
Additive Merge-and-Shrink Heuristics for Diverse Action Costs

Gaojian Fan, Martin Müller and Robert Holte
University of Alberta, Canada

{gaojian, mmueller, rholte}@ualberta.ca

Abstract
In many planning applications, actions can have
highly diverse costs. Recent studies focus on the
effects of diverse action costs on search algorithms,
but not on their effects on domain-independent
heuristics. In this paper, we demonstrate there
are negative impacts of action cost diversity on
merge-and-shrink (M&S), a successful abstraction
method for producing high-quality heuristics for
planning problems. We propose a new cost parti-
tioning method to address the negative effects of
diverse action costs on M&S. We investigate non-
unit cost IPC domains, especially those for which
diverse action costs have severe negative effects
on the quality of the M&S heuristic. Our experi-
ments demonstrate that in these domains, an addi-
tive set of M&S heuristics using the new cost par-
titioning method produces much more informative
and effective heuristics than creating a single M&S
heuristic which directly encodes diverse costs.

1 Introduction
Diverse action costs are common in many real-world plan-
ning problems. Typical examples are logistics-like domains,
in which loading or unloading a package is cheaper than mov-
ing a vehicle, or where the cost of moving a vehicle varies
widely with the distance between locations. Another set
of examples are manufacturing applications, where different
types of processing incur a diverse set of costs.

There have been several studies of the effects of action
cost diversity on heuristic search [Cushing et al., 2010;
Aghighi and Bäckström, 2015; 2016; Fan et al., 2017], and
improved search algorithms designed to address diverse ac-
tion costs [Thayer and Ruml, 2011; Wilt and Ruml, 2011;
2014]. However, to the best of our knowledge, there is no
study on the influence of diverse action costs on the construc-
tion and performance of domain-independent heuristics in the
planning literature.

Merge-and-shrink (M&S) is an abstraction method that can
produce high-quality abstraction heuristics [Helmert et al.,
2014]. While M&S heuristics can be computed for general
non-unit action costs, little is known about how action cost
diversity affects this abstraction method. In this paper, we

study the impact of action cost diversity on the merge-and-
shrink process, and develop an improved algorithm, called
DCP-MS, which computes additive M&S heuristics for di-
verse action costs.

After a brief discussion of background in Section 2, we
show in Section 3 that the M&S heuristic suffers from diverse
action costs on several domains from the International Plan-
ning Competition1 (IPC), compared to their unit-cost counter-
parts. The section includes in-depth analysis of experimental
results. Motivated by these results, in Section 4 we propose a
new cost partitioning method, delta cost partitioning, which
limits the cost diversity of partitioned cost functions to only
two costs so that M&S can process them more effectively.

The cost partitioning exploits the power of M&S for unit
costs to help improve the quality of the heuristic for the non-
unit cost case. Our experiments in Section 5 show that an
additive set of M&S abstractions using delta cost partition-
ing can produce much more informed heuristics than a single
M&S heuristic that encodes the diverse action costs directly,
and the benefits are most pronounced in domains where ac-
tion cost diversity has extremely negative effects on M&S.

2 Background
A transition graph is a quintuple S = 〈S,L, T, sinit, S∗〉
where the state space S is a finite set of states, L is a finite
set of transition labels, and T ⊆ S × L × S is a set of la-
belled transitions. sinit ∈ S is an initial state and S∗ ⊆ S
is a set of goal states. An abstraction α is a mapping from
S to an abstract state space, which induces an abstract tran-
sition graph α(S) = 〈α(S), L, {(α(s), l, α(t)) | (s, l, t) ∈
T}, α(sinit), α(S∗)〉.

Let S = 〈S,L, T, sinit, S∗〉. A cost function is a mapping
C : L 7→ R+

0 , where R+
0 is the set of non-negative real num-

bers. For a cost function C, the distance from state s to state
t in S is the cost of a least-cost path from s to t, where a path
is a sequence (s0, l1, s1, ..., sn−1, ln, sn) such that n ∈ N0

and (si−1, li, si) ∈ T for i ∈ {1, 2, ..., n}, and its cost is∑n
j=1 C(lj). The goal distance h∗(s) of state s is the distance

from s to a nearest goal state.
A heuristic function h : S 7→ R+

0 maps each state to a non-
negative value or infinity. Heuristic h is admissible if h(s) ≤

1www.icaps-conference.org/index.php/Main/
Competitions

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4287



cavediving
citycar

elevators
floortile
gripper

openstacks
parcprinter

pegsol
scanalyzer
sokoban

tetris
transport

woodworking

10−3 10−1 101 103

10−3

10−1

101

103

uns.
unit

1 uns.
non-
unit

uns.
unit

1

uns.
non-
unit

Dijkstra (RD)
(a) RD vs. RM

M
&
S

(R
M
)

100 102 104 106
100

102

104

106

uns.

uns.

17
12

unit cost
(b) NU vs. NC

n
o
n
-u

n
it

c
o
st

Figure 1: (a) RD vs. RM on instances solved by both A* with M&S and Dijkstra’s algorithm; (b) NU vs. NC on instances that can only be
solved by A* with M&S.

h∗(s). For a cost function C, an abstraction α provides an
abstraction heuristic hCα in which the heuristic value of s in
S is the goal distance of α(s) in the abstract transition graph
α(S). Any abstraction heuristic is admissible.

Merge-and-shrink (M&S) [Helmert et al., 2014] builds an
abstraction by transforming a set of abstract transition graphs
into a single one. The transformations consist of merging two
abstract transition graphs into one, shrinking the size of an ab-
stract transition graph by combining multiple states into one
state, and label reduction which maps different transition la-
bels into one label. Label reduction is essential for M&S to
compactly represent bisimulation abstractions which capture
the goal distance h∗(s) for all states s [Nissim et al., 2011].

For a cost function C on L, a cost partitioning of C is a set
of cost functions C1, C2, ..., Cn on L, such that

∑n
i=1 Ci(l) ≤

C(l) for any l ∈ L. A set of heuristics h1, h2, ..., hn is additive
if hsum(s) =

∑n
i=1 hi(s) is an admissible heuristic. For any

transition graph S , cost function C, cost partitioning C1, C2,
..., Cn of C, and set of abstractions α1, α2, ..., αn for S , the set
of abstraction heuristics hC1α1

, hC2α2
, ..., hCnαn

is additive [Yang
et al., 2008].

3 Action Cost Diversity and M&S Heuristics
There have been several studies on the effects of diverse ac-
tion costs on search, but none of them focuses on the effects
on domain-independent heuristics like M&S. In this section,
we first verify experimentally that diverse action costs have
negative effects on the merge-and-shrink heuristic compared
to the unit cost, then discuss how diverse action costs could
influence M&S abstraction construction.

3.1 Experimental Verification
To determine whether action cost diversity is indeed a prob-
lem for planning with M&S, we ran experiments on both unit
cost and non-unit cost versions of a set of IPC domains with
and without M&S heuristics. Our test set contains the 12 non-
unit cost IPC domains, as well as the unit cost domain GRIP-
PER. We include GRIPPER because M&S can build bisimu-
lations for all instances in this domain [Nissim et al., 2011].

We build the unit cost version for each non-unit cost IPC in-
stance, as well as a non-unit action cost version of GRIPPER
instances as follows: the move action still costs 1, but pick
and drop actions for ball b now have cost (b mod nc) + 1,
where nc = 4 in this experiment.

Relative effects of cost diversity on M&S heuristics
For any planning instance, let U and C be the unit cost func-
tion and the non-unit cost function respectively. We ran A*
with the default M&S heuristics2 separately for U and C for
each of our instances. Each run has a 30 minute time limit
and a 2 GB memory limit. For each instance we compute
the ratio RM = NC/NU , where NC and NU are the num-
bers of node expansions by A* with M&S heuristics using C
and U respectively. RM is the y-axis of Figure 1(a) (the x-
axis is defined below, for now we are only considering RM ,
the height of each point in Figure 1(a)). The plot uses a log
scale and RM = 1.0 is the horizontal line in the middle of
the plot. Points above this line represent instances for which
RM > 1.0, i.e. A* with M&S expands more nodes (per-
forms worse) with C than it does with U . Points below the
line are instances on which A* with M&S performs better
with C than with U . If an instance is solved using C but not U
it is placed at the bottom of the plot (on the line labelled uns.
unit). There are no instances solved using U but not C in this
plot. Instances that are unsolved with both U and C are not
shown in the plot.

Changing the action costs can affect search performance
even without heuristics. The instances with RM > 1.0 may
be simply harder to solve with C than with U even without
M&S. In order to separate the effects of diverse costs on the
M&S heuristics from their effects on search without heuris-
tics we solved all the instances again, with both cost func-
tions, without a heuristic (Dijkstra’s algorithm, f = g), with
the same 30min/2GB limit per instance. Analogous to RM
we define RD to be the ratio of the number of nodes Dijk-
stra’s algorithm expands using C to the number of nodes it

2The recommended configuration: DFP merging, bisimulation
shrinking, label reduction before shrinking, maximum of 50,000
states per abstraction (from www.fast-downward.org/Doc/
Heuristic#Merge-and-shrink_heuristic).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4288



Region RD
RM

RD

< 1 61 41
< 0.1 17 3

> 1 36 53
> 10 0 19

Table 1: Numbers of instances in specific
regions of Figure 1(a).

C c1 c2 c3 · · · cn−1 cn
C1 ∆1 ∆1 ∆1 · · · ∆1 ∆1

C2 0 ∆2 ∆2 · · · ∆2 ∆2

C3 0 0 ∆3 · · · ∆3 ∆3

...
...

Cn 0 0 0 · · · 0 ∆n

Table 2: The cost mapping of delta cost parti-
tioning.

C 1 3 10

C1 1 1 1
C2 0 2 2
C3 0 0 7

Table 3: DCP of a cost function C that
have three different costs 1, 3 and 10.

expands using U . This is the x-axis in Figure 1(a). Like the
y-axis it is a log-scale, RD = 1.0 is the vertical line in the
middle of the plot, and instances solved using C but not U are
placed on the left edge of the plot (on the line labelled uns.
unit). The vertical gray zone indicates 10−1 ≤ RD ≤ 10.
Note that Dijkstra’s algorithm performs better with C than
with U (more instances with RD < 1 than RD > 1 and more
with RD < 10−1 than RD > 10), which has been observed
before [Fan et al., 2017].

The points above the diagonal line y = x are instances for
which RM > RD, meaning that compared to Dijkstra, the
M&S heuristic performs worse with C than with U . For such
instances, the M&S heuristic may reduce the number of node
expansions for both C and U , but reduce it proportionally less
for C than for U . For instances below the line y = x, M&S
performs worse using U than C. For a point close to the diag-
onal line, the M&S heuristic shows no obvious advantage for
either C or U . The diagonal gray zone indicates the difference
within the factor of 10.

Table 1 gives the number of instances in specific regions of
Figure 1(a). Dijkstra’s algorithm expands more nodes using
U than C on more instances (61 instances for RD < 1 vs. 36
forRD > 1 in column “RD”). In contrast, the M&S heuristic
shows inferior performance when using C instead of U com-
pared to Dijkstra’s algorithm (41 instances forRM < RD but
53 for RM > RD, in column “RM/RD”). 19 instances have
a more than 10-fold increase in the ratio of node expansions
from using C compared to using U , while only 3 instances
have a more than 10-fold decrease.

Newly solved instances with M&S
A handful of instances that cannot be solved with either U
or C by Dijkstra’s algorithm can be solved by A* with M&S
heuristics. These instances are omitted from Figure 1(a) as
they do not have a meaningful value of RD. We show these
instances in Figure 1(b), which compares their NU (x-axis)
and NC (y-axis).

Figure 1(b) shows many more instances above the diag-
onal line than below. The instances above the gray zone
(NC > 10NU ) or on the top uns. line are those solved by
A* with M&S using U but require orders of magnitude more
node expansions or cannot be solved within memory/time
limits using C. There are 46 such instances in total, from 5
domains: WOODWORKING, GRIPPER, ELEVATORS, PAR-
CPRINTER and TRANSPORT. On the other hand, there are
only 6 instances for which A* with M&S performs much bet-
ter using C than using U (on the uns. line on the right edge of
Figure 1(b)).

Results in Figure 1 and Table 1 show that negative effects

outweigh positive ones for action cost diversity on A* with
the M&S heuristic. Diverse action costs have an extreme neg-
ative effect on WOODWORKING and GRIPPER, while ELE-
VATORS, PARCPRINTER and TRANSPORT are affected neg-
atively to a more moderate degree. Neither U nor C have
a clear advantage in domains CAVEDIVING, SCANALYZER,
TETRIS3 and OPENSTACKS. C beats U in domains PEGSOL,
FLOORTILE and SOKOBAN by a small margin. CITYCAR is a
special domain because its instances are easier to solve with
C than with U , both with and without M&S, but the M&S
heuristics reduce the search effort more for U than for C, rel-
ative to Dijkstra’s algorithm.

3.2 Building a M&S Heuristic with Diverse Costs
In M&S, label reduction [Sievers et al., 2014] facilitates
bisimulation shrinking [Nissim et al., 2011] in reducing ab-
straction sizes without information loss in heuristics. It is a
critical, often necessary (e.g., for GRIPPER), technique for
M&S to create compact bisimulations. Action cost diversity
has a direct impact on label reduction. Current label reduc-
tion techniques are cost-exact: to avoid information loss, only
labels with the same cost can be reduced to a single label.
With unit costs, cost-exactness is guaranteed trivially. With
non-unit costs, label reductions are much more limited. With
more distinct labels in a transition system, bisimulation ab-
stractions become larger, and more harmful shrinking opera-
tions are required to limit the abstraction size.

Action cost diversity affects M&S not only through label
reduction, but also through changes in merging and shrink-
ing decisions. Non-unit and unit cost induce different distri-
butions of states regarding their distances from the abstract
initial state and to the abstract goal. Merging and shrinking
decisions are often based on such distance information. For
example, the state-of-the-art merging and shrinking strategies
[Dräger et al., 2006; Nissim et al., 2011] tend to prioritize re-
gions close to the abstract goal, and thus heuristics are more
informed in these regions than elsewhere. In this paper, we
do not address such issues, and leave them as promising di-
rections for future studies.

4 Cost Partitioning for Diverse Action Costs
In this section, we propose a cost partitioning method, called
delta cost partitioning (DCP), for M&S to handle diverse ac-
tion costs better. As M&S benefits from the simplicity of unit

35 TETRIS instances were not solved by M&S method with either
C or U , but solved by Dijkstra’s algorithm because M&S cannot
build the abstraction within the time limit for these instances. Since
this is not a cost-related problem, we omit these instances.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4289



cavediving
citycar

elevators
floortile
gripper

parcprinter
scanalyzer

tetris
transport

woodworking 100 102 104 106
100

102

104

106

uns.

uns.

12

DCP-MS
(a) number of nodes expanded

si
n
g
le

M
&
S

0 20 40 60 80 100
0

20

40

60

80

100

DCP-MS
(b) final f-value

si
n

g
le

M
&

S

Figure 2: Compare DCP-MS (x-axes) and single M&S (y-axes) on: (a) Numbers of node expansions; (b) The final f -value before
time/memory limit is reached of unsolved instances (but with M&S abstractions built successfully).

cost in many cases, we partition action costs into cost func-
tions that are as simple as possible.

In the remainder of this section, let L be the label set of a
planning task, and C be any cost function on L. Let c0 = 0
and 0 < c1 < c2 < · · · < cn be the n different positive
cost values to which the labels in L are mapped by C, and
∆i = ci− ci−1 for i ∈ {1, 2, ..., n}. Let Li = {l | C(l) = ci}
be the set of labels that have cost ci for i ∈ {0, 1, ..., n}. DCP
divides the costs c1, c2, · · · , cn among n delta cost functions
C1, C2, · · · , Cn as follows. For i ∈ {1, 2, ..., n},

Ci(l) =

{
0, l ∈

⋃i−1
j=0 Lj ,

∆i, l ∈
⋃n
j=i Lj .

DCP maps a label to a new cost in a delta cost function de-
pending on the label’s original cost and the delta cost func-
tion. This mapping is illustrated in Table 2, and an example
is shown in Table 3.

Since each delta cost function Ci maps a label to either cost
0 or ∆i, it has at most two different costs. With the limited
number of distinct costs in a delta cost function, label reduc-
tion becomes much less restricted. This could be extremely
beneficial if label reduction is essential for constructing a high
quality M&S heuristic for the planning task.

After the cost partitioning, we then run M&S on each delta
cost function and obtain an additive set of M&S heuristics. In
the rest of the paper, we call this method DCP-MS and use
the term “single M&S” to refer to the classical use of a single
M&S heuristic.

5 Experiments
In this section, we compare DCP-MS with single M&S from
the following perspectives:

First, there could be complex interactions between action
costs and M&S’s behaviour. While cost functions with lim-
ited cost diversity seem beneficial for label reduction, we do
not know how shrinking and merging strategies are affected,
so the effects of delta cost partitioning on M&S need to be
tested experimentally.

Second, DCP-MS incurs obvious computational overhead
from constructing multiple M&S, and from multiple lookups

required for the additive heuristic. We need to evaluate
whether the benefit of a better heuristic outweighs the over-
head.

Third, because GRIPPER is a domain where label reduc-
tion is essential but suffers from cost diversity, we perform a
case study on this domain with cost functions of different cost
diversity to see how DCP-MS ameliorates the problem.

Our experimental setting is the same as in Section 3.1. The
M&S construction of DCP-MS uses the same configuration
as single M&S (the default recommended configuration). Do-
mains PEGSOL, SOKOBAN and OPENSTACKS are excluded
here, since these domains use only action costs 0 and 1 and
thus delta cost partitioning only reproduces the single origi-
nal cost function. In addition, from the results in Section 3.1,
these three domains are not affected negatively by the action
cost diversity in their non-unit cost function, so they are not
the target domains for our method.

5.1 Performance of Delta Cost Partitioning
In Figure 2(a), the numbers of nodes expanded by single
M&S (y-axis) are plotted against DCP-MS (x-axis). In the
gray zone, the ratio is within a factor of 10. Points above
the gray zone are strongly favorable for DCP-MS, while it is
much inferior for points below.

Overall, DCP-MS outperforms single M&S on many more
instances, with 24 instances above the gray zone, of which
15 are solved only by DCP-MS. These instances are from
the three domains GRIPPER, WOODWORKING and PAR-
CPRINTER, which are the domains that are most affected by
action cost diversity, according to the results in Section 3.1. In
particular, for the 12 GRIPPER instances solved only by DCP-
MS, they are solved with the minimal search effort, i.e., only
states along the optimal solution are expanded. The perfor-
mance of DCP-MS on the non-unit cost version of GRIPPER
matches that of single M&S on the unit cost version of GRIP-
PER. Single M&S outperforms DCP-MS on only 4 instances.
Among them, two are unsolved by DCP-MS because it times
out when building the abstractions.

Final f -value on unsolved instances
A* expands an open node with the smallest f -value. This
f -value, which increases as A* search progresses for con-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4290



cavediving
citycar

elevators
floortile
gripper

parcprinter
scanalyzer

tetris
transport

woodworking 102 103 104 105
102

103

104

105

106

106 fail

fail

DCP-MS
(a) memory usage

si
n
g
le

M
&
S

100 101 102
100

101

102

103

103uns.

uns.

12

DCP-MS
(b) search time

si
n
g
le

M
&
S

Figure 3: Compare DCP-MS (x-axes) and single M&S (y-axes) on: (a) Memory used for M&S constructions; (b) Search time (in seconds)
of instances with successful M&S abstraction constructions (search time less than 1 second is treated as 1 second).

sistent heuristics, indicates how much progress A* has made
towards finding an optimal path to goal. For instances that are
unsolved by A* with either DCP-MS or single M&S (but with
M&S abstractions built successfully and A* search started),
we compare their final f -values when the time/memory limit
is reached in Figure 2(b).

Let fsingle and fDCP denote the largest f -value of states A*
has expanded when the time/memory limit is reached, us-
ing single M&S and DCP-MS respectively. We normalize
the f -values due to the wide value range across domains. A
small difference between fsingle and fDCP could mean an ex-
ponential difference in numbers of node expansions, so Fig-
ure 2(b) compares fDCP (x-axis) and fsingle (y-axis) in a lin-
ear scale plot. The gray zone is defined between the lines
fsingle = 11

10fDCP and fsingle = 10
11fDCP. The dashed line is

defined by fDCP = 3
2fsingle. In Figure 2(b), there is only one

instance above to the gray zone (fsingle is at least 10% larger
than fDCP). In contrast, there are 21 instances below the gray
zone (fDCP is at least 10% larger than fsingle), and 7 of them
are even below the dashed line (fDCP > 150%× fsingle).

5.2 Computational Overhead
For the IPC domains in our experiments, a delta cost parti-
tioning could produce between 2 and 27 delta cost functions
depending on the planning instances. DCP-MS may have
heavy computational overheads due to multiple M&S con-
structions and multiple heuristic lookups.

M&S constructions in DCP-MS
Building a M&S abstraction can be an expensive process.
However, our results show that both DCP-MS and single
M&S finish the M&S constructions on most of the instances.
Among the 237 instances tested in our experiments, there are
only 9 instances where DCP-MS fails during the M&S con-
struction phase due to time out but single M&S succeeds, and
5 instances where single M&S fails to build the M&S ab-
straction due to running out of memory but DCP-MS builds
multiple M&S abstractions successfully.

Figure 3(a) compares DCP-MS (x-axis) with single M&S
(y-axis) in terms of the maximal memory allocated during
M&S construction. The memory usage of M&S construc-
tion for DCP-MS does not increase linearly with the number

of delta cost functions. Most points are located within the
gray zone (within the difference of the factor of 4), and clus-
tered approximately evenly on both sides of the diagonal line,
meaning the neither single M&S nor DCP-MS has a clear
advantage in peak memory usage. On 5 PARCPRINTER in-
stances, single M&S runs out of memory during the M&S
constructions, while DCP-MS successfully builds multiple
abstractions.

The key to the lower memory consumption of DCP-MS in
such cases, and its good memory performance overall, is that
M&S requires much less memory for the heuristic lookup
tables than for abstract transition graphs. Because only the
heuristic lookup tables are needed in search and DCP-MS
constructs one M&S abstraction at a time for each cost func-
tion, the memory for the M&S abstract transition graphs can
be released and reused after each construction.

DCP-MS fails to build abstractions while single M&S suc-
ceeds for 9 instances (right fail line) due to time out. Table 4
compares the M&S construction time used by DCP-MS and
single M&S for instances where both methods build M&S
abstractions successfully. In Table 4, column “N” shows the
average number of M&S abstractions that DCP-MS has to
build for each domain. The M&S construction time of DCP-
MS is expected to beN times larger than that of single M&S.
Column “ratio” gives the ratios of the average construction
time of DCP-MS (shown in column “DCP-MS”) to that of
single M&S (shown in column “single”). We see that the ra-
tio of actual time of M&S constructions for DCP-MS to that
of single M&S is often less than N . The ratio is larger than
N in only two domains. The 9 instances where DCP-MS
times out during the M&S construction are from the domains
CAVEDIVING, CITYCAR and TETRIS where building a M&S
abstraction takes a relatively long time. Note that in domain
PARCPRINTER, the ratio of construction time for DCP-MS
to single M&S is much less than N , which means building a
M&S abstraction with the original cost function takes much
more time than building one with a delta cost function of re-
duced cost diversity.

Search time
To evaluate the overhead of multiple heuristic lookups, in
Figure 3(b) we compare the search time of DCP-MS and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4291



Domain N ratio DCP-MS single
cavediving 4.44 4.08 597.66 146.31

citycar 3.00 3.40 502.47 147.71
elevators 8.38 3.21 15.15 4.72
floortile 4.00 4.50 70.27 15.61
gripper 4.00 2.46 15.97 6.50

parcprinter 11.92 1.23 125.80 102.35
scanalyzer 2.00 1.59 147.53 92.62

tetris 3.00 1.60 1,281.99 802.71
transport 19.55 13.48 44.65 3.31

woodworking 5.80 4.04 202.39 50.12

Table 4: Comparing the M&S construction time (in second) for
DCP-MS and single M&S.

single M&S on all instances where M&S construction suc-
ceeds. DCP-MS reduces the search time for several instances
from GRIPPER, WOODWORKING and PARCPRINTER, be-
cause the reduction of numbers of node expansions by DCP-
MS outweighs the overhead of multiple heuristic lookups
for the three domains whose average numbers of heuristic
lookups per state are 4.00, 3.30 and 12.13 respectively (in-
stances that fail during M&S constructions are excluded).

There are instances where search takes less time with a sin-
gle M&S heuristic than with the additive heuristics of DCP-
MS. However, for all these instances, the search time is within
the factor of 4 (in the gray zone in Figure 3(b)).

TRANSPORT and ELEVATORS instances have the two high-
est average numbers of heuristic lookups per state evalua-
tion: 13.86 for TRANSPORT and 8.25 for ELEVATORS. The
search time of DCP-MS on instances from these two domains
certainly does not grow linearly in the number of heuristic
lookups per state, as the numbers of node expansions of DCP-
MS on these instances are very close to that of single M&S
(see Figure 2(a)).

There are 105 instances where both methods finish building
M&S abstractions but fail during search. On only 8 of these
instances DCP-MS fails due to time out during search while
single M&S fails due to the memory limit, and on the other
97 instances both methods fail due to the memory limit.

Overall, DCP-MS has only a small computational overhead
in its M&S construction and search.

5.3 Case Study of GRIPPER

The non-unit cost function in the modified GRIPPER domain
from Section 3.1 has 4 different costs. Our earlier experi-
ments showed that single M&S has trouble dealing with such
diversity, while DCP-MS works very well. In this section, we
further test how well DCP-MS performs as the cost diversity
increases.

The pick/drop action costs for ball b are (bmod nc)+1.
The parameter nc gives an upper bound on the number of
different costs for pick/drop actions. The number of balls
in IPC GRIPPER instances ranges from 4 to 42. We compare
the number of instances solved by single M&S and DCP-MS
as nc increases. In addition to the default M&S configuration,
we also test the variant that does not limit abstraction size,
which has the best performance on the unit cost GRIPPER.

Table 5 shows the coverage of DCP-MS and single M&S
for different nc. For the last row of nc = “#balls”, each ball

nc
50K no limit

DCP-MS single DCP-MS single
1 19 19 (19) 20 20
2 19 12 (12) 20 20
4 19 7 (6) 20 20
8 16 7 (4) 20 11

16 14 7 (4) 20 7
#balls 13 7 (4) 18 7

Table 5: Coverage of GRIPPER with increasing cost diversity for
DCP-MS and single M&S using two different M&S configurations.

has a different pick/drop cost. The columns under “50K”
and “no limit” show the coverage of DCP-MS and single
M&S using M&S configurations with and without the 50K
abstraction size limit respectively. For single M&S with 50K
size limit, the number of instances solved with the minimal
search effort are shown in brackets. For all other methods, all
solved instances are actually solved with the minimal search
effort. With either M&S configuration, the coverage of single
M&S decreases faster than DCP-MS as nc increases. When
every ball has a different cost, DCP-MS with no size limit
can solve 18 instances with the minimal search effort, while
single M&S can only solve the 7 smallest instances.

6 Related Work
To our knowledge, there is no previously published work
on practical cost partitioning for additive M&S. A theoret-
ical result by Helmert and Domshlak [2009] demonstrates
that additive M&S heuristics strictly dominate the additive
hmax [Bonet and Geffner, 2001] and landmark heuristics, in
the sense that for a given state, additive M&S can provide a
better heuristic. While optimal cost partitioning for abstrac-
tion heuristics can be computed in polynomial time [Katz and
Domshlak, 2008], more efficient methods are needed in prac-
tice. Saturated cost partitioning [Seipp and Helmert, 2014;
Seipp et al., 2017] is a practical method for approximating
optimal cost partitioning for abstractions.

7 Conclusion
We study the effects of diverse action costs on M&S. We
show that action cost diversity can affect M&S negatively
and propose a new method, DCP-MS, additive M&S with
delta cost partitioning, to address this issue. Our experiments
show that DCP-MS produces much more informative heuris-
tics than the standard M&S on several IPC domains, espe-
cially on those affected negatively by action cost diversity.

8 Acknowledgments
The authors gratefully acknowledge the funding from
Canada’s Natural Sciences and Engineering Research Coun-
cil (NSERC).

References
[Aghighi and Bäckström, 2015] Meysam Aghighi and

Christer Bäckström. Cost-optimal and net-benefit plan-
ning - A parameterised complexity view. In Proceedings
of the 24th International Joint Conference on Artificial
Intelligence, pages 1487–1493, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4292



[Aghighi and Bäckström, 2016] Meysam Aghighi and
Christer Bäckström. A multi-parameter complexity
analysis of cost-optimal and net-benefit planning. In
Proceedings of the 26th International Conference on
Automated Planning and Scheduling, pages 2–10, 2016.

[Bonet and Geffner, 2001] Blai Bonet and Hector Geffner.
Planning as heuristic search. Artificial Intelligence, 129(1-
2):5–33, 2001.

[Cushing et al., 2010] William Cushing, J. Benton, and Sub-
barao Kambhampati. Cost based search considered harm-
ful. In Proceedings of the 3rd Annual Symposium on Com-
binatorial Search, pages 140–141, 2010.

[Dräger et al., 2006] Klaus Dräger, Bernd Finkbeiner, and
Andreas Podelski. Directed model checking with distance-
preserving abstractions. In Proceedings of Model Check-
ing Software, 13th International SPIN Workshop, volume
3925, pages 19–34, 2006.

[Fan et al., 2017] Gaojian Fan, Martin Müller, and Robert
Holte. The two-edged nature of diverse action costs. In
Proceedings of the 27th International Conference on Au-
tomated Planning and Scheduling, 2017. To appear.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proceedings of the
19th International Conference on Automated Planning
and Scheduling, pages 162–169, 2009.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg
Hoffmann, and Raz Nissim. Merge-and-shrink abstrac-
tion: A method for generating lower bounds in factored
state spaces. Journal of the ACM, 61(3):16:1–16:63, 2014.

[Katz and Domshlak, 2008] Michael Katz and Carmel
Domshlak. Optimal additive composition of abstraction-
based admissible heuristics. In Proceedings of the 18th
International Conference on Automated Planning and
Scheduling, pages 174–181, 2008.

[Nissim et al., 2011] Raz Nissim, Jörg Hoffmann, and Malte
Helmert. Computing perfect heuristics in polynomial time:
On bisimulation and merge-and-shrink abstraction in opti-
mal planning. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pages 1983–
1990, 2011.

[Seipp and Helmert, 2014] Jendrik Seipp and Malte
Helmert. Diverse and additive cartesian abstraction
heuristics. In Proceedings of the 24th International
Conference on Automated Planning and Scheduling,
pages 289–297, 2014.

[Seipp et al., 2017] Jendrik Seipp, Thomas Keller, and Malte
Helmert. Narrowing the gap between saturated and opti-
mal cost partitioning for classical planning. In Proceed-
ings of the 31st AAAI Conference on Artificial Intelligence,
pages 3651–3657, 2017.

[Sievers et al., 2014] Silvan Sievers, Martin Wehrle, and
Malte Helmert. Generalized label reduction for merge-
and-shrink heuristics. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, pages 2358–2366,
2014.

[Thayer and Ruml, 2011] Jordan Tyler Thayer and Wheeler
Ruml. Bounded suboptimal search: A direct approach us-
ing inadmissible estimates. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence,
pages 674–679, 2011.

[Wilt and Ruml, 2011] Christopher Makoto Wilt and
Wheeler Ruml. Cost-based heuristic search is sensitive
to the ratio of operator costs. In Proceedings of the
4th Annual Symposium on Combinatorial Search, pages
192–197, 2011.

[Wilt and Ruml, 2014] Christopher Makoto Wilt and
Wheeler Ruml. Speedy versus greedy search. In Pro-
ceedings of the 7th Annual Symposium on Combinatorial
Search, pages 184–192, 2014.

[Yang et al., 2008] Fan Yang, Joseph C. Culberson, Robert
Holte, Uzi Zahavi, and Ariel Felner. A general theory of
additive state space abstractions. Journal of Artificial In-
telligence Research, 32:631–662, 2008.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4293


