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Abstract

This paper proposes a novel direct policy search
(DPS) method with model selection for partially
observed Markov decision processes (POMDPs).
DPSs have been standard for learning POMDPs
due to their computational efficiency and natural
ability to maximize total rewards. An important
open challenge for the best use of DPS methods is
model selection, i.e., determination of the proper
dimensionality of hidden states and complexity of
policy functions, to mitigate overfitting in highly-
flexible model representations of POMDPs. This
paper bridges Bayesian inference and reward max-
imization and derives marginalized weighted log-
likelihood (MWL) for POMDPs which takes both
advantages of Bayesian model selection and DPS.
Then we propose factorized asymptotic Bayesian
policy search (FABPS) to explore the model and
the policy which maximizes MWL by expanding
recently-developed factorized asymptotic Bayesian
inference. Experimental results show that FABPS
outperforms state-of-the-art model selection meth-
ods for POMDPs, with respect both to model selec-
tion and to expected total rewards.

1 Introduction

Partially observed Markov decision processes (POMDPs)
([Astrom, 1965]) are powerful and successful probabilistic
models in reinforcement learning. By introducing hidden
states into Markov decision processes (MDPs) ([Howard,
1960],[Puterman, 2014]), POMDPs achieve flexible but com-
pact representations that lead to more accurate policy, better
mitigation against the curse of dimensionality, and higher
interpretability of the learned models than those of MDPs.
With their powerful representation ability, POMDPs have been
successfully applied in such various applications as control-
ling robots ([Capitan et al., 2013],[Spaan e al., 2010]), audio
processing ([Young et al., 2010]), business marketing ([Iris-
sappane et al., 2014]), and medical services ([Debbi et al.,
2013]).

For learning POMDP parameters, the use of directed policy
searches (DPSs) is especially promising ([Konda and Tsitsik-
lis, 20001, [Peters and Schaal, 20071,[Cai et al., 2009], [Deisen-
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roth and Rasmussen, 2011] [Levine and Koltun, 2013],[Busa-
Fekete et al., 2014]). They directly search for the best policy
in a policy space, while other frameworks, such as value-
iteration or temporal difference learning, do their explorations
in a value space. Also, DPSs have an advantage in compu-
tational efficiency over the others since they model policies
directly, without the need to model how the hidden factor
behaves, whose complexity would rapidly increase with the
dimensionality of hidden states.

An important open problem for the best use of POMDPs
with DPSs is model selection, i.e., determination of the proper
dimensionality of hidden states and complexity of policy func-
tions. Because of their highly flexible model representations,
POMDPs are likely to be over-fitted to data if one overes-
timate the complexity of models. Due to the singularity of
POMDPs (for the singularity of statistical models, see [Watan-
abe, 2009]), such classical approaches as Bayesian information
criterion (BIC) ([Schwarz, 1978]) do not work, such methods
as cross-validation are computationally expensive. As for a
non-DPS framework, [Doshi-Velez et al., 2015] have proposed
a value function based method with model selection by tak-
ing advantage of recent progress in Bayesian nonparametrics.
However, as far as we know, there exists no principled method
which addresses the model selection issue in POMDPs with
DPSs.

This paper proposes a Bayesian model selection algorithm
for POMDPs with the DPSs. Our key contributions are sum-
marized as follows. We first define marginalized weighted log-
likelihood (MWL) and its asymptotic approximation, weighted
factorized information criterion (WFIC), as our model selection
criterion for POMDPs by extending that for MDPs ([Ueno et
al., 2012]), which can conduct Bayesian inference (model se-
lection) and reward maximization simultaneously. The simul-
taneous approach can avoid a problem of dependency between
the policy and other parameters. The maximizer of the MWL
function is proven to converge to the maximizer of the reward
function. Also, we propose an EM-like alternating inference
algorithm which we refer to as factorized asymptotic Bayesian
policy search (FABPS) by extending recently-developed fac-
torized asymptotic Bayesian (FAB) inference ([Fujimaki and
Morinaga, 2012], [Fujimaki and Hayashi, 2012], [Hayashi and
Fujimaki, 2013], [Eto er al., 20141, [Liu et al., 2015], [Hayashi
et al., 2015]). By taking advantage of the FAB hidden state
selection mechanism, FABPS simultaneously determines both
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the dimensionality of hidden states and the complexity of the
policy functions through a single run of EM alternating opti-
mization, and it finds, as well, the parameter that maximizes
expected total rewards. Our experiments, on simulation and
helicopter data, show that FABPS outperforms state-of-the-art
POMDP model selection methods about both model selection
and total rewards. Because of the space limitation, we omit all
proofs of theorems, information on optimal parameters, and
detailed derivation processes of wFIC and FABPS algorithms.

2 Preliminary

2.1 Notation for POMDPs

A POMDRP is defined by a tuple (S,.A, O, r,p,p,), where S
is a discrete state space, A is an action space, and O is an
observation space. Let s € S, a € A, and 0o € O denote a
state, an action, and an observation, respectively. A POMDP
considers a discrete state space with finite K elements, i.e.,
S = (s1,...,8K) and |S| = K. Both the action space and
the observation space can be either continuous or discrete. A
transition function p : A x § x A x § — [0, 1] is denoted
by p(s'|a, s, A) := Pr(s'|s,a, \) where A is a transition pa-
rameter space and A is its element, i.e., A € A. Let A be
decomposed into { A}, and Ay effects the transition to the
k-th state. An observation function p, : S x O — [0, 1] is de-
noted by p,(o|s) with a given s. Let M be model information
for characterizing POMDPs, and M be a set of possible mod-
els. For example, M contains K which is the dimensionality
of the state space for POMDPs and M = {1,2,3,...}.

To describe how agents of POMDPs behave, a belief dis-
tribution b : S — [0,1] is introduced. Let B be a set of b.
Since the state is partially observable, the agent possesses
the belief distribution and updates it in each period. POMDP
agents determine its action on the basis of its state and a
policy function 7 : B x A x © — [0,1] is denoted by
m(al|b, ) := Pr(alb, ). Here, O is a policy parameter space
and 0 € O is the policy parameter. The policy takes the
belief b as an argument, since b is a sufficient statistic for
the history of the state transition. Let 6§ be decomposed into
{0k }1 and 0y, effects the policy function related to the k-th
state. For example, a stochastic policy as a mixed normal
distribution as 7(alb, ) = Zszl b(sk)N (alfk,1,0k,2) with
0 = (0 1,0k,2) where ) 1 denotes a mean and 6y, » denotes
a variance of the normal distribution. From a pair of a state
and an action that the agent takes, it gains a reward through a
reward function r : § x A — R is denoted by (s, a). Here,
we assume 7 (s, a) is known through this paper.

We define a sequence of the variables to analyze its dy-
namics. Let A be a sequence of the action a with length T,
ie, A:= (a1,...,ar). Similarly, O := (o01,...,07), B :=
(br,....br)and S := ((s¥)iy. - -, (87)4y), Where sf =1
means the agent remains the k-th state sy, at time ¢, and sF = 0
otherwise. Also, we assume that we have independent and
identically distributed n sequences. We describe A’ as the
i-th sequence for i = 1,...,n, and a; ¢ as the {-th element
of A, Also, let A, := (Al,... A"™) be a set of the n se-
quences. We also define O,,, S,, and B,, in the same way. For
simplicity, this paper assumes the distribution of the initial

state sg and initial belief by to be known though it would be
straightforward to estimate them from data.

2.2 Purposes of This Study

Purpose I. Model Identification and Parameter Estima-
tion We aim to identify model as well as to estimate param-
eters. In other words, we seek to estimate the dimensionality
of latent variables (and complexity of observation functions).
Although this is more challenging than the estimation of dis-
tribution, identifying appropriate model complexity usually
gives us smaller generalization error and also better under-
standing and interpretation of the estimated model. Suppose
the true data generating process is written by

where 6* and A* are true parameters and M* € M is a true
model. Our first purpose is to determine M ™ as well as to es-
timate P(A, O|6*, \*, M*) (note that many models can exist
in M which achieve the smallest KL divergence between the
estimated model and the true model as M*.)

Purpose II. Exploration of Reward Maximized Policy
We aim to directly explore a policy that maximizes the ex-
pectation of the sum of future rewards, defined as follows:

T
/// % Zﬂtilr(st,at)p(S, A, 0|0, N, M)dSdAdO,
t=1
)

where 8 € [0, 1) is a discount factor. It is well known, in the
context of DPS, that a good parameter estimator (i.e., achieve
a small KL divergence value) does not necessarily produce
a high reward. We aim to achieve both at the same time.
From a view of the exploration-exploitation trade-off, this
paper focuses on the batch exploration of the policy based on
given data. Sequential exploration-exploitation raises another
significant challenge, i.e., online model selection of POMDPs,
which is out-of-scope for this paper.

3 Simultaneous Inference and Policy Search

This section proposes a marginalized weighted likelihood
(MWL) approach which serves an estimator for bridging
Bayesian inference which is a natural way of model selec-
tion (Purpose I) and direct policy search which is a natural
way to maximize reward (Purpose II).

3.1 Weighted Likelihood

Since direct maximization of the expectation of rewards using
the first order condition of (2) is not tractable, we consider its
lower bound as follows:

log / / / p(S, A,0)0, \)REdSdAdO 3)

p(S, A,0[0, \) RS
>
> // / ¢(S,A,0)log 5. A.0) dSdAdO,

where RY. := R(S, A) := % S°7_ | 87 1r(s4, a0). Itis easy to
confirm that the lower bound is maximized when ¢(.5, 4, O)
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p(S)p(A, 0|6, )\)Ré% holds. Then, a first order condition for
maximizing the lower bound with respect to 6 is as follows:

[[[ stsiwaom.n
T

x (Z Vo log 7(ay|be, 9)) RBAAdOdS =0. (4
t=1
To obtain the solution of (4), we extend weighted likelihood
for a DPS method of MDPs by [Ueno et al., 2012] as follows:
p* (S, 4,010, M) Q)
T B8
= [ 7 (aclbe, 0)% po(or]se)p(selsi-1, a1, N),
t=1

where Q) = erzt B'=Ir(s;,a;). Here, Q" is regarded as
the discount sum of the future rewards, and it has the substan-
tial effect on the reward maximization (it is also important
for FABPS in Section 4.2). The weighted likelihood function
has a weight Qf as an exponent and it assures that the deriva-
tive of the weighted likelihood has a similar role to the first
order condition (4). Along with discussion in [Ueno et al.,
2012], the maximizer of the weighted likelihood with respect
to parameters asymptotically converges to the solution of (4).

Theorem 1 in the following supports the claim.

Theorem 1. Given the dataset with some X' and M' and p(S),
a maximizer of [ p(S)logp*(S, A, 0|0, X, M")dS with re-
spect to 0 converges to the solution of (4) as T — oc.

Since the weighted likelihood plays important roles as a
likelihood function and a reward maximizer, the weighted
likelihood can construct an estimator for the model and param-
eters and bridge reward maximization and statistical inference
(maximum likelihood).

3.2 Marginalized Weighted Likelihood

In order to take advantage of the weighted likelihood and
integrate it with Bayesian inference, we propose marginalized
weighted log-likelihood (MWL) as follows.

Definition 1. Marginalized Weighted Log-Likelihood (MWL)
for POMDPs with dataset (A,,, O,)

MW L(A,,On|M)

, P*(Sn, An, On|M)
: m;mx/q(S,Jlog( (S )dSn. (6)

Here, the  marginalized  weighted likelihood
p*(Sn, Ap,Opn|M) is given by marginalizing with the
prior ¢(6, ) and ¢(S,,) denotes the variational distribution.
The model is selected by maximizing MWL as:

M = arg max MWL(A,, On|M). ™)

As explained above, individual p*(S,,, Ay, On|0, A)s con-
verge to the maximum total reward solutions given S,,s, and
thus the maximizer of (6) is also expected to achieve high total
reward (Purpose II) with an appropriately chosen ¢(S,,). Fur-
ther, as many Bayesian model selection studies have already
shown ([Konishi and Kitagawa, 2008]), the marginalization
over unknown parameters provides regularization effects sup-
ported by the Bayesian learning theory, which matches to our
Purpose 1, i.e., model selection of POMDPs.
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4 Algorithm : FAB Policy Search

In practice, MWL is not tractable. This section proposes algo-
rithms to achieve Purpose I and Purpose II by approximately
maximizing MWL.

4.1 Weighted FIC for MWL

We follow the idea of factorized information crite-
rion (FIC) ([Fujimaki and Morinaga, 2012]) which has been
empirically and theoretically proven to be an asymptotically
accurate approximation of marginal log-likelihood and to out-
perform the other state-of-the-art model selection methods
for many models ([Fujimaki and Hayashi, 2012], [Hayashi
and Fujimaki, 20131, [Eto et al., 2014], [Liu et al., 2015],
[Hayashi er al., 2015]). We apply the idea of FIC to MWL
and propose weighted factorized information criteria (WFIC)
which is derived as follows:

WFIC(A,. Oy M) ®)
= meag\( Q(Sn) 10gp*(Sn7AmOn|97>\,M) —logq
q,9,
K n,T K n,T
D)\k ) k Dek . Bk
-3 B ton( D k) -3 B ton( 3 @tk ) |
k=1 i,t=1 k=1 i,t=1

where Q, = Z]T:t Bt=Ir(s; j,a;;) and D, denotes the
dimensionality of z. Roughly speaking, the formation of
wFIC is derived by the Laplace’s approximation method and
the variational approximation.

We observe interesting terms of wFIC in their regulariza-
tion terms. The double underline in (8) depends on Qﬁ . and

Q? ; is the sum of rewards with the discount factor 3. The
terms means that wFIC more actively penalizes latent states
with smaller rewards and encourage those with larger rewards,
i.e., it enables to eliminate latent states (model selection) by
keeping high-rewarded ones (reward maximization). We will
discuss the effect of the regularizers in Section 4.2.

The following theorem follows [Fujimaki and Morinaga,
2012] and guarantees asymptotic accuracy of wFIC.

Theorem 2.
MWL(A,, On|M) =wFIC(A,, O,, M) + O(1).
4.2 FAB Policy Search

In this section, we propose an algorithm to optimize the model
and the policy which maximizes wFIC and refer to it as Factor-
ized Asymptotic Bayesian Policy Search (FABPS). The FABPS
algorithm performs an EM-like alternating maximization of ¢
and (0, \).

The FABPS algorithm is constituted by following three
steps: E-step, M-step, and a shrinkage step. The E-step and
the M-step follow the EM-algorithm and update ¢ and (6, \)
from initial values. The shrinkage step is performed after
each E-step, and it eliminates irrelevant latent variables. At
the beginning of the FAB algorithm, (¢(?), 8(®, \(9)) are ran-
domly initialized. Let the superscript (¢) stand for an ¢-th
iteration. Also, we set the initial model M to a large number.
We summarize the overview of the algorithm in Algorithm 1.
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E-step An E-step optimizes ¢ by fixing § = ¢~ and
A = A1 as well as the belief distribution {b; ¢ };,. Al-
though there exists no closed-form update equation, ¢ can
be efficiently updated by the forward-backward algorithm as
follows:

q(e)(si‘it) = i]ftbi’itv 9
where
i a=plain,0i)si1) (ift=1)
Ji = C P(ai0i zt)Zk’ lfzt 17 (@i 1|b” 1,0)
X (ztiszt 1,@it—1,A) (otherwise)
1 (1ft— T)
bl = rapeey Sy B plai i1, 0i0-1]s¥,_1,0)

XP(SiC,/t isiq,t—la ait—1,A) (otherwise)

and (;; is a normalization constant for Z,f:l fi’ft = 1. Here,
p is defined by:

B
= pol0ie|st ) (aidbf,, 0) 0407, 107, 1
(10)

(@i, 0t |Sf,t» 0)

™ P
where 677, ., and 6; ,

s 1 7D9inﬁ7t
6i,t,k . E €xXp (22 (@ DQB ) (11)

zt 1 ’Lk?t it

5P exp ( _D‘)Ak )
N, ey vy i B
W

where ql(e Vo= q“"P(sk,). The terms AT, and A?,
are nomlallzation constants to make Ei{:l 07, = 1land

S 0; ¢ = 1, respectively.

The terms 47, ;. and d; , , come from the regularization
terms in (8). Flrst, (5% & also appears in FAB for HMMs ([Fu-
jimaki and Hayashi, 2012]) and has an effect to eliminate
small hidden states (i.e., Z?tT 1 qz(ék . D is small) through EM
iterations. It has been well-studied that FAB algorithms auto-
matically select hidden state dimensionality by this "shrink-
age" effect. The term 6], ;. is unique in FABPS. For 47, ;, it
eliminates hidden states havmg less expected rewards from
the model. Therefore, this regularization term has an effect of
removing hidden states having poor policies.

i, are defined as follows:

12)

M-step An M-step optimizes A and 6 by fixing ¢ = ¢(¥.
The transition parameter \ is updated by:

n,T,K, K
A0 = argm}in Z KL [p(sﬁt|sf’;71,ai,t,1,)\)
itk k=1
la(sfsls¥s—1, aie—1)], (13)
where K L[-||-] is Kullback-Leibler divergence. The tran-

sition distribution is calculated by the elements of the

Algorithm 1 FABPS algorithm for selecting K
L: Given (ATH On), Ma ﬂ-(aib’ 6)5p0(0|5)7 €> 07 T(Sv a’)
2: Initialize K < arg maxyg M
YR T n’T7K
3: Initialize {¢(©}7,/; =, 0 A\
4: f0r€ =1,2,. d
/* E-step */
0= 0D X =AY
{07 s 6&),6)}25,;51 < (11) and (12)
{Plais 00|k, 0}7,55, = (10)

4 n,T,K
{qz(,t),k ith=1 =)

10: /* Shrlnkage step */
11:  while Efil git,k < edo
12: K < K —1 //Shrinkage operation
13:  end while
14:  [* M-step */
n, T, K
150 {gitrtite < {qz tk Tt k=1
16: A9 <= (13),00 < (14)
17:  /* Check convergence */
18: if {ngﬁ)’k}i_,tyk, 6 and \¢ converge then

R A

19: break
20: end if
21: end for

22: M <= K,0 <00 \<=\O

23: return M, 0, )\

Forward-Backward algorithm as q(sf,|s¥,_;,a;s—1) =

" ilft ilft—lﬁ(ai,t’ 0i7t|5i6€’ H)p(s]i i‘c,t—li Qit—1, )‘>biif,t'
We update the policy function by solving the following

problem:

n, T, K
90 — k bk
arg meax Z Q(S’L,t) logﬂ—(a‘l,tibz,t? 9)

it k=1

K n,T
Dy, :

=) Stloe| Do) )| a4
k=1 it=1

In the optimization problem for 6, the penalty term works as a
lp-penalty, and therefore it automatically controls complexity
of the policy function as feature selection.

Shrinkage step As explained in the part of E-step, redun-
dant and poorly-rewarded states are strongly regularized by
(12). In this step, we perform a shrinkage operation which
eliminates redundant states. More specifically, we check
whether 3, , ¢ (O (sk '+) < e with sufficient small € > 0 for any
k. If such k exists, we eliminate the k-th state from the model.
The elimination operation is called shrinkage, and it enables
the FAB algorithm to select the model automatically.

5 Experiments

5.1 Visual Demonstration: Heterogeneous Policy

One of the advantages of FABPS is a capability to select dif-
ferent complexities of policy functions in (14). This section
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Figure 1: Improvement of wFIC, reward and K during
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Figure 2: Estimated density of stochastic policy function.

visually demonstrates that FABPS practically discovers such
heterogeneous policy functions. We set a POMDP model
as follows by following a similar manner with the data gen-
eration of MDP models in [Ueno et al., 2012]. The latent
state space is S = {1,2,..., K} and the true K is 3. The
action takes any real number : A = R, and sets the transition
probability as follows: p(s|s’,a’) = A where s is the j-th
nearest to s’ + a’ with Zjil Aj = 1. The reward function
is r(s,a) = —s? — a? + 10. We allow the policy to be het-
erogeneous : w(alb,0) = Z,[le b(sk)N (alfk.1,05 5), where
N is a density function of Gaussian distribution. We set the
synthetic data are generated from the policy function, and
true parameter values are (0 1,612,021,022,051,032) =
(0.5,1.0,1.5,1.5,1.0,0.5). The data size is setto N x T' =
1500.

Fig. 1 illustrates how values of wFIC, total reward, and
state dimensionality changed over FAB iterations. As can be
observed, wFIC value monotonically increased as the theory
guarantees. Although the total reward slightly decreased at the
last stage of FAB iterations, the estimator maximizing wFIC
almost maximized the total rewards. Further, the true state
dimensionality was recovered by the regularization in wFIC
without any prior knowledge and through only single path
optimization (not grid search like cross validation).

In addition, Fig. 2 illustrates the estimated stochastic policy
functions for each state s = 1,s = 2 and s = 3. FABPS
successfully recovered the true parameter of policy functions
for all hidden states (i.e., S = 1, S = 2, and S = 3.) This
result demonstrated a unique simultaneous model selection
capability of FABPS on hidden state dimensionality and policy
function complexity.

5.2 Model Selection

We next evaluated model selection and reward maximiza-
tion performance of wFIC, FIC!, BIC ([Schwarz, 1978]) and
iPOMDP ([Doshi-Velez et al., 2015]) which is non-parametric
Bayesian model selection for POMDPs. We generated data by
following a similar manner with [Ueno et al., 2012]. We set the
hidden state space S = {1, 2, ..., K}. The observation func-
tion is Gaussian with mean s : p,(o|s) = N (s, 1). Also the ac-
tion setting takes any real number : A = R, and the transition
probability setting is as follows: p(s|s’,a’) = A\, where s is
the k-th nearest to s’+a’ with Zle Ar = 1. The reward func-
tionis r(s,a) = (—s*>—a?+10)/10, and the policy function is
Gaussian mixture: 7(alb, ) = ZkK]il b(sk)N (alb]. 1,67 ,)-
True parameter values are (01 1,61,2,02.1,022,031,032) =
(0.5,1.0,1.5,1.5,1.0,0.5). We set the maximum value of J
as 5 and that of K as 8. We randomly generated training data
sequences with length 30 (T' = 30) and different n. All of the
values are means in 10 trials.

We evaluated two types of model selections: (1) Selection
of hidden state dimensionality K, (2) Selection of order of
policy function J.

Select hidden state dimensionality

In this evaluation, we set .JJ = 1 for BIC and iPOMDP since
they cannot choose J and M simultaneously. For FABPS and
FAB, we set the maximum value of J as 5 and that of K as 8§,
and both J and K are selected automatically. Note that this
setting is rather advantageous for BIC and iPOMDP since the
oracle value of .J is given to them.

Table 1 shows the estimated number of the hidden states.
FABPS almost perfectly estimated the true number of hidden
states. FAB also performs well, but FABPS outperformed it
when the data size is smaller. BIC was strongly over-fitted
and significantly overestimated the number of hidden states.
iPOMDP performed fairly well but still was inferior to FABPS.

Table 2 shows the reward obtained by each method. We
operate 100 agents to make an action for 100 times with the
estimated policy and compute the sum of the rewards with
the discount factor. wFIC achieved the highest reward which
was slightly better than that of FIC. The other methods were
significantly inferior. For BIC, it significantly over-fitted as
it was in Table 1 and even the policy diverged with a large
number of samples. For iPOMDP, it is not DPS and maximizes
a different objective function. Eventually, its reward was less.

Select order of policy function

In this evaluation, we set K = 3 for BIC. Note that iPOMDP
cannot select J so we excluded it from this evaluation. Fig. 3
shows estimated J values. As with the case of selecting K,
WwFIC performed the best and FIC also performed fairly well.
BIC was again over-fitted and selected much larger order J
than the true value.

Table 3 shows estimated .J values, with the means of 10
trials. The estimation by wFIC is closer to the true value than
that of the other methods. BIC performed badly due to the

! Although as standard FIC for POMDP has not been proposed, it
can be derived in a similar manner to wFIC.
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n x T WFIC FIC BIC 1POMDP n x T wWFIC FIC BIC 1POMDP n x T wWFIC FIC BIC 1POMDP
1500 3.0 32 8.0 3.98 1500  3.16 3.06 1.79 1.69 1500 1.6 2.1 4.8 N/A
3000 3.0 31 7.0 3.85 3000 2.93 2.56 2.03 2.14 3000 1.5 23 34 N/A
6000 3.0 3.0 7.0 3.98 6000 3.12 2.32 0.0 2.11 6000 1.9 20 34 N/A
9000 3.0 30 7.0 4.05 9000 3.01 2.26 0.0 2.02 9000 1.3 1.3 3.8 N/A
12000 3.0 3.0 6.9 3.76 12000 3.02 2.94 0.0 2.53 12000 1.3 2.0 4.2 N/A

Table 1: Selected the number of states K.

True value is 3. and parameter.

Table 2: Simulated reward with estimated X Table 3: Select the order of policy function
J. The true value is 1.

2.5 T T T T
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Figure 3: Reward by Helicopter data (left). Action and Observation in the Helicopter data, and the latent distribution estimated by FABPS

(middle). Estimated policy densities for Helicopter data (right).

high effect of the likelihood term, and iPOMDP was unable to

estimate the value.

For each of the experiments, wFIC and FIC take around 20

seconds to derive the solution, and BIC takes 30 seconds, and
iPOMDP takes around 4 seconds.

5.3 Helicopter Data

We used data for helicopter control, provided by [Abbeel ez al.,
2010]. With the data, we searched the policy for controlling
stability of the helicopter. The data included that for the manip-
ulation by an operator and the angle of the helicopter at given
times. We set the angle as observations that the driver received,
and also configure the manipulation with a control stick as
actions. With given observation and the action, we tried to
determine a latent environmental model from the training data
and tried to maximize reward by estimated policies. The an-
gle data is contained in [—1, 1]3, and the manipulation is in
[—1,1]%. Thus we use the norm of each data as variables for
POMDPs. Also we set the reward as (s, a) = —s? —a? + 10.

We set the observation function and the policy function as

follow : p,(o|s) = 0.5exp(—0.5(0 — s)) and 7(alb,d) =
Zkl,(zl b(s;)N (a|bk.1, 9;2). We suppose the latent state vari-
able takes discrete K values: S = {1,2,...,K}.

We compared performances of wFIC, iPOMDP, and WLPS

4 and 4.02, respectively. Since we do not know the true
model (and the true model is not a POMDP), it is hard to say
which methods outperformed with the others from the model
selection point of view. However, one advantage of wFIC is
again that it does not require any prior knowledge to determine
K and J. Further, the left figure in Fig. 3 shows total reward
of each method. As with the subsection 5.2, we operate 100
agents to make action for 100 times with the estimated policy,
and compute the sum of the rewards with the discount factor.
In addition to automatic and simultaneous model selection
capability, wFIC achieved the highest reward. This indicates
that the model selection of wFIC worked appropriately to de-
termine appropriate model complexity to maximize reward as
we expect.

We plotted the action and the observation in the data in the
middle figure of Figure 3. Furthermore, the middle panel of
Figure 3 contains an estimated distribution of the latent vari-
able at the bottom, where the light blue shows the latent state
with stable (s = 1), and the dark color (s = 2, 3, 4) represents
unstable states. The result describes that the latent variables
capture the effect of the action and observation; when the state
is dark, the observation is unstable, and the manipulation also
behaves severely. The estimated policy densities are plotted
in the right figure in Figure 3. The result shows that FABPS
can identify the heterogeneous policy in each state from the

for MDP by [Ueno et al., 2012]. WLPS for MDP is not
for POMDP. Thus WLPS treated the observation as the state.
iPOMDP requires the action and the observation to take dis-
crete value. Thus we reformed the action space and the obser-
vation space to spaces with 4 elements. For the analysis with
iPOMDP, the transition function and the observation distribu-
tion were also reformed to fit the discrete spaces.

The estimated values of K for wFIC and iPOMDP were
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helicopter data.

Acknowledgements

M.Imaizumi is supported by Grant-in-Aid for JSPS Fellows
(17J03208).



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Abbeel et al., 2010] Pieter Abbeel, Adam Coates, and An-
drew Y Ng. Autonomous helicopter aerobatics through
apprenticeship learning. The International Journal of
Robotics Research, 2010.

[Astrom, 1965] Karl J Astrom. Optimal control of markov
processes with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1):174-205,
1965.

[Busa-Fekete et al., 2014] Rébert
Szorényi, Paul Weng, Weiwei Cheng, and Eyke
Hiillermeier. Preference-based reinforcement learning:
evolutionary direct policy search using a preference-based
racing algorithm. Machine Learning, 97(3):327-351,
2014.

[Cai et al., 2009] Chenghui Cai, Xuejun Liao, and Lawrence
Carin. Learning to explore and exploit in pomdps. In
Advances in Neural Information Processing Systems, pages
198-206, 2009.

[Capitan et al., 2013] Jesus Capitan, Matthijs TJ Spaan, Luis
Merino, and Anibal Ollero. Decentralized multi-robot coop-

eration with auctioned pomdps. The International Journal
of Robotics Research, 32(6):650-671, 2013.

[Debbi er al., 2013] Hichem Debbi, Mustapha Bourahla, and
Aimad Debbi. Medical treatment analysis using probabilis-
tic model checking. International Journal of Biomedical
Engineering and Technology, 12(4):346-359, 2013.

[Deisenroth and Rasmussen, 2011] Marc Deisenroth and
Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th Inter-
national Conference on Machine Learning, pages 465-472,
2011.

[Doshi-Velez et al., 2015] Finale Doshi-Velez, David Pfau,
Frank Wood, and Nicholas Roy. Bayesian nonparametric
methods for partially-observable reinforcement learning.

IEEE transactions on pattern analysis and machine intelli-
gence, 37(2):394-407, 2015.

[Eto et al., 2014] Riki Eto, Ryohei Fujimaki, Satoshi Mori-
naga, and Hiroshi Tamano. Fully-automatic bayesian piece-
wise sparse linear models. In Proceedings of the 17th Inter-

national Conference on Artificial Intelligence and Statistics,
pages 238-246, 2014.

[Fujimaki and Hayashi, 2012] Ryohei Fujimaki and Kohei
Hayashi. Factorized asymptotic bayesian hidden markov
models. In Proceedings of the 29th International Confer-
ence on Machine Learning, pages 799-806, 2012.

Busa-Fekete, Balazs

[Fujimaki and Morinaga, 2012] Ryohei Fujimaki and Satoshi
Morinaga. Factorized asymptotic bayesian inference for
mixture modeling. In International Conference on Artificial
Intelligence and Statistics, pages 400—408, 2012.

[Hayashi and Fujimaki, 2013] Kohei Hayashi and Ryohei Fu-
jimaki. Factorized asymptotic bayesian inference for latent
feature models. In Advances in Neural Information Pro-
cessing Systems, pages 1214-1222,2013.

4352

[Hayashi et al., 2015] Kohei Hayashi, Shinichi Maeda, and
Ryohei Fujimaki. Rebuilding factorized information cri-
terion: Asymptotically accurate marginal likelihood. In

Proceedings of the 32th International Conference on Ma-
chine Learning, page 1358-1366, 2015.

[Howard, 1960] Ronald A Howard. Dynamic programming
and Markov processes. MIT Press, 1960.

[Trissappane et al., 2014] Athirai A TIrissappane, Frans A
Oliehoek, and Jie Zhang. A pomdp based approach to opti-
mally select sellers in electronic marketplaces. In Proceed-
ings of the 2014 International Conference on Autonomous
Agents and Multi-Agent Systems, pages 1329-1336, 2014.

[Konda and Tsitsiklis, 2000] Vijay R Konda and John N Tsit-
siklis. Actor-critic algorithms. In Advances in Neural
Information Processing Systems, pages 1008—1014, 2000.

[Konishi and Kitagawa, 2008] Sadanori Konishi and Gen-
shiro Kitagawa. Information criteria and statistical model-
ing. Springer Science & Business Media, 2008.

[Levine and Koltun, 2013] Sergey Levine and Vladlen
Koltun. Variational policy search via trajectory optimiza-
tion. In Advances in Neural Information Processing
Systems, pages 207-215, 2013.

[Liu e al., 2015] Chunchen Liu, Lu Feng, Ryohei Fujimaki,
and Yusuke Muraoka. Scalable model selection for large-
scale factorial relational models. In Proceedings of The

32nd International Conference on Machine Learning, pages
1227-1235, 2015.

[Peters and Schaal, 2007] Jan Peters and Stefan Schaal. Re-
inforcement learning by reward-weighted regression for
operational space control. In Proceedings of the 24th Inter-

national Conference on Machine Learning, pages 745-750.
ACM, 2007.

[Puterman, 2014] Martin L Puterman. Markov decision pro-
cesses: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[Schwarz, 1978] Gideon Schwarz. Estimating the dimension
of a model. The Annals of Statistics, 6(2):461-464, 1978.

[Spaan et al., 2010] Matthijs TJ Spaan, Tiago S Veiga, and
Pedro U Lima. Active cooperative perception in network
robot systems using pomdps. In 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages
48004805, 2010.

[Ueno et al., 2012] Tsuyoshi Ueno, Kohei Hayashi, Takashi
Washio, and Yoshinobu Kawahara. Weighted likelihood
policy search with model selection. In Advances in Neural
Information Processing Systems, pages 2357-2365, 2012.

[Watanabe, 2009] Sumio Watanabe. Algebraic geometry and
statistical learning theory, volume 25. Cambridge Univer-
sity Press, 2009.

[Young et al., 2010] Steve Young, Milica Ga$i¢, Simon
Keizer, Frangois Mairesse, Jost Schatzmann, Blaise Thom-
son, and Kai Yu. The hidden information state model: A
practical framework for pomdp-based spoken dialogue man-
agement. Computer Speech & Language, 24(2):150-174,
2010.



