from P , we say that P separates t from ι.
Separating sets for fin. Suppose we are given a state-action
pair (s, a) ∈ S ×A and a set M ⊆ S ×A, and we are asked
whether (s, a) � M holds. Denote by P≺(M) the set of
state-action pairs for which there exists some always-better
pair in M , i.e. the set {(t, b) ∈ S × A} | (t, b) ≺ M}. We
now claim that ifM∪P≺(M) separates fin from δ(s, a), then
(s, a) �M holds.

Theorem 1. If M ∪ P≺(M) separates fin from δ(s, a), then
(s, a) � M . If additionally, Valδδ(s,a)({t | ∃b ∈ A : (t, b) ∈
M}) < 1, then (s, a) ≺M .

Since M ∪ P≺(M) separates fin from δ(s, a), then for all
δ′ with the same support as δ we have that Valδ

′

δ′(s,a)({fin})
must be equal to a convex combination of the values
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Figure 3: Two MDPs with the same maximal reachability probability
from s to fin (for clarity, actions not shown); the MDP on the right is
obtained via Thm. 2

{Valδ
′

δ′(t,b)({fin}) | (t, b) ∈ M ∪ P≺(M)}. Indeed, by def-
inition of separating sets, any run reaching fin from a state
in the support of δ′(s, a) will first reach a state from {t |
(t, b) ∈ (M ∪ P≺(M))}. It is then easy to verify that there
exists (t, b) ∈ (M ∪ P≺(M)) such that Valδ

′

δ′(s,a)({fin}) ≤
Valδ

′

δ′(t,b)({fin}), which gives us the first part of the claim. If
we also know there is no policy to reach T := {t | (t, b) ∈M}
from δ(s, a) with probability 1, we can then use the definition
of P≺(M) to show that the inequality is strict.

Example 3. Consider again the left-hand MDP from Fig. 2.
Recall that we have added shortcuts from s to both distribu-
tions available from t (see Ex. 2). Let us denote those two
distributions by δ(t, a) and δ(t, b). We can now use Thm. 1 to
justify removing the only transition available from s originally.
Let us denote the latter by δ(s, a). Clearly, if we remove t
from the MDP, then there are no runs which can reach fin
from δ(s, a). Hence, {(t, a), (t, b)} separates s from fin . It
follows that either (t, a) or (t, b) is always better than (s, a),
and that we can remove δ(s, a).

Separating sets for fail. Suppose we are given two state-
action pairs (s, a), (t, b) ∈ S ×A and we are asked whether
(t, b) E (s, a) holds. Let PD(t, b) denote the set {(u, c) ∈
S ×A | (t, b) / (u, c)}, and P .(t, b) be defined similarly. We
now claim that if there is a policy to reach PD(t, b) ∪ {t,fin}
from δ(s, a) with probability 1, then (t, b) E (s, a) holds.

Theorem 2. • If Valδδ(s,a)({u | (u, c) ∈ PD(t, b)} ∪
{t,fin}) = 1, then (t, b) E (s, a).
• If Valδδ(s,a)({u | (u, c) ∈ P .(t, b)} ∪ {fin}) = 1 also

holds, then (t, b) / (s, a).

The intuition why the result holds is as follows. Since there
is a policy to ensure reaching {u | (u, c) ∈ PD(t, b)}∪{t,fin}
with probability 1, the maximal reachability probability from
δ(s, a) must be greater than the least maximal reachability
probability from a state in that set. By definition of PD(t, b),
all its elements are always better than (t, b). It follows that
(s, a) is also always better than (t, b). An alternative way to
see it is to notice that {u | (u, c) ∈ PD(t, b)}∪{t,fin} in fact
separates fail from δ(s, a) — under some policy. Hence, all
runs from δ(s, a) which reach fail pass through the set (which
should therefore be avoided if possible).

Example 4. Consider the left-hand MDP from Fig. 3. Let
us denote by δ(s, a) the distribution assigning probability 1
to state p; by δ(s, b) the one assigning probability 1 to t; by
δ(p, a) and δ(t, a) the ones with probability 1− x and 1− z
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of reaching q and fail , respectively. Observe that we have
probability-1 shortcuts from s to δ(p, a) and to δ(t, a). All
that is left, to obtain the reduced MDP on the right side of the
figure, is to argue that (p, a) is always better than the other
three pairs so that they can be removed. To do so, we note that
from all of them, the only way to reach fail is to go through
δ(t, a). The desired relation then holds by Thm. 2.

Algorithm 1 MDP reductions based on irrelevant distributions

1: procedure REDUCE
2: Collapse maximal end components
3: Merge prob. 1 and 0 states
4: Create probability-1 shortcuts
5: alBetter ′ ← ∅
6: repeat
7: alBetter ← alBetter ′

8: for (s, a) ∈ S ×A do
9: M ← {(s, b) | b 6= a}

10: if isAlwaysBetter(M, (s, a)) then
11: alBetter ′ ← alBetter ′ ∪ {(M, (s, a))}
12: remove (s, a)
13: break // to avoid removing all actions
14: end if
15: end for
16: until alBetter ′ = alBetter
17: end procedure

4.3 Summary of the Algorithm
Our proposed reduction algorithm (see Alg. 1) consists in
first applying the well-known reductions. Second, create
probability-1 shortcuts. Third, for each state s we check
whether for some action a, (s, a) is always worse than all
alternatives (s, b); if this is the case, then we remove δ(s, a).
To determine whether this is the case, we use one of the two
conditions described above. More precisely, the isAlwaysBet-
ter function checks the conditions from Thms. 1 and 2 based
on the computed relation alBetter — which is initially empty.

Note that the third step is repeated until convergence. The
number of iterations before convergence will be linear in the
size of the MDP since at least one transition is removed after
every iteration.

Recall that after these reductions are applied, the maximal
reachability probability in the reduced MDP is equivalent
to the maximal reachability probability in the original MDP.
Furthermore, both conditions given by Thms. 1 and 2 can
be checked in polynomial time. This is because they rely
only on deciding whether a given set is a separating set and
deciding whether the maximal reachability probability of a
distribution is not 0 or 1. Since we repeat the process until
convergence, i.e. at most a linear number of times, and the
checks in each iteration are computable in polynomial time,
the entire procedure takes polynomial time.

5 Experiments
We present some results of running the reduction techniques on
two model checking case studies from PRISM [Kwiatkowska

Formula No reds. Known reds. New reds.
ϕ1 400 392 76
ϕ2 400 392 92

Table 1: Size of the MDP after applying no reductions, currently
known reductions, and the proposed reductions. The numbers corre-
spond to the number of distributions left in the reduced MDP.

Params. No reds. Known reds. New reds.
K = 1 553 530 59
K = 2 827 804 105

Table 2: Size of the Zeroconf protocol MDP after applying no reduc-
tions, the currently known reductions, and our proposed reductions.

et al., 2011], a well-known probabilistic model checking tool,
as well as a model-learning task in a gridworld.

5.1 Model Checking Experiments
Currently, the most widely used algorithm to model check
MDPs in practice is value iteration (see , e.g., [Kwiatkowska
et al., 2011; Haddad and Monmege, 2014]). The known up-
per bound on the number of iterations required for the value
obtained to satisfy any formal guarantees is polynomial in the
size of the representation of the smallest transition probability
of the MDP. This makes reporting running times for value iter-
ation before and after reductions not interesting: in any MDP
with irrelevant distributions, we can make the probabilities on
those distributions as small as needed to make value iteration
(before applying our reductions) take as long as desired.
Randomized Consensus Shared Coin Protocol. We look at
a model of an asynchronous shared coin protocol detailed
in [Aspnes and Herlihy, 1990]. The goal is to compute
the maximal probability of the following two LTL formu-
las: ϕ1 = ♦ (“finished” ∧ “all coins equal 1”) and ϕ2 =
♦ (“finished” ∧ ¬“all coins equal 1”) — where ♦ should be
read as eventually. The protocol is modelled in the PRISM
language by [Kwiatkowska et al., 2001].1 We implement our
reduction techniques, as well as the currently-used ones, and
the results are given in Tab. 1.
IPv4 Zeroconf Protocol. This problem involves checking
for the probability of the host choosing an IP address that is
already in use. The corresponding formula is ♦(l = 4 ∧ ip =
1). The protocol is modelled by [Kwiatkowska et al., 2004].1
Results of applying the reductions are shown in Tab. 2.
Summary of results. The algorithm results in an 81% and
77% reduction in the size of the randomized consensus MDP
compared to the 2% under existing techniques. For the Zero-
conf protocol MDP, we were able to achieve 89.3% reduction
compared to 4.2% under existing techniques. For both cases,
the corresponding LTL formula was verified in the result-
ing fully reduced MDP. For the randomized consensus and
Zeroconf MDPs the maximal probability of satisfying the re-
spective LTL formulas on the reduced MDPs was found to

1Model details can be found on the PRISM case studies website.
We use model parameters: 2 coins and K = 2, and reset = TRUE
and K ∈ {1, 2}, respectively.
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Figure 4: A sample gridworld case study for learning. The different
colours of the cells correspond to different terrains which affect the
transition probabilities.

No. states No reds. Known reds. New reds.
144 564 273 166
225 900 423 288
400 1600 738 570

Table 3: Average reduction results for three gridworlds: a 12× 12, a
15× 15, and a 20× 20

be 0.55, 0.062 and 2.9× 10−4, 5.3× 10−5. This matches the
values obtained from PRISM.

5.2 Reductions in Gridworlds with LTL Objective
We present an example of a learning problem in a gridworld.
For the robot’s different actions (heading north (‘N’), south
(‘S’), west (‘W’) and east (‘E’)), the probability of arriving
at the correct cell is in a certain range: [0.75, 0.80] in this
example. With a relatively small probability, the robot will
arrive at the cell adjacent to the intended one. For example,
with action ‘N’, the intended cell is the one to the north (‘N’),
whose the adjacent ones are the northeast (‘NE’) and northwest
cells (‘NW’). We look at the specific example shown in Fig. 4.
LTL objective. The objective is to maximize the probabil-
ity of reaching the green state while avoiding the red ones:
♦R1 ∧ �¬R2 where R1 is the green state and R2 is the set
of all the red states in the gridworld. The values of the tran-
sition probabilities are not known. The underlying task is to
learn these probabilities and compute a policy that maximizes
the probability of reaching the target. We use a PAC-MDP
learning algorithm similar to that shown in [Fu and Topcu,
2014]. In order to mitigate the high sampling requirement
and learning time mentioned earlier, we apply the proposed
reduction technique to reduce the distributions that need to be
sampled without sacrificing the PAC guarantees.
Experiment setup. We test three differently sized gridworlds.
For each gridworld we randomly distribute a given number
of obstacles, and then apply the reduction techniques. For
standardization, 20% of each gridworld was populated with
obstacles. Tab. 3 summarizes the average reduction we observe
after several runs with a randomized distribution of obstacles
in the grid for each run.
Average reduction amount. On average, the size of the fully
reduced MDP is about 70% smaller than the original MDP
in all three gridworld sizes. The currently applied techniques
reduced the size by about 50% in all cases.

No reds. Known reds. New reds.
Distributions 400 102 8
Episodes 1,133,243 948,882 83,564
Total steps 11,683,438 7,848,560 734,465

Table 4: Number of steps and learning episodes needed by the robot,
in one 10 × 10 gridworld, until ε-optimality can be guaranteed in
three cases: original MDP, after known techniques are applied, and
after our techniques are applied.

5.3 Learning in Gridworlds with LTL Objectives
We study the impact of reductions on the learning process.
PAC learning. We now run a modified version of the R-max
learning algorithm presented in [Fu and Topcu, 2014] on one
of the reduced 10 × 10 MDPs. Explicitly, we aim to learn a
policy that with probability at least 1− δ will be ε-optimal in
maximizing reachability probability. We measure the decrease
in sampling required before ε-optimality is achieved for ε =
0.01 and δ = 0.05.
Learning results. The number of steps needed for the learn-
ing phase is reduced by 94% when the full reductions are
implemented compared to 67% under existing techniques.

6 Conclusion and Future Work
We have proposed a notion of irrelevant distribution to for-
malize the set of transition probabilities that do not affect
the maximal reachability probability. Further, we argue that
known MDP reductions, such as collapsing ECs, are in fact re-
moving some irrelevant distributions. We have also described
a new algorithm to remove irrelevant distributions which had
not, to the best of our knowledge, been considered before. De-
termining whether our algorithm guarantees that no irrelevant
distributions are left, is an open problem.

Our algorithm has been implemented in a prototype tool
and empirical results suggest that our algorithm achieves a
high reduction rate. Since the results of our experiments show
promise, a next step would be to obtain a symbolic version
of our algorithm and implement it inside a model-checking
tool to determine if the reductions translate into faster running
times for model-checking algorithms.
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