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Abstract
Multi-robot navigation control in the absence of
reference trajectory is rather challenging as it is ex-
pected to ensure stability and feasibility while still
offer fast computation on control decisions. The in-
trinsic high complexity of switched linear dynami-
cal robots makes the problem even more challeng-
ing. In this paper, we propose a novel HMPC based
method to address the navigation problem of multi-
ple robots with switched linear dynamics. We de-
velop a new technique to compute the reachable
sets of switched linear systems and use them to en-
able the parallel computation of control parameters.
We present theoretical results on stability, feasibil-
ity and complexity of the proposed approach, and
demonstrate its empirical advance in performance
against other approaches.

1 Introduction
A switched linear system is a special type of hybrid sys-
tems, consisting of several modes equipped with linear dy-
namics (differential/difference equations), and a switching
rule specifying how to switch between them. It provides an
expressive model for designing robots which embrace com-
plex behaviors [Faust et al., 2016; Bogomolov et al., 2014;
Lahijanian et al., 2014]. For example, a robot with many
gears which deliver different torques and speeds can be di-
rectly modeled by a switched linear system.

The multi-robot navigation problem attracts much attention
for being not only academically challenging, but also of prac-
tical importance. It drives a group of robots from their initial
positions to goal positions without any reference trajectory. A
successful navigation should provide three guarantees: con-
verging to the goal positions finally (stability), avoiding colli-
sion all the time (feasibility), and fast computing (efficiency).

There have been a number of works treating the navigation
problems as path planning problems, where heuristic-search
based methods are the most popular and well-developed so-
lutions [Wagner and Choset, 2011; Karaman and Frazzoli,
2011; Janovský et al., 2014]. For robots with discrete state
space such as graph, A* based algorithms can quickly find
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the optimal path while ensuring the stability, and thus are well
studied [Koenig and Likhachev, 2002; Wagner and Choset,
2011]. Before adopting it to continuous states, the continu-
ous state space must be discretized in advance. Those meth-
ods that deal with continuous state space directly receive
much attention in recent years. Optimal reciprocal collision
avoidance (ORCA) approach [van den Berg et al., 2011]
is proposed to address the collision avoidance problem of
robots. It is then combined with the RRT* algorithm [Kara-
man and Frazzoli, 2011], an extension of RRT (rapidly ex-
ploring random tree), for robot navigation in a continuous
state space [Janovský et al., 2014]. However neither of them
ensures theoretical stability, therefore may easily lead robots
to a situation where robots stick at one point as a result of in-
finite loops or deadlock [Janovský et al., 2014]. To ease treat-
ment, all the above methods assume that once the specified
positions are given, all robots can easily compute the corre-
sponding inputs and arrive the positions accurately, thus do
not take the concrete dynamics of robots into consideration.

Unfortunately, as is pointed in [Pecora et al., 2012], for
robots with complex behaviors, treating the navigation prob-
lem as two separated steps: path panning and control inputs
computation may cause severe collision issues. That is, due to
the absence of robot behavior in path planning, even though
the planned path is theoretically safe, in practice it might lead
to collisions as the target positions in the given trajectory may
be beyond the robots’ ability. Therefore, for switched linear
robots, due to their intrinsic complexity, the strategy of sepa-
ration does not fit for handling the navigation problems.

Different from path planning approaches which only con-
sider the trajectory, the switched linear robot navigation con-
trol requires to compute control inputs of all robots with
consideration of robot dynamics. Model Predictive Con-
trol (MPC) is the most popular method whose basic idea is
to first compute an input sequence of the next several steps
using certain path finding strategy, and then choose the se-
quence head as the current input. MPCs fall into three cate-
gories: centralized MPC (CMPC), distributed MPC (DMPC)
and hierarchical MPC (HMPC). CMPC provides theoreti-
cal guarantee on feasibility and stability, but suffers from a
high computation complexity [Dunbar and Murray, 2002].
DMPCs can hardly ensure the stability under (non-convex)
collision avoidance specification [Keviczky et al., 2004;
Kuwata and How, 2011; Mercangöz and Doyle, 2007]. Re-
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cently, HMPCs are proposed which balance the merits of both
CMPC and DMPC schemes. In HMPC, a central controller de-
termines the next state of every robot while for each robot,
there is a distributed controller computing its control param-
eter driving it to the given state. Among them, the approach
proposed in [Cirillo et al., 2014] cannot ensure the dynamic
feasibility generated by the central controller and the method
proposed in [Huang et al., 2016] replaces constraints of dy-
namics with reachable sets of robots so that the goal states
can be efficiently produced by the central controller, ensur-
ing both stability and feasibility for simple linear dynamical
robots.

In this paper, starting from the reachable set based HMPC,
we aim to address the navigation problem of robots whose
behaviors are described by switched linear systems in con-
tinuous space. Here, the key challenge is how to compute
the exact reachable set of robots in a very short time: the
accuracy of the reachable sets assures the equivalence be-
tween the transformed optimization problem and the original
one; if the overhead incurred by the computation of reach-
able sets is more than the time saving benefitted from parallel
computation, it would render HMPC to be less useful. The
reachable set computation of general switched systems is a
well-known undecidable problem requiring heavy computa-
tion efforts [Alur et al., 1995; Henzinger et al., 1995]. We
give a novel method to compute the reachable set function
by slightly restricting the multi-robot system with a reason-
able assumption. The reachable set function is computed in
advance off-line, and the concrete reachable set is directly on-
line derived by substituting the current state. Our main con-
tributions are listed as follows:
• We propose a novel HMPC based method to address the

navigation problem of switched linear multi-robot using
our newly developed technique to compute the reachable
set function of switched linear systems.

• We theoretically ensure the feasibility and stability of the
proposed method and discuss its complexity;

• We demonstrate the performance of the new HMPC based
method in several navigation scenarios and show its advan-
tages empirically by varied comparison.

2 Problem Formulation
Consider a switched linear dynamical multi-robot system S
containing N robots on a plane. Each robot has independent
dynamics and inputs along the x-axis and y-axis. Assuming
the sampling interval of the i-th robot is Ti, robots synchro-
nizes with each other at the end of every collaboration cycle,
which is the least common multiple of robots’ sampling in-
tervals.

Before formally defining the systems and problem, we first
introduce the assumption throughout this paper.

Assumption 1. Each robot stay stationary at a collaboration
instant.

Notably in current works of multi-robot navigation control,
in particular heuristic-search methods, forcing robots to stop
is a common choice when confronted with conflicting situa-
tions [Wei et al., 2014].

Now, we model such a multi-robot system. For the i-th
robot, the collaboration cycle is Ki times its local control cy-
cle. A state of the i-th robot is denoted as qi = [xi, ẋi, yi, ẏi]

T ,
where xi, ẋi, yi, ẏi denote the position and velocity along the
x-axis and the y-axis, respectively. Let qi,x = [xi, ẋi]

T and
qi,y = [yi, ẏi]

T be the states along two axes. The dynamics of
each robot along two axes are independent. We can model the
dynamic along each axis separately as a switched linear sys-
tem. Let Mi,x and Mi,y be the number of permissible linear
dynamical modes along x-axis and y-axis. For the x-axis, the
dynamic is modeled as the linear discrete-time time-varying
state equality below:
qi,x(k, ki+1)=Ai,x qi,x(k, ki)+Bi,x(mi,x(k, ki))ui,x(k, ki),

(1a)

qi,x(k+1, 0)=qi,x(k,Ki), 0≤ki≤Ki−1, k≥0 (1b)

where k denotes the k-th collaboration instant, ki∈{0, 1,
...,Ki−1} represents the ki-th local sampling instant of the
i-th robot, the pair (mi,x(k, ki), ui,x(k, ki)) is referred as the
hybrid control along the x-axis, where:
Switching Control mi,x(k, ki) ∈Mi,x,{1, · · · ,Mi,x} deter-

mines the dynamic mode;
Continuous Control ui,x(k, ki) ∈ Ui,x,[−Ui,x, Ui,x] deter-

mines the continuous evolution.
Ai,x is the 2× 2 coefficient matrix of state qi,x while Bi,x is
the 2× 1 coefficient matrix of ui,x determined by mi,x(k, ki).
Equation (1b) defines the beginning state of one collaboration
cycle as the ending state of the last collaboration cycle. Intu-
itively, Equation (1) indicates that the i-th robot can switch
to one of the permissible dynamic modes along the x-axis at
each sampling instant, then pick an appropriate input under
the mode. Following the dynamic model along the x-axis, we
model the one along the y-axis in the same way.
qi,y(k, ki+1)=Ai,y qi,y(k, ki)+Bi,y(mi,y(k, ki))ui,y(k, ki),

(2a)

qi,y(k+1, 0)=qi,y(k,Ki), 0≤ki≤Ki−1, k≥0 (2b)

Let ui = [ui,x, ui,y]
T denote the continuous control of the i-

th robot, mi = (mi,x,mi,y) denote the switching control. The
complete dynamic of the i-th robot is:

qi(k, ki+1) = Ai qi(k, ki)+Bi(mi(k, ki))ui(k, ki), (3a)
qi(k + 1, 0) = qi(k,Ki), 0≤ki≤Ki−1, k≥0 (3b)

where Ai=Ai,x⊕Ai,y, Bi(mi(k, ki))=Bi,x(mi,x(k, ki)) ⊕Bi,y

(mi,y(k, ki)), and the direct sum operator ⊕ for two matrices
A and B is defined as:

A⊕B ,

[
A 0
0 B

]
.

The constraint of switching control is:

mi(k, ki) ∈Mi ,Mi,x ×Mi,y, (4)

which means that the i-th robot has Mi,x·Mi,y dy-
namic modes. The switching control sequence of the i-
th robot in the k-th collaboration cycle is denoted by
m̃i(k) , mi(k),mi(k, 1), ...,mi(k,Ki−1). The constraint of
continuous control is:

ui(k, ki) ∈ Ui , Ui,x × Ui,y = [−Ui, Ui]. (5)

where Ui = [Ui,x, Ui,y]
T . The continuous control sequence of

the i-th robot in the k-th collaboration cycle is denoted by
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ũi(k) , ui(k), ui(k, 1), ..., ui(k,Ki−1). We refer to the pair
(mi(k, ki), ui(k, ki)) as the hybrid control of the i-th robot.

For a multi-robot system S, let q(k) , [q1(k), ..., qN (k)]
denote the global state at the k-th collaboration instant,
m̃(k) , m̃1(k), · · · , m̃N (k) and ũ(k) , ũ1(k), · · · , ũN (k) de-
note the global switching and continuous control sequence in
the k-th collaboration cycle respectively.

Assumption 1 is described as collaboration specification:

ẋi(k) = ẏi(k) = 0, k ≥ 0, (6)

We define the collision avoidance specification requiring that
the (infinity norm) distance between any two robots must not
be less than a given safety distance dsafe:

h(q) ≤ 0, k ≥ 0, (7)

where h(q) = [hi,j(qi, qj)]
N
i,j=1,

hi,j(qi, qj) =

{
dsafe − ‖qi,pos − qj,pos‖∞ , i 6= j,

0, i = j.

The infinite norm of a vector x = [x1, ..., xn]
T is defined as

‖x‖∞ , max (|x1|, ..., |xn|).
Following [Huang et al., 2016], we define two core con-

cepts for MPC, namely feasibility and stability.
Definition 1. (Feasibility) A MPC controller is feasible iff
for any feasible initial state, the actual state {q(t), t≥0} com-
puted by the controller at every collaboration instant satisfies
the collision avoidance specification h(q(t))≤0.
Definition 2. (Stability) A MPC scheme is stable iff starting
from any feasible initial state, the state sequence {q(t)}∞t=0

computed by the MPC controller converges to the goal state.
Subsequently we formulate the navigation problem:

Problem 1. Given a multi-robot system S, where
• the i-th robot has the kinematic model described as in

(3a) and (3b) with switching control constraint (4) and
continuous control constraint (5);
• a stationary initial state q(0) = [q1(0), ..., qN (0)]T of S,

where the initial velocity of each robot is zero;
• a stationary goal state q′ = [q′1, ..., q

′
N ]T of S, where the

goal velocity of each robot is zero;
• the collaboration specification and collision avoidance

specification are described as in (6) and (7) respectively.
Determine a control strategy to generate the hybrid control
sequence {(m̃i(k), ũi(k))}∞k=0 for the i-th robot, i=1, ..., N ,
satisfying feasibility and stability.
Remark 1. In this work, we consider the obstacle-free navi-
gation scenario. Note that for each robot, all other robots are
treated as moving obstacles, and the collision avoidance is
described by coordination constraints. With trivial extension,
stationary obstacles can be treated similarly. Therefore, this
setup does not lose the generality and practicality.

3 HMPC Framework
In this section, we briefly introduce the basic idea of the
HMPC control framework on switched linear multi-robot
navigation. At a collaboration instant t, the HMPC scheme
consists of two successive steps:

Compute the control goals: The central controller collects
the current state q(t) and minimizes the state cost in a finite
horizon H:

J∗c (q(t)) , min
q(1|t),··· ,q(H|t)

H−1∑
k=0

lq(q(k|t))+lH(q(H|t))

s.t. qi(k+1|t) ∈ Ri(qi(k|t)), k≥ 0, i=1, ..., N,

h(q(k|t)) ≤ 0, k = 1, ..., H−1,
q(H|t) ∈ Q̃f , q(0|t) = q(t),

ẋi(k|t) = ẏi(k|t) = 0, k = 1, ..., H−1.


(8)

where the notation (·)(k|t) denotes the predictive value at the
(t+k)-th collaboration instant computed at time t, Ri(qi(k|t))
is the state set which the i-th robot can reach at the next col-
laboration instants from the state qi(k|t), lH and Q̃f are user-
defined terminal cost and terminal constraint set to ensure sta-
bility. lq and lu denote the state cost and continuous control
cost respectively, which are designed to be positive definite:

lq(q)

{
= 0, q = q′,

> 0, q 6= q′.
lu(u)

{
= 0, u = 0,

> 0, u 6= 0.

Let q∗(1|t), ..., q∗(H|t) denote the optimal solution. The first
sample q∗(1|t) will be used as the desired states q(t+1)
at the instant t+1, that is q(t+1) = q∗(1|t). For the vec-
tor q(t+1) = [q1(t+1), ..., qN (t+1)]T , its i-th element qi(t+1)
specifies the control goal of the i-th robot at the collaboration
instant t+1.
Compute the hybrid controls: The i-th robot receives the
control goal qi(t+1) and then derives the explicit control:

J∗i (qi(t), qi(t+1)) , min
m̃i(t),ũi(t)

lu(ũi(t))

s.t. qi(t, ki+1)=Ai qi(t, ki)+Bi(mi(t, ki))ui(t, ki),

0≤ki≤Ki−1,
qi(t+ 1)=qi(t,Ki),

mi(k, ki) ∈Mi, ui(k, ki) ∈ Ui.


(9)

Note that this optimization problem is non-convex. It can be
convert to mixed integer programming and solved by opti-
mization solvers according to [Richards and How, 2005]. The
optimal solution (m̃∗i (t), ũ

∗
i (t)) is the actual hybrid control se-

quence for the i-th robot in the next collaboration cycle.
This procedure will be repeated at the next collaboration

instant t+ 1 based on new measurements of the state q(t+ 1)
until J∗c (q(t)) meets a certain convergence criteria.

Observing HMPC framework, the key lies on how to effi-
ciently compute the reachable set for switched linear systems.

4 Computation of Reachable Set Function
In this section, We propose a novel method for computing the
reachable set function Ri(qi(t)) for a switched linear system.

Recall the formal definition of a reachable set function.
Definition 3. The reachable set function Ri(qi(t)) of the i-th
robot is defined as the set comprising all states that the i-th
robot can reach in a collaboration cycle from the state qi(t).
In particular, RPi(qi(t)) denotes the reachable position set
function, which consists all the positions in Ri(qi(t)).

Consider the switching control sequence m̃i(t) in the t-th
collaboration cycle. Since mi(t, ki) has Mi,x·Mi,y choices at

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4333



any ki-th local sampling instant, m̃i(t) can have (Mi,x·Mi,y)
K
i

cases. And the reachable set under a certain switching con-
trol sequence is a polytope [Gritzmann and Sturmfels, 1993].
Hence a naive way to computeRi(qi(t)) is to directly compute
the union of the (Mi,x·Mi,y)

Ki convex polytopes. However,
this approach faces a serious problem: if the representation
of reachable set function includes the intermediate variables,
its computation becomes time consuming and the optimiza-
tion (9) solved in central controller degenerates to a CMPC.
It indicates two key requirements of reachable set function.

• Requirement 1: The computation of reachable set
should be efficient by reachable set function;

• Requirement 2: The representation of reachable set
function should hide the intermediate variables between
two collaboration instants.

In the following, we introduce our approach for computing
the reachable set function Ri(qi(t)) under Assumption
1. Since the collaboration specification (6) demands
ẋi(t+1) = ẏi(t+1)=0, if we obtain the reachable posi-
tion set RPi(qi(t)), Ri(qi(t)) can be easily computed as
Ri(qi(t))={[x, ẋ, y, ẏ]T :[x, y]T ∈ RPi(qi(t))∧(ẋi=ẏi=0)}.
Hence the key is to compute RPi(qi(t)).

Since the dynamic along the x-axis and y-axis is indepen-
dent, we separately consider the dynamics along two axes.
Let RPi,x(qi(t)) and RPi,y(qi(t)) denote the reachable posi-
tion set along x-axis and y-axis, respectively. For the dynamic
along the x-axis, we have the following conclusion.

Lemma 1. The reachable position set RPi,x(qi(t)) along the
x-axis is a closed interval.

Proof. For a switching control sequence m̃i(t) =

{mi,x(t, ki)}Ki−1
ki=0 along with x-axis, let RPi,x(qi(t),mi(t)) be

the reachable position set along the x-axis with m̃i(t). Since
RPi,x(qi(t), m̃i(t)) is a convex polytope [Gritzmann and
Sturmfels, 1993] and is 1-dimensional, RPi,x(qi(t), m̃i(t)) is
a closed interval. Furthermore, recall that

qi,x(t+ 1) = Ai,x qi,x(t,Ki − 1)+

Bi,x(mi,x(t,Ki − 1))ui,x(t,Ki − 1)

= Ai,x(Ai,x qi,x(t,Ki−2)+
Bi,x(mi,x(t,Ki − 2))ui,x(t,Ki−2))+
Bi,x(mi,x(t,Ki − 1))ui,x(t,Ki−1)

= · · ·

= (Ai,x)
Kiqi,x(t)+

Ki−1∑
p=0

(Ai,x)
Ki−p−1Bi,x(mi,x(t, p))ui,x(t, p),

ui,x(t, p) ∈ Ui, mi,x(t, p) ∈Mi,x, p = 0, ...,Ki−1

Obviously, {(mi,x(t, ki), 0)}Ki−1
ki=0 is a feasible hybrid input se-

quence to make ẋi(t+1)=ẏi(t+1)=0 for any switching con-
trol sequence m̃i(t). In this case, qi,x(t+1)= (Ai,x)

Kiqi,x(t),
i.e. (Ai,x)

Kiqi,x(t) ∈ RPi,x(qi(t), m̃i(t)). So the reachable
set under each switching control sequence shares a com-
mon element (Ai,x)

Kiqi,x(t), i.e. (Ai,x)
Kiqi,x(t) ∈

⋂
m̃i(t)

RPi,x(qi(t), m̃i(t)). Then Lemma 1 can be proved by the
property of intervals.

When qi,x(t) is the origin, following Lemma 1, let
RPi,x(0) , [minxi,maxxi] be the corresponding reachable
position set along x-axis, where minxi and maxxi are the
nearest and farthest distance the i-th robot can reach along
the x-axis. According to Assumption 1, we have

RPi,x(0)={x:
[
x
0

]
=

Ki−1∑
p=0

(Ai,x)
Ki−p−1Bi,x(mi,x(t, p))ui,x(t, p),

ui,x(t, p) ∈ Ui,mi,x(t, p) ∈Mi,x, p=0, ...,Ki−1}

It immediately conducts the following corollary on the reach-
able position set from the above equation.

RPi,x(qi(t))={x : (

[
x
0

]
−(Ai,x)

Kiqi,x(t)) ∈ RPi,x(0)×{0}}.

Similarly, we can obtain the same conclusion on the dynamic
along the y-axis. Let RPi,y(0) = [min yi,max yi]. These facts
indicate that the reachable set Ri(qi(t)) is a hyperrectangle:
Theorem 1. The reachable set function Ri(qi(t)) of the i-th
robot is:

Ri(qi(t))={
[
x
0

]
: (

[
x
0

]
− (Ai,x)

Kiqi,x(t)) ∈ RPi,x(0)× {0}}×

{
[
y
0

]
: (

[
y
0

]
− (Ai,y)

Kiqi,y(t)) ∈ RPi,y(0)× {0}}

minxi,maxxi,min yi,max yi can be computed by solving
the corresponding optimization problems respectively. For
example, we can obtain minxi by solving a MIP problem:

minxi , min
m̃i(t),ũi(t)

xi(t+ 1)

s.t. qi(t, ki+1)=Ai qi(t, ki)+Bi(mi(t, ki))ui(t, ki), ki≥0

qi(t) = [0, 0, 0, 0]T , qi(t+ 1, 0) = qi(t,Ki),

ẋi(t+ 1) = ẏi(t+ 1) = 0,

mi(k, ki) ∈Mi, ui(k, ki) ∈ Ui.

Let us see if the reachable set function satisfies the two
requirements. Since the reachable set function Ri(qi(t)) can
be obtained by simply substituting qi(t) value, Requirement 1
is achieved. Note that all the intermediate variables are hidden
in the Ri(qi(t)) , thus Requirement 2 is also satisfied.

5 Algorithm Analysis
We discuss the two important properties of the algorithm: fea-
sibility and stability. We also compare the complexity of the
proposed method with CMPC on switched linear systems.

As the goal states given by the central controller at each
collaboration cycle will be exactly reached by all robots, the
feasibility of HMPC is determined by the optimal problem set-
tled by the central controller. The optimal problem encodes
the status of all robots as well as the constraints arising from
the complete collision avoidance specification, so the feasi-
bility is automatically assured by the solution.

Theorem 2 (Feasibility). Our HMPC scheme is feasible.

The terminal constraint set and cost function methods are
widely used to ensure the stability of traditional MPC ap-
proaches [Mayne et al., 2000]. They differ from each other on
the setting of stable parameters (namely, a terminal cost lH ,
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a terminal constraint set Q̃f and a controller function κ(·)).
Since CMPC deals with the multi-robot system as a whole,
these various approaches can be easily applied on CMPC. So
instead of giving the concrete parameter setting, we show the
stability of our HMPC is equivalent to the stability of a spe-
cific linear CMPC. Thus users can choose their favorite meth-
ods to set parameters to ensure the stability.
Theorem 3 (Stability). Given a multi-robot system where
each robot is modeled as (3a) and (3b), if a set of parameters
lH , Q̃f , κf (·) ensures the stability of a specific linear CMPC,
the same setting also ensures the stability of our HMPC.

Proof. We construct the following linear CMPC problem:

J∗c (q(t)) = min
Q(H|t)

H−1∑
k=0

lq(q(k|t)) + lH(q(H|t))

s.t. q(k + 1|t) = Aq(k|t) +B u′(k|t), k ≥ 0,

u′(k|t) ∈
N∏
i=1

[minxi,maxxi]×[min yi,max yi]

h(qk|t) ≤ 0, k = 1, ..., H−1,
q(0|t) = q(t), q(H|t) ∈ Q̃f ,


(10)

where

A = AK1
1 ⊕ · · · ⊕ AKN

N , B =

N︷ ︸︸ ︷[
1 0 0 0
0 0 1 0

]T ⊕ · · · ⊕ [ 1 0 0 0
0 0 1 0

]T
,

In ∈ Rn denotes the n-dimension identity matrix, u′ is the
4N × 2 input variable in (10).

Provided that lH , Q̃f , κf (·) ensures the stability for (10),
i.e. the state sequence computed by (10) converges to the goal
state. We have to prove the state sequence {q(t)}∞t=0 computed
by (8) is exactly the same with the one computed by (10).

Note that (8) has the same cost function with (10). The only
difference between the constraints parts of (8) and (10) is the
state function and input constraints, which actually provide
the same feasible range of states. So given any q(t), the opti-
mal solutions of (8) and (10) are the same, which leads to the
conclusion that the state sequence {q(t)}∞t=0 computed by (8)
will be identical to the one computed by (10).

Notice that each robot is ensured by (9) to reach its control
goal computed by the central controller in each collaboration
cycle. Stability provided by the central controller in turn guar-
antees that the HMPC scheme is stable.

Due to the parallel computation of robots’ concrete inputs,
HMPC’s efficiency is mainly determined by the optimization
problem in the central controller. Thus a straight forward way
to analyze theoretical efficiency is to quantitatively compare
the complexity of programming problems in the central con-
trollers of our HMPC and CMPC. Note that non-convex col-
lision avoidance specification should be rewritten with Big-
M method by introducing integer slack variables. Also as we
mentioned above, the non-convex switched linear dynamic
(3a) and (3b) should be treated by replacing the original
switching control variable mi(k, ki) with a Mi,x ×Mi,y bi-
nary slack matrix variable, and the original continuous con-
trol variable ui(k, ki) with a Mi,x ×Mi,y cell matrix variable
where each element is a 2× 1 real vector [Richards and How,

2005]. It means that the optimization problems in HMPC and
CMPC are mixed integer programming (MIP). There is no
available theory of MIP complexity analysis, we analyze their
complexity by comparing the number of (scalar) variables
and (scalar) constraints instead. As integer variables have
great impact on the MIP complexity, we consider continuous
and integer variables separately.
Proposition 1 (Complexity). Comparing to the optimiza-
tion problem in CMPC, the one in our HMPC’s central
controller is reduced by H ·

∑N
i=1(2KiMi,xMi,y + 4Ki − 4)

continuous variables,H ·
∑N

i=1KiMi,xMi,y integer variables
and H ·

∑N
i=1(2KiMi,xMi,y + 5Ki − 4) constraints.

Proof. Collaboration specification and collision avoidance
specification are treated the same in both control frameworks,
thus we do not take them into account. For a robot i, at each
sampling instant, there are Mi,x·Mi,y integer switching con-
trol variables, 2Mi,x·Mi,y continuous control variables, 4 con-
tinuous state variables, 2Mi,x·Mi,y+1 control constraints and
4 state equation constraints, which should be all considered in
CMPC. The intermediate variables and constraints in a collab-
oration cycle are reduced in our HMPC with the additional 4
reachable set constraints. Since the optimization problems in
our HMPC and CMPC’s central controller consider N robots
in H collaboration cycles, the proposition is true.

Proposition 1 demonstrates that our HMPC greatly reduces
the number of variables and constraints comparing to CMPC,
which is empirically supported by the following experiments.

6 Experimental Results
In order to explore the practicability of our HMPC based
method on switched linear multi-robot systems, we have im-
plemented other MPC schemes:centralized MPC (CMPC), ba-
sic DMPC (BDMPC), sequential DMPC (SDMPC), and iter-
ative DMPC (IDMPC). CMPC [Dunbar and Murray, 2002]
deploys a central controller to compute the concrete in-
puts of all the robots. On the contrary, DMPCs distribute
the computation to many robots and differ from each other
in terms of the policy of distribution: robots compute con-
currently in BDMPC [Keviczky et al., 2004], sequentially
in SDMPC [Kuwata and How, 2011], and iteratively in
IDMPC [Mercangöz and Doyle, 2007].

We derive the dynamic model of the i-th robot (Eq. 3) by
discretizing a switched linear continuous system:

q̇(t) = Aq(t) +Br,su(t), t ≥ 0, r, s ∈ {1, 2}, (11)
where

A =

[
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

]
, Br,s =

[
0 0
r 0
0 0
0 s

]
,

at the sampling frequency:

sampling frequency of i-th robot =


1/0.075, i mod 3 ≡ 1,

1/0.1, i mod 3 ≡ 2,

1/0.15, i mod 3 ≡ 0.

The continuous control constraint is Ui = [2, 2]T and the
safety distance is dsafe = 0.6.

Programming problems embedded in MPCs are solved by
the CVX, a Matlab-based package [CVX Research, 2012;
Grant and Boyd, 2008].
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Figure 1: Robot trajectories using HMPC

6.1 Effectiveness
We compare the effectiveness by simulating MPCs with dif-
ferent numbers of robots N=3, 6, 9, 12, 15, 18, 21, 24. Our
HMPC finishes all the simulations as CMPC. Due to the space
limitation, we show the trajectories computed by our HMPC
in 6/12-robot cases as Figure 1. In Figure 1 (and Figure 2),
the x-axis and y-axis construct the plane which all the robots
move in, and represent the positions of robots. Blue stars de-
note the initial positions, black crosses denote the goal po-
sitions, and dots in different colors denote the trajectories of
different robots. In this configuration, robots have to cross the
trajectories of others before they reach the goal positions. If
all robots move directly towards to their corresponding goal
positions, collision will inevitably happen.

Observing the trajectories computed by our HMPC, the
robots in each scenario do not collide (satisfying feasibility)
and finally converge to the goal states (satisfying stability),
which conforms to the theoretical conclusion in Sec. 5.

However, DMPCs suffer from heavy failure issues, where
several typical failed scenarios are shown in Figure 2. Note
that the simulation is forced to stop, once the distance be-
tween any two robots is detected smaller than the safety dis-
tance. Reasons of failures fall into three main categories:
Incorrect Prediction: In Figure 2a, the 2rd and 6th robots
collide, even though they are neighbors. Instead of knowing
the actual behaviors of its neighbors, in BDMPC each robot
computes its action by prediction. These neighbors often be-
have differently from what the i-th robot predicts. As a result,
it is of high possibility that two adjacent robots make incor-
rect predictions on each other’s behavior and thus collide.
Divergent Iteration: In Figure 2b, the robots get stuck in an
infinite loop as the iteration process does not converge when
using IDMPC. Before it was forcibly terminated, the iteration
had tried over 100 times and spent more than four hours. It in-
dicates that IDMPC may need additional treatment when en-
countering navigation problems with non-convex constraints.
Aggressive Action: In Figure 2c, the 10th robot cannot get
a feasible solution. In SDMPC, robots compute their actions
sequentially in a fixed order. The aggressive actions taken by
the robots with high priority may push the robots with low
priority out of feasible regions.

6.2 Efficiency
Figure 3a shows the computation time of different MPCs in
the scenarios in Sec. 6.1. For each scenario, the average com-
putation time at each collaboration instant is plotted, if a MPC
scheme succeeds. We study the efficiency improvement ac-
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Figure 2: Typical failures of DMPCs
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Figure 3: Efficiency Comparison

company with the increasement of robots. Notably, compared
to CMPC, our HMPC improves the efficiency by at least 66.4%
for all cases. This result complies with the theoretical conclu-
sion in Sec. 5. The great reduction of constraints and variables
makes our HMPC much more efficient in practice.

We then explore the efficiency improvement when the
number of dynamic modes grows up. Figure 3b shows the
result. The y-axis reflects the increasing rate of the average
computation time at each collaboration instant, which is cal-
culated by dividing the extra computation time in the case
of four-mode robots by the computation time in the case of
one-mode robots. The x-axis shows the number of robots in-
volved. The average increasing rate of our HMPC is 61.8%,
while that of CMPC is over 300%. It indicates that our HMPC
is less sensitive to the growth of systems’ complexity than
CMPC. It is due to that in our HMPC the hyper-rectangle
representation of reachable set hides the integer variables in
the central controller introduced by multiple modes. Thus the
complexity of the problem in the central controller increases
smoothly with the robot dynamic modes.

7 Conclusion
In this paper, we propose a novel HMPC based approach for
the navigation problem of switched linear dynamical robots
with a new reachable set computation technique. We discuss
feasibility, stability and complexity of the approach theoreti-
cally and shows the effectiveness and efficiency empirically.
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