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Abstract

We propose a new method for conformant planning
based on two ideas. First given a small sample of
the initial belief state we reduce conformant plan-
ning for this sample to a classical planning prob-
lem, giving us a candidate solution. Second we
exploit regression as a way to compactly repre-
sent necessary conditions for such a solution to be
valid for the non-deterministic setting. If necessary,
we use the resulting formula to extract a counter-
example to populate our next sampling. Our exper-
iments show that this approach is competitive on a
class of problems that are hard for traditional plan-
ners, and also returns generally shorter plans. We
are also able to demonstrate unsatisfiability of some
problems.

1 Introduction

Conformant planning is the problem of finding a plan in an
environment that is only partially known. In this work we
restrict ourselves to uncertainty on the initial state and not
in the actions’ effects (or assume that this uncertainty can be
integrated into the initial state).

We present a new approach to conformant planning. The
approach is very similar to the CEGAR (counter-example-
guided abstraction refinement) technique used for model-
checking [Clarke ef al., 2000] and in self-healing [Grastien,
2015]. The basic idea of CEGAR is to repeatly compute a
solution to a simplified (abstracted) version of the problem
at hand. If this solution is not correct for the original prob-
lem, it is analysed to enrich (refine) the simplified problem,
so that a better solution can be generated at the next step of
the procedure.

Practically we first assume we are given a set of “interpre-
tations” of the initial belief state, i.e., some of the possible
initial states. Each interpretation can be understood as a rep-
resentative of one or several aspects, i.e., tag [Palacios and
Geffner, 20061, of the conformant problem that the solver has
to consider, e.g., the fact that an item that needs to be picked
up could be in a given location. We reduce the problem of
finding a conformant plan for this set of interpretations to
classical planning, and solve it using an off-the-shelf planner.
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We then use regression to efficiently determine whether
this plan is incorrect for any initial state. If so, we extract
one such state. This state is effectively a counter-example
proving that the proposed plan is a non-conformant one. This
state is then added to the current set of considered interpreta-
tions; this is how the set of interpretations (originally empty)
is populated. This procedure guarantees that the interpreta-
tions are all relevant since they each contradict at least one
of the plans generated earlier. For this reason we talk about
“intelligent” sampling.

The paper presents CPCES, a conformant planner that is
sound and complete, assuming sound and complete classical
planner and regression procedures. If the underlying classi-
cal planner is optimal, then the resulting conformant planner
also is. As far as we know, no previous work in the literature
has looked at the conformant planning problem from this per-
spective. A side contribution is a verifier that decides whether
a given plan is a solution to the conformant planning problem.

We test the planner on a large set of benchmarks. We notice
that our planner is able to handle problems that are tradition-
ally hard for existing planners, in particular problems with
large “width”. These results are very encouraging particularly
given the simplicity of the approach, and the simplicity of
the resulting developed software architecture. We took prac-
tically off-the-shelf a classical planner, i.e., FF [Hoffmann
and Nebel, 2001] and a SAT-Solver, i.e., Z3 [de Moura and
Bjgrner, 2008] without any further tuning. We believe that
the framework has a huge potential for a large class of con-
formant planning problems that are hard for current confor-
mant planners. For instance, we are able to prove that some
problem instances are unsatisfiable, i.e., there exists no con-
formant plan for these instances.

The present paper is organised as follows. After an intu-
itive presentation of our algorithm, we present the conformant
planning problem. Then we present our approach, our con-
formant planning algorithm, and the theoretical properties it
enjoys. The next two sections give more details on the two
key components of our algorithm, namely the reduction from
conformant planning to classical planning (given a small sam-
ple of the belief state) and the verification of a candidate plan
which can lead to the generation of a counter-example. We
discuss related works and finally we present experimental re-
sults.
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2 Intuitive Explanation of CPCES

We start the paper with an intuitive explanation of our algo-
rithm and why we expect our algorithm to perform well.

Consider the conformant planning domain known as ONE-
DISPOSE. This problem involves n objects in £ > n lo-
cations. Each object ought to be moved to a specific lo-
cation. Additional considerations include the facts that the
agent must move between the locations; the initial location
of these objects is unknown; the agent can only hold one ob-
ject at a time; finally, since the problem is conformant, no
observation is available. The optimal plan consists, for every
object, in visiting all locations, trying to pick this object up,
and dropping it at the right place (before moving to the next
object).

Theoretically it is possible to enumerate all n* initial states
and to compute a plan based on this set. Not all these states
however are necessary to find an optimal plan. For each lo-
cation consider the initial state in which all objects are in this
location. From this subset of / initial states one can infer that
a conformant plan must try to pick every object up from ev-
ery location, which is all the information we need to infer the
optimal plan. Essentially this shows that we do not need all
n’ initial states but only ¢ states.

There remains the issue of how we determine the relevant
initial states. The intuition is that we can compute a determin-
istic plan only from an incomplete set; then we can analyse
such a plan to get the relevant states explaining why this plan
is incorrect.

3 Problem Definition

Given a set of variables V' we denote L(V') the set of propo-
sitional formulas that only mention variables in V. A con-
formant planning problem is a tuple P = (F, A, &z, Og)
where F is a finite set of state variables (or facts), A is
a set of actions, &7z € L(F) is the initial formula, and
®g € L(F) is the goal formula. An action a € A is a
pair (p, eff) where p € L(F) is a precondition and eff is
the effects of the action. The effects are a function that as-
sociates each literal { € F U {~f | f € F} to a condition
eff (¢) € L(F). To simplify later notations, we assume that
the conditions of a literal and its negation are mutually incon-
sistent: eff (f) A eff (=f) = L.

Informally, the initial state is one of the Boolean assign-
ments of the facts that satisfy the initial formula. An action
is applicable in a state if its precondition is satisfied in the
state. Each fact f is true after the action if eff (f) holds in the
current state or f was already true and eff (—f) does not hold
(cf. Eq. (2) below). A goal state is a state that satisfies the
goal formula.

Our formal definition of the semantics of the conformant
problem avoids the direct use of states, but it is equivalent to
the standard one. A belief state B € L(F) is a propositional
formula (@7 is such a belief state). Action a = (p, eff) is
applicable in belief state B if B |= p. The result of applying

!This assumption is not restrictive as conflicting conditions can
be avoided by integrating them to the precondition of the action.
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action a in belief B is the belief state 5[a] defined by:
(3F. Ta AB) [F/F'] )
where 7, is the transition function defined by

To= N\ (FIF/F) o (F (VA -ef(-H)). @

fer

In this formula, F” is a copy of the variables in F that is used
to reason about the belief states before and after the action.
3V. is the existential operator (i.e., the value of the variables
of V, here the facts before the action, is forgotten). [F/F’]
is the operator that switches the value of the variables F and
F' so that: f[F/F'] represents a set of transitions where the
target set is defined by f being true (the origin set is free);
(3F .set-of-transitions )| F / F'| represents the target states of
the specified set of transitions.

Aplan m = aq,...,a; is a (possibly empty) sequence of
actions. The application B[r] of the plan is the incremental
application: Bla4]...[ax]. The plan is applicable if each of
its actions a; is applicable in Bla1] ... [a;—1].

A solution to the planning problem is a plan 7 that is ap-
plicable from ®7 and that leads to the goal set: Pz [r] | Pg;
we write TI(IP) the set of solutions to the planning problem P.
A solution is optimal if there is no shorter solution.

A state of a belief is a model satisfying the belief. The set
of states of belief state 53 is denoted by states(B). A planning
problem is deterministic if it has a single initial state. Deter-
ministic (aka classical) problems are generally easier to solve
than non-deterministic (aka conformant) ones.

4 Our Approach

We now present the theoretical foundation of our approach
and the conformant planning algorithm that we derive from
it. The specifics of the two main methods used in this algo-
rithm, namely the reduction of a simplified conformant plan-
ning problem to classical planning and the computation of a
counter-example, are detailled in the next sections.

We will compute a conformant plan using only a subset of
the initial states (which will allow us to reduce the problem to
classical planning). Practically this means that we are given a
belief state that entails the initial belief state of the problem:
B = ®z. We write Pg the planning problem defined by P
except that the initial formula is replaced by 5.

The central property that underpines all the results in this
section is the following trivial property:

Proposition 1 The following proposition holds
VB, B;. H(Plgl) N H(PB2) = H(Pgl\/BQ).
A consequence of Proposition 1 is that B |= ®7 implies
that TI(IP) is a subset of II(P3). In other words it is possible

to reason about the problem P without missing any plan. A
solution for problem P may however not be a solution to PP.

Assume now that a solution 7 for Pz has been computed.
We are interested in deciding whether 7 is indeed a solution
for P. A counter-example of initial formula ®7 for plan 7 is
a state g € states(®Pz) such that 7 does not belong to the set
II(P,). The following result is essential to prove the proper-
ties of the algorithm and can be derived from Proposition 1.
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Proposition 2 Let 7 be a solution for Py that is not a solu-
tion for P. Then there exists at least one counter-example of
@7 for w. Furthermore none of these counter-examples q be-
longs to B (q & states(B)) and w is not a solution for Py,

We can therefore verify whether a solution for B is a so-
lution for ®7 by searching for counter-examples. It is then
sensible to add the counter-example to the belief state since
this means that the plan that will be computed for the new
belief state will not include the plan that was just disproved.

These propositions lead us to Algorithm 1. We start with
an empty belief state 3 := L. At each iteration we compute
a plan 7 for the current belief state; if 7 is correct for [P then
we return this plan; otherwise we extract a counter-example
and add it to the belief state.

Algorithm 1 Conformant Planning Algorithm.

1: input: planning problem P
2: B := 1 {Initial sample of the belief state}
3: 7 := ¢ {Empty plan—is a plan for belief state | }
4: loop
5.  if 7 is a solution for P then
6 return 7 {Plan found}
7:  endif
8:  Let g be a counter-example
9: B:=BVg
10:  Compute new plan 7 for Py
11:  if no such 7 exists then

12: return no plan exists
13:  endif
14: end loop

We can now prove properties of this algorithm.

Lemma 1 Algorithm 1 is sound and complete (if the subrou-
tines that compute a counter-example and a classical plan are
sound and complete).

First, the plan returned by the algorithm has been verified
for IP and is therefore correct. Second, assume that the algo-
rithm returns that there is no plan; then there is no plan for
B; however since B is a collection of counter-examples, then
B |= @7 and II(P) C II(Pg) = (); hence there is no plan.
Finally, each iteration adds a new state to B and, since the
number of initial state is finite, the algorithm will terminate.

Lemma 2 [f the planner used in Algorithm 1 is optimal, then
Algorithm 1 is optimal.

Proof: Because II(Pg) is a superset of II(IP) it contains the
optimal plan for TI(P), too. Therefore if the optimal plan of
the former belongs to the later, it is an optimal solution for
the conformant problem.

The next sections concentrate on the two subroutines of Al-
gorithm 1: the computation of a plan for 5 through a reduc-
tion to classical planning and the computation of a counter-
example through regression.

5 Reduction from Conformant Planning to
Classical Planning

In this section we assume given a belief state 3. It is assumed
here that states(B) is fairly small (no more than a few hun-
dreds elements) as this method becomes impractical for larger
belief states. The experiments demonstrate that we are often
able to find a plan before this assumption gets violated.

Our reduction of conformant planning is similar to that of
Palacios and Geffner (2009). However they used a merge
action that we do not require.

Let {q1,...,qx} = states(B) be the set of states of B.
Remember that each ¢; is a formula. The reduction consists
in running & planning problems in parallel where all actions
are synchronised. To echo the notation from Palacios and
Geffner we define facts f,,, that indicate that the fact f is
true under the initial state interpretation g;. We write F,, the
set of facts derived for interpretation ¢; from the set F.

Definition 1 Given a set of states states(B) = {q1,...,qr}
the reduction of conformant planning  problem
Pr = (F, A, B, ®g) is the deterministic planning problem
red(Ps) = (F', A", B', &) where

o F' :‘F/Eh U"'U}—/qk,

o A' = {red(a)|a € A} wherered((p, eff)) = (p', eff’)
is defined by p' = /\ie{l,...,k} plF/F)q) and eff’ is
such that eff'(£,4,) = eff (O)[F/F 4],

e B = /\ie{l,...,k} 4i[F/Fyq,), and

o Oy = /\ie{l,...,k} Pg[F/Fq,)-

The reduction of action a can be explained as follows:
red(a) is applicable if p is satisfied under all interpretations;
the effect ¢ applies for an interpretation g; if its condition
eff (¢) is satisfied for this interpretation. The initial belief
state is the description of the facts that hold under each inter-
pretation. All interpretations must satisfy the goal condition
in the goal state.

Lemma 3 A plan m = aq,...,a, is a solution to Py iff the
plan red(ay), ..., red(ay,) is a solution to red(Pp).

Lemma 3 proves that the reduction from conformant plan-
ning to classical planning is correct. A classical planner can
therefore be used to compute a plan for Pg.

Notice that this reduction does not increase the number of
actions; therefore the branching factor of the planning prob-
lem P does not increase with the size of B. It increases how-
ever the number of facts linearly in the number of states in 15,
and similarly increases the number of conditional effects of
each action.

6 Computing a Counter-Example

We now want to verify if a given plan is a solution to the
planning problem, and generate a counter-example when it is
not. Verification of conformant plan 7 = aq,...,a; can be
performed by computing the regression of the plan, i.e., the
weakest precondition on the initial set that guarantees that 7
is a solution. Formally the regression of m from ®g is the
(unique) maximal belief state Reg(m, ®g) such that 7 is a
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solution t0 Preg(r,a,)- How to compute the regression is
well-known [Rintanen, 2008; Brafman and Shani, 2016]. The
set of counter-examples is then given by &7 A = Reg(m, ®g).
Instead of computing Reg(w, ®g) explicitly however we
generate a SAT problem, all models of which is a counter-
example. The reduction to SAT is fairly straightforward.
The SAT problem searches for a sequence of states

qo, - - -, qk. Firstly a set of constraints based on 7,, ensures
that q1, . .., qi are the states reached by applying the actions
ai,...,ay in this order assuming all actions are applicable.

Remember that at his stage, as opposed to SAT-based classi-
cal planning, the plan 7 = ay,...,ay is known. Secondly
for all index ¢, a Boolean variable p; is added that evaluates
to true iff the action a; is applicable in ¢;_;. Thirdly a set of
constraints ensures that the plan is not a solution for gy, i.e.,
either the final state is not a goal state or one of the action is
not applicable: (—p1) V ...V (—pg) V =®g[F/Fi]. Finally
a set of constraints ensures that qq is an initial state.
It is easy to show the following result:

Lemma 4 The set of satisfying assignments to the SAT prob-
lem described above is the set of counter-examples of T.

The decision problem associated with the detection of
counter-examples is CO-NP-COMPLETE [Grastien and Scala,
20171, which justifies the use of SAT techniques. Our re-
duction to SAT mimics the one used in SAT-based classical
planning except that the initial state, rather than the plan, is
unknown. The number of free variables in our SAT problem
is therefore smaller and the problem is quite simple to solve.

7 Related Works

Conformant planning was quickly characterised and solved
as a search problem over the space of belief states [Bonet and
Geffner, 2000]. The representation of these belief states has
however been identified as one bottleneck. Different tech-
niques have been used to address this issue such as using
BDDs [Cimatti and Roveri, 2000] or representing the belief
state implicitely by the prefix of the plan [Hoffmann and Braf-
man, 2006; To et al., 2011].

A different approach [Palacios and Geffner, 2009; Albore
et al., 2010] consists in reducing the conformant planning
problem to a classical planning one where every literal f is
replaced by the literals K f and K—f that indicate that f
is known to be true or false (the effects of the actions are
changed accordingly). This translation is not sufficient to
guarantee completeness however, and fags and merges have
been introduced for this purpose. A tag is a proposition that is
satisfied by some initial states and a merge is a collection of
tags, one of each is satisfied by any initial state. The classical
planning problem is augmented to include facts of the form
KL/t, where L is a literal and ¢ a tag, with the semantics “L
is known to be true if ¢ held in the initial state.”” When KL/t
is true in a state for all £ in a given merge, then K L is added
to the state. It is possible to automatically compute the list of
tags and merges that are required to guarantee soundness and
completeness of this approach.

Tags can be seen as the kernel of a counter-example, the
core reason (or one of the core reasons) why some plans are
not solutions. Computing all merges upfront guarantees that

all “contingencies” will be considered by the classical plan-
ner. Completeness however is only guaranteed when all rel-
evant tags and merges are computed. Their number is ex-
ponential in the width of the conformant planning problem,
which limits this approach to domains where the width is
small (as shown in the experiments).

Palacios and Geffner (2009) also introduced the notion of
basis, a subset of initial states that is guaranteed to have the
same set of plans as the initial belief states: II(IP) = II(Pg).
A sound and complete conformant planning method consists
in first computing a basis B, and second computing a solu-
tion to Pz by reduction to classical planning. This method is
practical if the basis is small.

The basis is guaranteed to represent the exact same set of
plans as the initial belief state; in comparison we only re-
quire a sampling such that the planner returns a valid plan for
the initial belief state. Our requirement is weaker than the
requirement for a basis, which means that we will generally
produce a much smaller belief state. In the optimal setting
for instance, it is unnecessary to find counter-examples for
suboptimal plans.

Notice also that we compute our sampling incrementally
while the basis is computed upfront. This means that the ba-
sis must be computed in a very conservative way, i.e., by in-
cluding states that could not be proved to be unnecessary.

Other methods have used sampling for conformant plan-
ning, but our objective is different from theirs. The purpose
of these samplings is generally to produce heuristics in a be-
lief space search [Bryce ef al., 2006] while we only sam-
ple the initial state. There has been other test and gener-
ate approaches to conformant planning [Kurien et al., 2002;
Castellini et al., 2003]. These approaches did not incremen-
tally generate counter-examples to ensure that better plans are
produced over time.

Another approach that uses sampling is Sample, Deter-
minize, Replan [Brafman and Shani, 2012]. SDR computes
a plan from a single initial state, executes and monitors it (it
assumes partial observability), and replans when the execu-
tion failed. In comparison we search for risks of failure be-
fore execution, and we compute a completely new plan. Since
we replan without knowing for sure that the current state is
not the one we planned for, we also need to remember all the
counter-examples we generated.

8 Implementation and Experimental Analysis

8.1 Implementation

In order to study the benefits, the drawbacks, and the com-
putational implications of the approach presented in this pa-
per, we used a classical planner and a SAT-Solver and im-
plemented in Java a module that orchestrates the interactions
between these two components. The classical planner used
is FAST FORWARD (FF) [Hoffmann and Nebel, 2001]. FF is
a pure classical planner based on heuristic search. The plan-
ner has been the winner of many competitions throughout the
last decade and is one of the most robust and efficient plan-
ning system. The SAT-Solver is Z3, a state of the art theorem
prover [de Moura and Bjgrner, 2008].
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[Domain ]
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Instance
Unsolvable Conformant Plan

Figure 1: Architecture of the Conformant Planner

Regression

Multi Interpretation
Domain

Classical Planner
<FF>

(:action drop

:parameters (?0 - obj ?p - pos )
:precondition (forall (?i - inter)

(and (located ?p ?i) (trash_at ?p ?21)))
ceffect (and (forall (?i - inter)

(when (holding 20 ?1i)
(and (not (holding 2?0 ?1i))
(disposed 20 ?21))))))

Figure 2: Multi-Interpretation Drop action from the Dispose domain

Figure 1 reports the developed architecture. Note here that
our system does not make any assumptions on the solvers be-
ing used. The interactions between the various modules have
been done using PDDL to represent the planning problems,
and SMT-LIB? to represent the formula.

PDDL [Ghallab er al., 2004] is the de-facto language to
represent planning problems in a succinct way. Actions are
represented in a schematic form, and the planner is in charge
of grounding them against the current instance. To make the
introduction of new samples operative within the planning
problem we allow the introduction of special types of object,
namely inter. Each of these objects captures a specific in-
terpretation of our initial state. Each predicate of our planning
domain is then extended with the inter parameter. This
way, the grounding of each predicate is not only a function of
the actual objects present in the conformant problem, but also
a function of the current interpretations we are considering in
our reduction to classical planning. This effectively adds a
new dimension to the problem, orthogonal to and somehow
separated from the other aspects of the conformant problem.

Following the reduction presented earlier, we use the ?in-
ter object in our action schema, too. Every action is lifted by
one level by quantifying every precondition formula and ev-
ery effect over all the possible interpretations. This ensures
that the action is applied iff each of the possible interpreta-
tion satisfies its precondition. And analogously for the ef-
fects. Figure 2 reports an example for the Drop action in the
DISPOSE domain. This schema of translation has two main
benefits: 1) it allows to construct the domain theory just once
in our algorithm; the actual grounding of the actions will de-
pend on the number of objects instantiated in the problem file;

http://smtlib.cs.uiowa.edu/
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ii) it preserves to some extent the structural information pe-
culiar to the conformant setting. As a matter of fact the prob-
lem grows incrementally only in one dimension, which is the
one mirroring the uncertainty to be handled in that particu-
lar problem. We believe it is important to keep track of this
structural information that can be exploited by the classical
planner.

Our system is called CPCES (Conformant Planner via
Counter Example and Sampling)3. Its architecture has been
conceived to be modular and independent from the particular
solvers. This means that the methodology hereby presented
can benefit from any advance in the classical planning and
satisfiability contexts. For instance we have tried other plan-
ners that are able to handle conditional effects and quantifi-
cation, (e.g., FAST-DOWNWARD [Helmert, 2006]). FF is the
only classical planning system able to efficiently deal with
quantification and conditional effects altogether. The FAST-
DOWNWARD translator suffers of some severe computational
issue, probably due the grounding and translation to SAS+
which is implemented in Python. Unfortunately, most state-
of-the-art planners use such a translator as pre-processor. We
chose the SAT-Solver Z3 because the input language (SMT-
LIB) is easier to interpret and manipulate above all when
CPCES has to iterate over the counter-examples, or the user
wants to understand the reasons why the current plan is in-
correct. The experiments show that the time used by the SAT-
Solver is a small percentage of the total time.

8.2 Domains

We took a set of domains from Albore et al. [2011]. In partic-
ular we focus our attention on two categories: domains hav-
ing width strictly larger than 1 that are notoriously difficult
for all the state of the art planning systems, and domains with
a width less than or equal 1.

The first set of domains consists of BLOCKSWORLD,
RAO’S KEYS, ONE-DISPOSE and LOOK-GRAB. As we will
see, none of the planners we are aware of has been able to ef-
ficiently solve those instances, or to prove their unsolvability.

In the second set of domains we consider: DISPOSE,
BoMB, COINS and UTS. Planners developed in the literature
are able to handle those domains quite well.

In the next two subsections we look at how CPCES com-
pares against T1, a very fast heuristic search planner. Our
analysis is meant to study the capability of systems to pro-
duce sound plans of reasonable length. In this paper we left
out from the comparison GC-LAMA [Nguyen et al., 2012]
for two main reasons: i) we are not sure of the soundness of
the produced plans, and ii) the length of the plans produced
by GC-LAMA is often magnitude longer than the ones we
obtain. GC-LAMA has been reported to produce a plan for
the fourth instance of BLOCKSWORLD which is unsolvable,
as well as the fourth instance of RAO’S KEYS. We leave this
analysis as a future work, and we focus on comparing our
planner with T1 instead.
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Coverage | Length Time
Domain CC|TlI |CC|T1 |[CC | T1
BOMB(9) 8 9 |[136.0|130.5/102.7| < 1
COINS(9) 8 9 [81.3140.2] 88 | <1
DisPOSE(11) 5 8 [210.4|246.21321.2| 10.1
uTs(15) 14 | 14 [539 (636|656 4.6
BLOCKSWORLD(4)| 4 2 1251130 <1 (<1
RAO’S KEYS(3) 3 1 1160|210 <1 | <1
ONE-DISPOSE(10) | 6 4 167.5(79.3|13.3|202.2
LoOOK-GRAB(18) | 18 | 15 |50.9|33.7 | 28.5 [129.8
Total 66 | 62

Table 1: Experimental data collecting performance of CPCES and
T1 across a number of domains. Time is represented in seconds,
timeout has been set to 1800 secs. Domains with width greater than
1 are those below the double line.

8.3 Experimental Results

Table 1 reports the data collected for the two systems across
many instances of the aforementioned domains, where we
compared coverage, plan-quality and run-time spent to find
a solution. Experiments confirmed our intuition. CPCES
does not directly suffer from the particular structure of the
problem. For this reason its performances are independent
from the particular width of the problem. It is not the case
for T1 though. This results in an overall higher coverage for
CPCES (66 over 62) but more importantly the two systems
seem to behave well on two different dimensions. CPCES
is in fact substantially slower than T1 on the 1-width do-
mains, although it produces plans whose quality is (apart
from BOMB) consistently better than T1. On the other hand,
CPCES outperforms T1 on the more complex domains whilst
keeping the average plan length competitive with T1 (making
exception for LOOK-GRAB). T1 shows performances that
are typical of a very greedy heuristic search planner, i.e., it
either finds a plan in a few seconds, or it does not find a plan
at all. CPCES instead adopts a more systematic approach,
thus performing quite consistently across a large variety of
problems. Finally, in our setting we are not using an optimal
planner (even though we could), though the plans in some do-
main turned out to be of very good quality. This is an effect
of the underlying incremental lower bounding given by our
architecture. As a demonstration of this, have a look at Fig-
ure 3, where CPCES, T1, and the ideal optimal planner are
compared across instances from the DISPOSE domain.

Table 2 reports data investigating some of the behavior
of our system on the most difficult (solved) instances across
the tested domains. Unsurprisingly, apart for the smaller in-
stances, the majority of the computational time spent for each
instance is due to the classical planner. The planner com-
putes, for each new sample generated, a plan of increasing
size. For some bigger instances this becomes the bottleneck
of our approach. The other component being evaluated is the
SAT-Solver, in our case Z3. As it is possible to note from
the table, the computational time devoted to this task barely

3The system is available at https://bitbucket.org/
enricode/cpces
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Figure 3: Dispose domain, instances scale on the number of objects
to be disposed, from 1 to 8. Black line is CPCES, grey line is T1

Planner | SAT | Samples T

BLOCKSWORLD-03 0.2 0.9 25 4.4

RAO’S KEYS-03 0.1 0.2 21 1.9
BomB-100-5 116.9 10.8 106 159.3

COINS-20 5.2 1.9 43 14.1
DISPOSE-8-2 13475 | 482 129 1508.4
UTs-k-50 758.3 11.3 74 800.6

ONE-DISPOSE-5-2 402.6 8.6 92 437

LOOK-GRAB-8-3-3 11.8 1.5 11 19.6

Table 2: In-Depth Analysis: Planner and SAT report the cuamulative
time spent by the planner and the SAT-Solver for that instance, and
T the overall run-time. The Samples column reports the number of
samples that have been tried before certifying that the solution was
a correct one.

reaches 7% in BOMB-100-5. The remaining computational
part is spent doing regression and the machinery built to ac-
commodate the interactions between these modules.

Another interesting and key factor in these experiments is
the number of samples to generate. This number represents
the actual space of interpretations that we needed to explore
to handle the uncertainty in the initial state. For instance, in
DISPOSE we have 64 x 64 possible initial states. The in-
cremental sampling here allows us to use just 64 + 64 + 1
counter-examples generated from the starting empty plan.

9 Conclusion

We presented a new approach to conformant planning that
is conceptually very simple and that shows a lot of promise.
With this method we were able to solve a class of problems
that have traditionally been considered hard (problems with a
width greater than one). Furthermore the solutions found by
our planner are generally shorter than other solvers.

In the context of deterministic planning the CEGAR ap-
proach, i.e., the approach where counter-examples are used
to identify important pieces of information in the problem
description, has been investigated [Seipp and Helmert, 2013;
Haslum, 2012]. In this paper we show that it may substan-
tially benefit the understanding and the development of more
expressive planning problems as well.
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