Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Faster Conflict Generation for Dynamic Controllability

Nikhil Bhargava, Tiago Vaquero, Brian Williams
Massachusetts Institute of Technology
{nkb, tvaquero, williams } @mit.edu

Abstract

In this paper, we focus on speeding up the temporal
plan relaxation problem for dynamically control-
lable systems. We take a look at the current best-
known algorithm for determining dynamic control-
lability and augment it to efficiently generate con-
flicts when the network is deemed uncontrollable.
Our work preserves the O(n?3) runtime of the best
available dynamic controllability checker and im-
proves on the previous best runtime of O(n?) for
extracting dynamic controllability conflicts. We
then turn our attention to temporal plan relaxation
tasks and show how we can leverage our work
on conflicts and the structure of the network to
efficiently make incremental updates intended to
restore dynamic controllability by relaxing con-
straints. Our new algorithm, RELAXIDC, has the
same asymptotic runtime as previous algorithms
but sees dramatic empirical improvements over the
course of repeated dynamic controllability checks.

1 Introduction

In temporal planning, an agent specifies a set of temporal con-
straints between events and determines whether those con-
straints can all be satisfied. When the exact durations be-
tween events cannot be specified ahead of time, the agent is
interested in knowing if a valid execution strategy exists for
this set of constraints, or if the problem is dynamically con-
trollable.

In temporal plan relaxation tasks, the original plan speci-
fication is overconstrained, and the agent must find a way to
relax certain constraints so that the plan becomes dynamically
controllable. For constraints whose durations can be chosen
by the agent, this means expanding the range of allowed du-
rations. For constraints whose durations cannot be specified,
an agent can relax the constraint by shrinking its bounds and
accepting some small risk that the outputted plan is invalid
[Fang et al., 2014]. In this paper, we focus on improving the
problem of computing temporal plan relaxations. We provide
two main contributions.

First, we more efficiently reduce the available search space
for plan relaxation. Temporal plan relaxation at its core is
a generate-and-test search problem. When a proposed plan

4280

is shown to be uncontrollable, the next step is to modify
some constraints in hopes of finding one that remedies the
underlying issue. Conflict-directed search is a generalized
technique for efficiently pruning the remaining search space,
but to work it needs a way to extract conflicts from an in-
feasible problem that explains why the problem was infea-
sible [Williams and Ragno, 2007]. To that end, we augment
the best known O(n?) dynamic controllability checking algo-
rithm [Morris, 2014] to output conflicts to be used in conflict-
directed search. This represents an improvement over the
O(n*) runtime for the best available algorithm for generat-
ing conflicts for dynamic controllability [Yu er al., 2014].

Second, we make successive dynamic controllability
checks faster by leveraging structural similarities. In the
search for an acceptable relaxation of a temporal plan, we
have to re-check dynamic controllability for every generated
candidate until we find a plan that is controllable. A plan
that has undergone the relaxation of a single constraint is still
nearly identical to the original. To take advantage of this, we
developed an incremental dynamic controllability checker,
RELAXIDC, for use in temporal relaxation problems. While
the incremental approach does not improve on the asymptotic
worst-case runtime of O(n?), empirically it runs much faster
than the non-incremental algorithm.

Together these developments represent significant progress
towards improving and scaling temporal plan relaxation prob-
lems. The natural follow-up question is whether these im-
provements can be extended to other algorithms that focus on
searching the temporal plan space by tightening constraints,
such as FastIDC [Stedl and Williams, 2005; Shah et al.,
2007], EfficientIDC [Nilsson et al., 2013], and EIDC?2 [Nils-
son ef al., 2014]. While we believe the answer is yes, we
leave this as a separate question to consider in future work.

2 Background

The input to a dynamic controllability checker is a Simple
Temporal Network with Uncertainty (STNU), first defined
by [Vidal, 1999]. An STNU is a graph composed of nodes,
which correspond to timepoints, and links which correspond
to temporal constraints between those timepoints. To model
events with uncertain duration, we distinguish between the
different types of temporal constraints induced on the net-
work. Requirement constraints are constraints where the ex-
act duration of the constraint can be picked by the agent to be

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

anything within the specified bounds. Contingent constraints
are constraints whose true value cannot be assigned ahead of
time. We say that the links derived from these constraints are
requirement and contingent links, respectively.

For convenience, we will also assume that all STNUSs are
in normal form, i.e. all contingent links have a lower bound
of zero. For any contingent link A — B with lower bound
I # 0 and upper bound w, it’s easy to see that we can create
an equivalent STNU by introducing a new timepoint B’, such
that there is a requirement link A — B’ with lower and upper
bounds ! and a contingent link B’ — B with lower bound 0
and upper bound u — [.

Informally, we say an STNU is dynamically controllable if
it is possible to just-in-time assign values to timepoints given
knowledge about assignments to all timepoints that happened
in the past. Intuitively if an STNU is dynamically control-
lable, an agent could improvise as it goes, making plans based
on the actual durations of observed contingent constraints and
ensuring that all constraints are satisfied.

Given an STNU, we often find it easier to analyze its con-
trollability by first transforming it into a labeled distance
graph [Morris, 2006]. Each timepoint of the STNU corre-
sponds to a node in the labeled distance graph, and for each
link A — B with lower bound [and upper bound u, we add
an edge A — B with weight v and an edge B — A with
weight —[. Finally, for each contingent link we additionally
add an edge A — B with lower-case label b and weight [
and an edge B — A with upper-case label B and weight —u.
Because STNUs are in normal form, contingent links have a
lower bound of 0, and we can safely assume that all lower-
case edges have weight 0.

An unlabeled edge in a labeled distance graph corresponds
to the maximum time that can elapse between the correspond-
ing timepoints (with a negative weight implying that the end
node of an edge must occur before the start node). An upper-
case edge denotes the maximum time that would elapse be-
tween two events if the associated contingent link were to
take on the value of its upper bound, and a lower-case edge
denotes the maximum time that would elapse between two
events if the associated contingent link were to take on the
value of its lower bound. Morris [2006] introduces a series of
reductions that can be applied to a labeled distance graph that
preserve these relations and extends them to derive new con-
straints beyond those originally specified in the STNU. These
were later updated in [Morris, 2014] and are reproduced be-
low:

e Upper case reduction: With edges A = B <, D,
produce edge A M D.

e Lower case reduction: With edges A b:—0> B YL C, if

y < 0, produce edge A % C.

e Cross case reduction: With edges A LNy BN D, if
y < 0,B # C, produce A Sy, p,

No-case reduction: With edges A = B 2 C, produce
A, .

o Label removal: With edge A ﬂ) C, if x > 0, produce
ASC.

More detail justifying these reductions can be found in
[Morris and Muscettola, 2005; Morris, 2006]. The repeated
application of these reductions and a search for inconsisten-
cies form the basis for checking dynamic controllability.

3 Extracting Conflicts

When specifying a set of temporal constraints, the agent often
has some leeway with which it can relax constraints that are
overly constrictive. If a system is found not to be dynamically
controllable, it’s useful to know which specific constraints
caused the system to be uncontrollable. Here we introduce
the notion of a conflict, which serves as a certificate explain-
ing why a problem is infeasible.

Input: A labeled distance graph, G = (V, E)

Output: Whether the STNU derived from the distance graph
is dynamically controllable and if not, a set of
conflicts

Initialization:

1 negNodes <« the set of all vertices with incoming
negative edges;

2 novel « [; list of newly added edges;

3 preds < {}; mapping of function call to predecessor
list;

DCCHECKER:

4 for v € negNodes do

5 cycleFree?, edges <+ DCDUKSTRA(G, v, preds,

novel, [v], negNodes);

6 if lcycle F'ree? then

7 return false, EXTRACTCONFLICTS (edges,
novel, preds)

s return true, ()

Algorithm 1: Dynamic Controllability algorithm that reports

conflicts

To make the output of our dynamic controllability algo-
rithm more useful, we introduce a variant of the dynamic con-
trollability detection algorithm (Algorithm 1) that is capable
of reporting conflicts. The best algorithm known for comput-
ing dynamic controllability takes time O(n?) and works by
trying to find a semi-reducible negative cycle [Morris, 2014].
A semi-reducible negative cycle is a cycle in a labeled dis-
tance graph with negative weight, where all lower-case edges
can be eliminated through a series of reductions; an STNU
is dynamically controllable iff its labeled distance graph does
not have a semi-reducible negative cycle [Morris, 2006]. Ac-
cordingly in the event of failure, our algorithm derives the
conflict by extracting the set of edges that compose a semi-
reducible negative cycle and suggesting modifications that
would eliminate it.

Briefly, the original algorithm works by walking the graph
in reverse (traversing edges in the opposite direction) and
attempting to show that every walk starting from a nega-
tive weight edge that follows a semi-reducible path eventu-
ally takes on a non-negative weight. It walks the graph effi-
ciently by emulating Dijkstra’s algorithm until it finds a set

4281

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Input: Labeled distance graph, G = (V| E), start node s, list
of predecessor edges preds, list of new edges novel,
callStack, and negative nodes negNodes

Output: Whether the current walk is cycle-free, and the

edges composing a semi-reducible negative cycle

Initialization:

1 Q < PriorityQueue();
2 label Dist « []; shortest distances for labeled path;
3 unlabel Dist + []; shortest distances for unlabeled path;
4 label Dist[s] + (0, ();
s unlabel Dist[s] < (0, 0);
6 for e € s.incomingEdges() where e.weight < 0 do
7 Q.add({(e.from,e.label), e.weight);
8 (e.label == () ? unlabel Dist : label Dist)[e. from)]
+ (e.weight, e)
DCDijkstra:
9 if s € callStack|l : end] then
w | return false,,s
u preds[s] < (label Dist,unlabel Dist);
12 while Q).size() > 0 do

13 weight, label, v < Q.pop();
14 if weight > 0 then
15 G.add((v, s, weight));
16 novel.add({v, s, weight));
17 continue;
18 if v € negNodes then
19 newStack « [v].concat(callStack);
20 result, edges, end <~ DCDUKSTRA(G, v,
preds, novel, newStack, negN odes);
21 if lresult then
2 if end # () then
23 edges.add(EXTRACTEDGEPATH(s, v,
label Dist, unlabel Dist));
24 if end == s then
25 ‘ end + ()
2 return false, edges, end
27 for ¢ € v.incomingEdges() do
28 if e.weight > 0 and (le.isLowerCase() or
e.label # label) then

29 w 4 e.weight + weight;
30 distArray < label # () ?

labelDist : unlabel Dist;
31 if dist Arrayle. from] == 0 or

w < dist Arrayle. from][0] then
3 distArrayle.from] < (w,e);
3 Q.addOrDecKey({e.from,label),w);

3 negNodes.remove(s);
35 return true, (),
Algorithm 2: Function DCDIJKSTRA

of shortest paths to other nodes that are positive. Because
Dijkstra’s algorithm cannot handle negative weights besides
those connected to the start node, whenever a negative edge
is discovered, the algorithm recursively calls itself and begins
a new walk from the node connected to the newly discov-
ered negative edge. A function call that completes success-
fully will add edges corresponding to the discovered positive
semi-reducible paths, so after the recursive call we can safely

4282

ignore any negative edges and continue the walk. If the re-
cursive calls form a cycle, then we’ve found a negative semi-
reducible cycle.

In order to return a semi-reducible negative cycle, we make
a few modifications to the subroutine DCDIJKSTRA (Algo-
rithm 2). In particular, while we incrementally build up our
set of shortest paths, we also record the set of backwards
edges (for both labeled and unlabeled paths) that compose
those shortest paths. When we detect a cycle of recursive calls
(line 8 of Algorithm 2), we know we have a semi-reducible
negative cycle and can unwind the call stack, recording the
edges that compose the shortest path. We later translate those
edges back to the original STNU constraints using EXTRACT-
CONFLICTS (line 7 of Algorithm 1).

The remaining question is how to handle edges that were
newly added as a byproduct of running the algorithm. To do
so, we use the maintained list of new edges, novel. When an
edge is determined to have not originated from the STNU, we
can use our list of recorded predecessor edges for a previous
shortest path calculation of DCDIJKSTRA to recursively ex-
pand that edge until we end with a path of edges that all map
to STNU constraints.

After generating the edges of the semi-reducible negative
cycle, we need an encoding that suggests how to eliminate it.
The first way to eliminate a semi-reducible negative cycle is
by increasing edge weights to make the cycle non-negative.
For a cycle C, this can be modeled by > .~ w. > 0. The
second way to eliminate a semi-reducible negative cycle is to
adjust some constraints so some lower-case edges cannot be
eliminated by a series of reductions. The only way to elim-
inate a lower-case edge is to follow it with a series of edges
whose combined weights are negative. Thus, if we take the
shortest path P that follows a lower-case edge and has com-
bined negative weight, we can model a new constraint in the
conflict by > . pw. > 0. If any one of these newly cre-
ated constraints is satisfied by a relaxation of the initial con-
straints, then we say our conflict is resolved.

Introducing conflict generation doesn’t damage the O(n?)
runtime guarantee. The maintenance of the new data struc-
tures occurs a constant time overhead. The EXTRACT-
EDGEPATH function adds at most O(n) edges per call and
is called at most O(n) times throughout the stack unwinding;
this limits the additional work to O(n?), which is dominated
by the normal algorithm runtime. This represents a strong
improvement over the previous best runtime for generating
dynamic controllability conflicts, which took O(n?) time.

4 Faster Incremental Updates

With a newly reported conflict explaining why an STNU is
uncontrollable, a planner will want to try several different
relaxations to generate an acceptable, controllable network.
This might be because resolving one conflict reveals another
inconsistency in the network or because an end-user may
want to try several different relaxations in search for the most
preferable one.

Despite the fact that when modifying a single constraint
most of the graph remains the same, existing algorithms fail
to leverage those structural similarities when trying to deter-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

mine if the change yields a controllable network. To speed
up subsequent controllability checks, we introduce a set of
data structures, used by our new algorithm RELAXIDC (Al-
gorithm 4), that efficiently encode relationships on the labeled
distance graph and allow subsequent runs of the algorithm
to skip over portions of the STNU that are known to remain
the same. While these changes don’t improve the asymptotic
worst-case runtime of checking dynamic controllability, they
do yield empirically faster runtimes.

4.1 Search

To illustrate the importance of RELAXIDC, we provide a
simple conflict-directed search algorithm (RELAXSEARCH,
Algorithm 3) that iteratively relaxes an over-constrainted
problem in search of a feasible solution that resembles the
original set of inputs. The goal of RELAXSEARCH is to take
an input STNU and find some set of relaxations to constraints
that ensure that the final STNU is dynamically controllable.

Input: G, the labeled distance graph
Initialization:

1 negNodes <+ the set of all vertices with incoming

negative edges;

2 novel < [[; list of newly added edges;

3 preds < {}; mapping of function call to predecessor

list;

4 dag <+ an empty graph;

s relaxations < [|;

RELAXSEARCH:

6 controllable, conflict <+ DCCHECKER(G, negNodes,

novel, preds);

7 while !controllable do

8 relaxed Edge, weight < RELAX(G, con flict);

9 relaxations.push({relaxedEdge, weight));

10 controllable, con flict + RELAXIDC(G,
(relazedEdge, weight), negN odes, novel,
preds)

u return relaxations

Algorithm 3: RELAXSEARCH - an algorithm that relaxes
constraints in an STNU until a dynamically controllable so-
lution is found.

The algorithm makes an initial call to DCCHECKER to
check for controllability and initialize the relevant data struc-
tures. If the output is not controllable, it uses the conflicts to
generate relaxed edges (line 8) before re-executing the con-
trollability check. Our choice of relaxation strategy does not
matter so long as we resolve the generated conflict. In this
paper, our relaxation strategy involves taking a random edge
from the conflict and modifying its weight so the conflict’s
semi-reducible cycle becomes positive, but we could have
just as easily used a cost function or some additional set of
constraints to refine our conflict resolution strategy.

It’s worth noting that the decision to use RELAXIDC in-
stead of DCCHECKER at line 10 has no impact on the search
algorithm’s correctness. However, as we’ll show later, this
decision is what allows us to speed up our search dramati-
cally.

4.2 Auxiliary Data Structures

An important observation is that in a dynamically control-
lable STNU, the recursive calls to DCDIJKSTRA represent an
acyclic dependency tree. Only when the recursive calls form
a cycle do we report that the network is uncontrollable. As
we traverse the graph, we can build an explicit dependency
directed acyclic graph (DAG), where we draw a link from a
parent call to a child call only after the child call returns suc-
cessfully. For convenience, we represent a function call by
the associated starting node parameter.

This DAG will allow us to avoid superfluous computa-
tion in subsequent dynamic controllability checks when we’re
only interested in relaxing the value of a single constraint. We
perform a topological sort on the nodes of the DAG requiring
children to come before their parents to get the order in which
we should re-process the STNU.

Input: G, the labeled distance graph; (e, w), the edge to be
modified and its new weight; preds, a map from
recursive call to predecessor list; novel, list of edges
that were newly added by DCCHECKER; negNodes,
list of nodes that still have negative incoming edges;
dag, DAG of recursive calls

Initialization:

1 sortedNodes + TOPOLOGICALSORT(dag);
2 changed < new Set();

RELAXIDC:
3 for v € sortedNodes do
4 if e == preds[e.labeled?][e.start] or
dag.children(v) N changed # () then

5 remove novel edges that end at v from novel and
G;

6 DCDUKSTRA(G, v, preds, novel, [v],
negNodes);

7 if outputted edges changed then

8 | changed.add(v);

9 return DCCHECKER(G, negNodes, novel, preds)
Algorithm 4: RELAXIDC - an algorithm for incremen-
tally relaxing constraints to find a dynamically controllable
STNU.

For any given call to DCDIJKSTRA for a particular start-
ing node, we start by looking at the predecessor edges that
were generated by the shortest path computation. If the edge
associated with the constraint whose value is being relaxed is
in that starting node’s predecessor list, we remove the edges
that had been added by the previous run of the recursive call
and re-run DCDIJKSTRA to add in the updated edges. We
can check if the edge is in the predecessor list in constant
time because the predecessor lists are indexed by vertex. We
just need to check the bucket corresponding to the modified
edge’s start node.

In the case where the edge is not in the starting node’s pre-
decessor list, we see if any of its child dependencies were
re-run. If some of its child dependencies were re-run and
generated different edges, we also re-run DCDIJKSTRA.

Once all nodes in the DAG have been processed, we re-
sume the normal non-incremental algorithm from any node

4283

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

(a) 0

B:-10
-10
b:0

Figure 1: (a) labeled distance graph for a contingent link with
bounds [10, 20]; (b) labeled distance graph after relaxing upper
bound to 15; (c) labeled distance graph after instead relaxing lower
bound to 15; edges in blue are values that increased after relaxation,
edges in red decrease in value after relaxation

that has an incoming negative edge.

4.3 Correctness

Since the original algorithm for determining dynamic con-
trollability is agnostic to the order in which initial calls to
DCDUKSTRA are made, to prove correctness we only need
to show that the skipped calls would not have a different result
if we were to re-run them.

For the relaxation of a controllable constraint, we know
that the corresponding edge weights will only increase since
we either increase the upper bound u or decrease the lower
bound ! and have edge weights u and —{ in the labeled dis-
tance graph. It’s clear that an increased edge weight can only
affect a shortest path calculation if it were used in a shortest
path. Because we keep track of both the edges of a shortest
path using the predecessor list, we know the skipped calls will
not care about this edge.

However, it is possible for the relaxation of a contingent
constraint to cause an edge weight to decrease. But even in
these cases, our algorithm correctly chooses whether to re-run
DCDIKSTRA.

When relaxing the upper bound of a contingent constraint
(Figure 1b), an upper-case labeled edge’s value increases
while an unlabeled edge’s value decreases. When an edge
value decreases, it seems like we have to re-run all shortest-
path calculations because, in theory, every path across the
full graph could choose to use the shortened edge. However,
when we relax a contingent upper-bound, the edge whose
value decreases is never used in a shortest path calculation.

Assume for the sake of contradiction that the shortened

4284

edge was part of a shortest path. For any such path, we could
instead replace that edge with the lower-case edge of weight 0
and have a shorter path. We can always do this unless the path
that was being constructed to that point used the correspond-
ing upper-case edge. If the lowest cost upper-case path has a
value less than the original upper-case edge weight, we know
that there is a negative cycle somewhere else in the graph be-
cause the original STNU only has one upper-case edge per
label. If the lowest-cost upper-case path equals the value of
the original upper-case edge, we have no interest in taking the
edge whose value just decreased because that would yield a
zero-length cycle. Thus, no path would use that edge.

Now, we can turn our attention to relaxing the lower bound
of a contingent constraint (Figure 1c). We know the two
edges whose values increase don’t affect correctness, and by
the previous argument, the positive weight unlabeled edge
whose value decreased won’t impact our shortest path cal-
culation. We now consider the negative unlabeled edge that
decreased in value.

We know that this edge can only be directly used in one
of the DCDIJKSTRA calls since every call ignores negative
edges except for the ones that are immediately incoming. Any
remaining propagation is handled for us by the topological
sort. Thus, for any set of relaxed constraints, our incremental
preprocessing guarantees that we correctly update all edges.

5 Empirical Results

To understand the performance of our algorithm, we ran-
domly generated a series of STNUs to model the parallel de-
ployment of autonomous underwater vehicles (AUV). Each
of the AUVs had to navigate to a series of different sites and
conduct experiments along the way; the travel durations were
assumed to be contingent links while the AUVs were given
the agency to control how long the experiments would take.
The AUVs were all given a global deadline by which time
they had to complete all tasks. These constraints were all
flexible and could be modified by the search algorithm if a
valid plan could not be found. For all trials we assumed 70
AUVs, which each had 70 tasks to complete.

In our trials, we intentionally overconstrained the STNUs
to make them uncontrollable. This helped us understand how
our algorithm performed under a true plan relaxation task.
Over the course of 50 trials, we took our randomly generated
STNU and ran it through the dynamic controllability check-
ing algorithm. Based on the returned conflict, we relaxed a
constraint to eliminate the conflict. We repeated these itera-
tions 10 times each for the incremental and non-incremental
dynamic controllability algorithm.

From Figure 2, we see that the time it takes for successive
runs of the incremental algorithm tend to decrease over time
whereas successive runs of the non-incremental algorithm in-
crease. This matches quite closely to our expectations — the
non-incremental algorithm operates by terminating as soon
as it finds a semi-reducible negative cycle. As we continue
to modify the graph to reduce the number of such cycles, the
algorithm has to explore more and more of the graph, before
eventually exploring the whole graph and determining that it
is controllable.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Average Time to Compute Dynamic Controllability
after Relaxation

Seconds per test

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of relaxations

B Non-incremental O(n®) ®Incremental O(n?)

Figure 2: The average runtime of each algorithm after performing
relaxations to the original uncontrollable STNU over 50 trials.

Dynamic Controllability Runtime, Split by Outcome

Seconds per test
S
=]

0. .*J
_ . ' K- T2
T 7 S ‘@9,,.!,?4.

Global Constraint Ratio
Controllable @ Uncontrollable

Figure 3: The phase transition of runtimes for uncontrollable and
controllable STNUs.

More generally, the problem of detecting dynamic con-
trollability seems to undergo a phase transition that resem-
bles that of other constraint satisfaction problems [Prosser,
1996]. Obviously uncontrollable problems can be detected
quite quickly while the closer a graph is to controllable, the
more time it takes to determine its controllability (Figure 3).

Our algorithm’s advantage in minimizing redundant com-
putation is an improvement specifically because it is able to
navigate the phase transition between uncontrollable and con-
trollable states. Over the course of the 15 relaxations, the
incremental algorithm approach was in aggregate 2.33 times
faster than the non-incremental algorithm.

6 Conclusion

In this paper, we focus on speeding up temporal plan relax-
ation tasks for overconstrained problems by improving the
process of extracting conflicts from a dynamic controllability
checker and providing an incremental algorithm for check-
ing the controllability of relaxed STNUs. With our conflict
extraction methods, we can drop the runtime of conflict ex-
traction for dynamically controllable systems to O(n?) from

4285

the previous best O(n*). With this in hand, we take the log-
ical next step for consumers of these conflicts, designing and
implementing RELAXIDC, an incremental dynamic control-
lability checker, that significantly improves the empirical run-
time of iterative modifications to temporal constraints.

Acknowledgements

The authors would like to thank Ben Sklaroff, Yuening
Zhang, and the conference reviewers for their comments and
feedback on this work. This research was funded in part
by the Toyota Research Institute under grant number LP-
C000765-SR.

References

[Fang et al., 2014] Cheng Fang, Peng Yu, and Brian C
Williams. Chance-constrained probabilistic simple tem-
poral problems. 2014.

[Morris and Muscettola, 2005] Paul H Morris and Nicola
Muscettola. Temporal dynamic controllability revisited.
In AAAI pages 1193-1198, 2005.

[Morris, 2006] Paul Morris. A structural characterization of
temporal dynamic controllability. In International Confer-
ence on Principles and Practice of Constraint Program-
ming, pages 375-389. Springer, 2006.

[Morris, 2014] Paul Morris. Dynamic controllability and dis-
patchability relationships. In International Conference on
Al and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, pages 464-479.
Springer, 2014.

[Nilsson et al., 2013] Mikael Nilsson, Jonas Kvarnstrom,
and Patrick Doherty. Incremental dynamic controllability
revisited. In ICAPS, 2013.

[Nilsson et al., 2014] Mikael Nilsson, Jonas Kvarnstrom,
and Patrick Doherty. Incremental dynamic controllabil-
ity in cubic worst-case time. In Temporal Representation
and Reasoning (TIME), 2014 21st International Sympo-
sium on, pages 17-26. IEEE, 2014.

[Prosser, 1996] Patrick Prosser. An empirical study of phase
transitions in binary constraint satisfaction problems. Ar-
tificial Intelligence, 81(1-2):81-109, 1996.

[Shah et al., 2007] Julie A Shah, John Stedl, Brian C
Williams, and Paul Robertson. A fast incremental algo-
rithm for maintaining dispatchability of partially control-
lable plans. In ICAPS, pages 296-303, 2007.

[Stedl and Williams, 2005] John Stedl and Brian C
Williams. A fast incremental dynamic controllabil-
ity algorithm. In Proceedings of the ICAPS Workshop on
Plan Execution: A Reality Check, pages 69-75, 2005.

[Vidal, 1999] Thierry Vidal. Handling contingency in tem-
poral constraint networks: from consistency to controlla-
bilities. Journal of Experimental & Theoretical Artificial
Intelligence, 11(1):23-45, 1999.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

[Williams and Ragno, 2007] Brian C Williams and Robert J
Ragno. Conflict-directed a* and its role in model-
based embedded systems. Discrete Applied Mathematics,
155(12):1562-1595, 2007.

[Yuetal,?2014] Peng Yu, Cheng Fang, and Brian C
Williams. Resolving uncontrollable conditional temporal
problems using continuous relaxations. In ICAPS, 2014.

4286

