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Abstract
In this paper, we propose a novel integrated task
planning system for service robots in domestic do-
mains. Given open-ended high-level user instruc-
tions in natural language, robots need to generate
a plan, i.e., a sequence of low-level executable ac-
tions, to complete the required tasks. To address
this, we exploit the knowledge on semantic roles
of common verbs defined in semantic dictionaries
such as FrameNet and integrate it with Answer Set
Programming — a task planning framework with
both representation language and solvers. In the ex-
periments, we evaluated our approach using com-
mon benchmarks on service tasks and showed that
it can successfully handle much more tasks than
the state-of-the-art solution. Notably, we deployed
the proposed planning system on our service robot
for the annual RoboCup@Home competitions and
achieved very encouraging results.

1 Introduction
Service robots are becoming more and more powerful and ro-
bust to perform low-level actions [Du Toit and Burdick, 2012;
Hofmann et al., 2015; Misra et al., 2016]. However, when
robot interacting with end users, task instructions are often
expressed in natural language with abstract concepts, such as
“I have a headache”, “I am thirsty”, and “make breakfast”.
To response, robots need to know how to map user instruc-
tions in an open-ended form into low-level (executable) ac-
tions. This is a key challenge for robot task planning that
has recently attracted many attentions in both the AI and
robotics communities [Buehler and Pagnucco, 2014; Cash-
more et al., 2015; Chen et al., 2012; Gaschler et al., 2013;
Hanheide et al., 2015; Keller et al., 2010; Misra et al., 2016;
Nyga and Beetz, 2012; Stock et al., 2015].

A typical approach for task planning is hierarchical task de-
composition. More precisely, user instructions or high-level
tasks are decomposed into a sequence of low-level subtasks
based on pre-defined knowledge, obtained from either do-
main experts [Misra et al., 2016; Tellex et al., 2011] or open
resources [Chen et al., 2013; 2012; Nyga and Beetz, 2012]
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such as Open Mind Indoor Common Sense (OMICS) [Gup-
ta et al., 2004]. For instance, a high-level user task “serve
a drink from fridge” can be decomposed into a sequence of
subtasks as “go to fridge”, “open the fridge door”, and “take
the drink”, based on the knowledge in OMICS.

Unfortunately, there are two main issues with this ap-
proach. Firstly, existing knowledge resources (e.g., OMICS)
are far from complete so that one cannot find corresponding
decomposition rules for a large number of high-level tasks.
Secondly, even such a rule exits, it could be the case that
the decomposed subtasks are still relatively high-level so that
they cannot be directly executed by robots.

Alternatively, researchers turned to automated planning to
generate plans with manually created knowledge in the pre-
conditions and/or postconditions. To date, there are many ap-
proaches along this track for robot task planning [Buehler and
Pagnucco, 2014; Cashmore et al., 2015; Gaschler et al., 2013;
Ghallab et al., 2014; Hanheide et al., 2015]. However, most
of them depend on hand-coded action effects. For example,
in order to automatically generate a plan, robots need to know
the beer is on dinner table after executing the task “take a beer
from refrigerator to dinner table”.

In this paper, we propose a novel approach that inte-
grates Answer Set Programming (ASP) [Gelfond and Lifs-
chitz, 1988] with semantic dictionaries [Baker et al., 1998;
Fellbaum, 1998] for robot task planning. We aim to address-
ing two critical challenges: (a) how to obtain large-scale and
general-purpose action descriptions particularly about the ef-
fects of actions, and (b) how to formalize action descriptions
in order to be used in automated planning. Specifically, to
address (a), we exploit definitions of common verbs in se-
mantic dictionaries such as FrameNet [Baker et al., 1998]
and WordNet [Fellbaum, 1998], which are handcrafted by
linguists. More importantly, such dictionaries are beneficial
to both language processing and formalizing more sophisti-
cated than simple hand-coded effects. For (b), we represent
action definitions in semantic dictionaries as logic rules and
call ASP solvers to generate plans. By doing so, we can do
robot task planning and handle large-scale user instructions
using knowledge both from action decomposition in knowl-
edge bases (e.g., OMICS) and common-verb descriptions in
sematic dictionaries (e.g., FrameNet) in a single framework.
This significantly reduces workload of hand-coding and in-
creases the degree of autonomy of service robots.
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Figure 1: The whole integrated system architecture.

Empirically, we compare our approach with the state-of-
the-art solution and our experimental results confirm the ad-
vantage of our method. Notably, the proposed technique has
been used in our service robot and show encouraging perfor-
mance in the RoboCup@Home competitions.

Our main contributions are summarized as follow:
• We introduce a meta-language (Section 3.1) to formalize

semantic roles of common verbs described in semantic
dictionaries (e.g., FrameNet), the knowledge of which
is missing in existing open resources and not fully de-
scribed by existing action description languages.
• We propose a method to automatically convert action de-

scriptions in the meta-language to rules in ASP (Sec-
tion 3.2), which then can be used by standard ASP
solvers to generate plans (Section 3.3).

2 System Overview
Figure 1 depicts the overall architecture of our integrated
system. To start, the Speech Recognition system transcribes
speech signal/voice into utterances and the Human-Robot Di-
alog system manages the dialog with users. A sentence in the
dialog is then transferred to the Task Planning module, which
generates plans for the task expressed in natural language.
Then, a sequence of commands corresponding to low-level
executable actions of the robot is computed by the Motion
Planning module. Finally, the commands are executed by the
Robot Control module.

Here, we focus on the Task Planning module that takes a
sentence as its input and outputs plans. As shown in Figure 1,
the main components of our Task Planning module include
an external Open Knowledge Resource, a Semantic Parser,
an Open-Knowledge (OK) Search for (e.g., task decomposi-
tion) [Chen et al., 2012] and our Task Planner using semantic
dictionaries (e.g., FrameNet, WordNet).

2.1 Knowledge Resources
Our knowledge base integrates two major resources: task de-
composition rules from OMICS described in [Chen et al.,
2012] for Open-Knowledge (OK) planner and semantic roles
of common verbs from FrameNet [Baker et al., 1998] for our
ASP planner. FrameNet is introduced as follows.

Figure 2: An example of frame-semantic representation.

FrameNet is a digital semantic dictionary providing rich
semantic information for action verbs. It groups action
verbs into “Frames” and specifies word definitions in terms
of semantic roles called Frame Elements (FEs) for each
frame. It is known that the connections between an ac-
tion verb and its semantic roles are very useful for resolv-
ing under-specification of naturalistic instructions. However,
this knowledge cannot be directly used by robots since it is
not formalized in FrameNet. To address this, we developed
a formalized version of FrameNet, by translating FrameNet
knowledge into a formal meta-language, which can be auto-
matically translated into ASP rules.

2.2 Semantic Parser
A semantic parser translates a user instruction in natural lan-
guage to a task expressed in our meta-language (see Section
3). We use the frame-semantic parser SEMAFOR proposed
by [Das et al., 2012] and the basic idea is as follows. First-
ly, a delivered natural language sentence is sent to the frame-
semantic parser, which was trained using two log-linear mod-
els, and the frame-semantic representation of the sentence is
returned by the parser. Then the representation is converted
into a task expressed in our meta-language.

Suppose that a user task is decomposed into a sequence of
steps with one of the steps as “take a beer from the refrigerator
to the dinner table”. The frame-semantic representation of
this step, as shown in Figure 2, is computed by SEMAFOR.
Then the representation is translated into the task definition:

(meta-task take-Bringing Theme Source Goal
( : parameters beer refrigerator

dinner-table) )

where verb “take” maps to frame “Bringing” in FrameNet
and objects “beer”, “refrigerator”, and “dinner-table” fill into
roles THEME, SOURCE, and GOAL respectively.

2.3 Task Planner
The Task Planner module generates plans for user instruc-
tions. In this paper, we introduce two types of planners. The
first is OK planner [Chen et al., 2013; 2012] which generates
plans for high-level tasks by decomposition rules in OMICS.
Nevertheless, due to lack of knowledge, i.e., decomposition
rules and action effects, the performance of the OK planner is
severely restricted.

Fortunately, FrameNet (and other semantic dictionaries)
provides rich knowledge about common verbs. We have dis-
covered that the FrameNet definition of an action verb can
be reorganized by a set of precondition, postcondition, and
invariant over semantic roles of the action (called the func-
tional definition of action). But generally no decomposition
knowledge of actions can be obtained from FrameNet. There-
fore, we need a classical planner that can utilize formalized
functional definition of an action to plan the action.
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To this end, we significantly improve the OK planner and
propose a new robot task planner called the ASP planner. Our
new planner makes use of semantic roles of common verbs
in semantic dictionaries (e.g., FrameNet) and automatically
generates plans.

3 ASP + FrameNet for Task Planning
In this section, we present a new method for robot task plan-
ning by integrating ASP with rules obtained from FrameNet.
In order to use FrameNet in ASP, we first need to present
a meta-language that formalizes semantic roles of common
verbs defined in FrameNet and their corresponding user
tasks. Then, we convert such action descriptions in the meta-
language into rules in ASP. Based on which, we call an ASP
solver to generate plans for a working example. The main
reason that we use ASP is because ASP can serve not only as
an inference engine for automated plan generation but also a
rich representation language to encode action descriptions in
FrameNet.

3.1 Meta-Language
We first propose a meta language LM to formalize seman-
tic roles of common verbs described in FrameNet. In LM ,
formulas are defined recursively upon atomic formulas (i.e,
a predicate with its associated arguments) and propositional
connectives such as and, or and not.

Then, we define meta tasks in the following BNF:

<meta-task-def> ::= <func-def> | <proc-def>
<func-def> ::= ( define ( meta-task <string>

( :parameters <variable list> )

(:task-variables <task variable list>))

[<precond-def>]∗

[<postcond-def>]∗

[<invariant-def>]∗

<proc-def> ::= [<step-def>]∗

<precond-def> ::= ( :precondition <formula> )

<postcond-def> ::= ( :postcondition <formula> )

<invariant-def> ::= ( :invariant <formula> )

| ( and <invariant-def>+ )

| ( or <invariant-def>+ )

| ( not <invariant-def> )

<step-def> ::= ( :step <task variable>+ )

<variable list> ::= <variable>∗

<task variable list> ::= <task variable>∗

<variable> ::= ?<string>
<task variable> ::= ?<string>

Intuitively, a meta task specifies the knowledge extracted
from FrameNet for a common verb with a certain frame.

Here, we consider two types of meta tasks. A procedu-
ral meta task (i.e., <proc-def>) is specified by a sequence
of steps, in which each step is a subtask. This is a hier-
archical task decomposition rule stating that the high-level

task can be accomplished by the sequence of steps (i.e., sub-
tasks). In FrameNet, some FEs provide procedural defini-
tions of a frame. A functional meta task (i.e., <func-def>) is
specified by a tuple of preconditions ??i.e., <precond-def>),
postconditions (i.e., <postcond-def>) and/or invariants (i.e.,
<invariant-def>). For executing a functional meta task, pre-
condition/postcondition is a formula that has to be true be-
fore/after the execution, while invariant is a formulas that re-
mains to be true during the whole execution.

Then, given the definition of semantic roles of a common
verb, we can formalize its corresponding action description
in our meta language LM . For better understanding, we illus-
trate LM with the following example.

Example 1 Consider the description of verb take with
frame Bringing in FrameNet, in which the set of linguistic
meta variables is {Robot, Theme, Source, Goal, Carrier}.

1. Theme is portable;
2. Source is the initial location of Theme when take starts;
3. Goal is the final location of Theme when take ends;
4. Source and Goal should not be the same location;
5. Theme and Robot share the same location during the ex-

ecution of take;
6. Theme is on Robot or in Carrier operated by Robot.

We formalize this as a meta task take-Bringing in our meta
language LM as follow:

( define ( meta-task take-Bringing
( :parameters ?robot ?theme ?source ?goal ?carrier )

( :task-variables ) )

( :precondition ( and ( location ?source )

( location ?goal ) ) )

( :precondition ( portable ?theme ) )

( :precondition ( at ?theme ?source ) )

( :postcondition ( at ?theme ?goal ) )

( :precondition ( not ( equal ?source ?goal ) ) )

( :invariant ( same-location ?theme ?robot ) )

( or ( :invariant ( on ?theme ?robot ) )

( :invariant ( and ( in ?theme ?carrier )

( operated ?robot ?carrier ) ) ) ) )

In order to convert semantic roles of common verbs in
FrameNet into our meta-language, we first adopted existing
tools, including PREPOST [Sil et al., 2010] and some open in-
formation extraction tools [Angeli et al., 2015], to help us au-
tomatically extracting information related to frames and FEs.
For example, by using the tool from [Angeli et al., 2015],
“Source is the initial location of Theme when take starts” is
translated to (Source, initial location, Theme), which is
then converted to :precondition ( at ?theme ?source ). Oc-
casionally, we may need to validate and revise these action
formalizations. This requests much less human involvement
than hand-coding all rules by experts and save us a lot of time
to formalize action descriptions into our meta-language.
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3.2 Converting Action Descriptions to ASP Rules
Following the same idea of Satplan [Kautz and Selman, 2006]
to view automated planning as a constraint satisfaction prob-
lem, ASP can be used as an automated planner as well [Lifs-
chitz, 2002]. Given a planning problem P , one can construct
an ASP program ΠP such that 〈s0, a1, s1, . . . , an, sn〉 is a
trajectory of a plan of P iff there exists an answer set of ΠP

that contains holds(f, i) for each fluent f and 0 ≤ i ≤ n such
that si |= f , holds(¬f, i) for each fluent f and 0 ≤ i ≤ n
such that si |= ¬f and occurs(ai, i) for each action ai and
1 ≤ i ≤ n. Intuitively, that holds(f, i) (holds(¬f, i)) belongs
to S means that the fluent f is true (false) in the state si; that
occurs(ai, i) belongs to S means that the action ai occurs at
the state si−1.

Here, one of the main challenges of ASP is how to ob-
tain the rules about action effects. Traditionally, this is hand-
coded by experts. In our approach, we present a new method
to obtain those rules by exploiting semantic roles of common
verbs in semantic dictionaries (e.g., FrameNet). In the previ-
ous section, we formalize semantic roles of common verbs in
FrameNet into action descriptions in our meta language LM .
Now, we show how to automatically convert those action de-
scriptions into ASP rules.

We first translate formulas in LM into rules. Formally, let
F be a form obtained from <formula>. We use tr(F, i) (for
some nonnegative integer i) to denote the set of ASP rules:
• If F is in the form ( p t1 · · · tm ) where p is the name

of a predicate and t1, . . . , tm are semantic roles, then
p(t1, . . . , tm) is a fluent in the action signature, thus

holds(F, i)← holds(p(t1, . . . , tm), i).

• If F is in the form ( and F1 · · · Fm ) where F1, . . . , Fm

are <formula>, then tr(Fj , i) for each 1 ≤ j ≤ m and

holds(F, i)← holds(F1, i), . . . , holds(Fm, i).

• If F is in the form ( or F1 · · · Fm ) where F1, . . . , Fm

are <formula>, then tr(Fj , i) for each 1 ≤ j ≤ m and

holds(F, i)← h(F1, i).

· · ·
holds(F, i)← h(Fm, i).

• If F is in the form ( not F1 ), then tr(F1, i) and

holds(F, i)← not holds(F1, i).

Based on this, we are able to translate meta tasks in LM

into rules in ASP as well. Let φ be a task based on the meta
task Φ, and I a <invariant-def> in Φ, we use tr(I, k, n) (for
some nonnegative integers k and n s.t. k ≤ n) to denote the
set of ASP rules:
• If the form is ( :invariant <formula> ) and F is
<formula>, then tr(F, i) (k ≤ i ≤ n) and

true(I, k, n)← holds(F, k), . . . , holds(F, n).

• If the form is ( :and I1 · · · Im ) where I’s are
<invariant-def>, then tr(Ii, k, n) (k ≤ i ≤ n) and

true(I, k, n)← true(I1, k, n), . . . , true(Im, k, n).

• If the form is ( :or I1 · · · Im ) where I’s are
<invariant-def>, then tr(Ii, k, n) (k ≤ i ≤ n) and

true(I, k, n)← true(I1, k, n).

· · ·
true(I, k, n)← true(Im, k, n).

• If the form is ( :not I1 ) where I1 is <invariant-def>,
then tr(I1, k, n) and

true(I, k, n)← not true(I1, k, n).

Let φ be a task based on the meta task Φ, we use tr(φ, k, n)
(k ≤ n) to denote the set of ASP rules:
• For each <precond-def> in Φ and F be a <formula>,

then tr(F, k) and
← complete(φ, k, n), not holds(F, k).

• For each <postcond-def> in Φ and F be a <formula>,
then tr(F, n) and

← complete(φ, k, n), not holds(F, n).

• For each <invariant-def> I in Φ, then tr(I, k, n) and
← complete(φ, k, n), not true(I, k, n).

• For each <step-def> S in Φ and φ1 · · · φm be
the sequence of task/action names obtained from
<task variable list>, then for every possible sequence
n1, . . . , nm−1 of nonnegative integers with k ≤ n1 ≤
· · · ≤ nm−1 ≤ n, we denote n0 = k and nm = n, then
for each 1 ≤ i ≤ m,

– if φi is an action, then
← complete(φi, n

i−1, ni), not occurs(φi, ni−1+1).

– if φi is a task, then tr(φi, ni−1, ni),
and the rules

true(S, k,m)← complete(φ1, k, n
1),

complete(φ2, n
1, n2),

. . . , complete(φm, n
m−1, n).

← complete(φ, k, n), not true(S, k, n).

Finally, tr(φ, k, n) contains rules:
complete(φ, k, n)← not ncomplete(φ, k, n).

ncomplete(φ, k, n)← not complete(φ, k, n).

3.3 Plan Generation
Now, we are able to use an ASP program including the rules
obtained from semantic roles of common verbs in FrameNet
for robot task planning. Suppose that we have a robot task
planning problem with a high-level task and some potential
low-level actions and fluents (i.e. atomic formulas with time
arguments) in a domain. Firstly, we seek for related com-
mon verbs in FrameNet. If found, we convert the semantic
roles of these common verbs into ASP rules by the afore-
mentioned techniques. Together with rules obtained from the
high-level task and other rules for ASP planning, we form an
ASP program. Finally, we call an ASP solver to compute an
answer set of the ASP program grounded by objects in the
domain, which corresponds to a executable plan for the high-
level task.
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Table 1: Top 10 most frequent verbs in data sets.

Verb Frequency Verb Frequency
put 4591 take 2452
turn 2754 go 1780
open 2608 find 1731
get 2568 pick 1632
place 2456 remove 1446

Example 2 [Continued with Example 1] Consider the high
level task “take a beer from the refrigerator to the dinner ta-
ble” with some (not limited to) low level actions
• move(L)1: move to the location L;
• grasp(x): grip the object x and pick it up;
• putdown(x): put the object x down;
• open(y): open the object y;
• close(y): close the object y;
• takeout(x, y): take the object x out of the object y;

as well as some (not limited to) fluent:
• location(L): L is a location;
• portable(x): the object x is portable by the robot;
• at(x, L): the object x is located at the location L;
• in(x, y): the object x is in the object y;
• on(x, y): the object x is on the object y;
• opened(y): the object y is opened;
• same-location(x, y): x, y have the same location;
• equal(L1, L2): location L1 and L2 are the same.
We first analyze the high-level task “take a beer from the

refrigerator to the dinner table” by the semantic parser. From
which, we know that “take” is a high level task while “beer”,
“refrigerator” and “dinner table” are concrete objects in
the domain. Then, we seek for related common verbs in
FrameNet that are similar to the task name “take”, and we
find a matching one “task-bringing”. Next, we convert the
semantic roles of the common verb “task-bringing” into AS-
P rules, as shown in aforementioned techniques. Then, we
ground the program obtained from those rules and the do-
main objects “beer”, “refrigerator” and “dinner table”, and
we can found that “beer” is matched as a ?theme, “refriger-
ator” as a ?source, and “dinner table” as a ?goal.

Finally, we call an ASP solver iclingo/oclingo2 to solve the
grounded ASP program and find the following answer set:

move(fridge), open(fridge), takeout(beer, fridge),

move(dinner-table), putdown(beer),

which is a plan for the original high level task “take a beer
from the refrigerator to the dinner table”.

4 Experiments
In the experiments, we evaluated our ASP planner on the
common benchmarks widely used for domestic service robot-
s [Chen et al., 2013; 2012; Kunze et al., 2010; Tenorth

1An action name with variables is consider to be a shorthand for
the set of all ground instances.

2http://www.cs.uni-potsdam.de/oclingo/

Table 2: Experimental results on two sets.

Open Knowledge Tasks/Steps Sets Help Sets
local global local global

OK planner 66 94 129 144
OK planner+WordNet 111 331 140 168
ASP planner 765 889 330 340
ASP planner+WordNet 790 935 331 379

and Beetz, 2013], consisting of two data sets with 11885
task-oriented user instructions from the Tasks/Steps table and
467 desire-oriented user instructions from the Help table of
OMICS. Table 1 shows the top 10 most frequently used com-
mon verbs in the data sets. It can be observed that most of
them are not low-level executable actions (such as move, find,
pick up, put down, open and close) but high-level common
verbs (such as put, turn, get and place). Hence, it is crucial for
service robots to do task planning, i.e., generating a sequence
of low-level executable actions in order to complete the re-
quired tasks described by those high-level common verbs in
the benchmark problems.

We compared our ASP planner to the OK planner [Chen
et al., 2013] — currently the leading task planner for domes-
tic service robots that is capable of exploiting open knowl-
edge. Specifically, we compared both planners in terms of
the number of successfully planned tasks on the aforemen-
tioned benchmarks. In addition, we consider two sets of con-
figurations. The first is about the searching method. While
local means that the system only use one decomposition rule,
global means that it will explore all decomposition rules in
the data sets. The second configuration is whether the task
planner utilizes other semantic dictionaries such as Word-
Net [Fellbaum, 1998] for measuring word similarities. For
instance, “set down” is semantically similar to “put down”.
Here, WordNet means that this technique is used.

Table 2 summarizes our results. Our ASP planner signif-
icantly outperforms the OK planner in terms of the number
of successfully planned tasks in all categories. For instance,
for using the local search method without WordNet on 11885
task-oriented instructions, while the OK planner can only suc-
cessfully generate 66 plans, our ASP planner can generate
765, which is 11.6 times better. Even for the least improve-
ments, i.e., the global search method with WordNet on desire-
oriented instructions, our ASP planner is 2.25 (=379/168)
times better than the OK planner.

There are two main reasons for this improvement. First-
ly, semantic roles of common verbs in FrameNet brings more
knowledge for task decomposition and planning. Secondly,
the ASP solver can automatically explore all possible com-
binations of action sequences and generate plans, which is
much more powerful than predefined hand-coded task de-
composition rules.

Notably, the ASP planner + WordNet approach can achieve
a high success rate of 81.16% (379 out of 467) for task
planning on desire-oriented instructions. This is because the
approach utilizes many semantic roles of common verbs in
FrameNet. Indeed, as shown in Figure 3, the more frames
added, the higher success rate we have. Notice that some-
times the curves experience a flat improvement (e.g., our
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Figure 3: Evaluation Results of task planning.

ASP planner for task-oriented instructions in the middle).
This is due to the limit of our robots’ capability to perform
some low-level executable actions so that some frames (e.g.,
Mass motion and Waiting) cannot be grounded.

Nevertheless, there are still a large number of task-oriented
instructions that cannot be successfully planned by our ap-
proach. There are two typical types of failures. The first fail-
ure type is about the natural language processing, that is, our
semantic parser cannot retrieve any frames from FrameNet.
As far as we have counted, 26.7% of the failures belong to
this category. The second failure type is ASP failures. In this
case, our ASP planner fails to generate a plan. There are t-
wo main reasons. First, FrameNet is far from complete so
that there is a huge lack of knowledge about actions. Second,
the number of low-level executable actions for our robot is re-
stricted so that some high-level actions are essentially beyond
its capability. However, the success rate will be improved by
using the same method proposed in our approach with more
knowledge created in new online resources and more reliable
information extraction tools.

Apart from the above corpus-based experiments, it is worth
pointing out that our integrated system with the proposed
ASP planner has been deployed in a service robot and used
in the annual RoboCup@Home3 competitions for planning
tasks with user instructions in natural language, which won
the champion in 2014 and the runner-up in 2015. This con-
firms the usefulness of our approach for real robot task plan-
ning. A demo video with our robot system is available at:
https://youtu.be/bBU86dciEwo

5 Related Work
Many approaches on task planning for service robots have
been proposed in the literature. Unlike our integrated sys-
tem, most of them decompose user instructions into low-
level subtasks based on pre-given knowledge obtained from
domain experts [Misra et al., 2016; Tellex et al., 2011],
which usually scale poorly to large number of tasks. To
improve generality and scalability, researchers have tried to
exploit open knowledge resources [Chen et al., 2013; 2012;
Nyga and Beetz, 2012]. Still, there are a large portion of tasks

3http://www.robocupathome.org

that cannot be decomposed based on the decomposition rules
using existing open resources. This motivates us to develop
our system with ASP planner and sematic dictionaries.

There are also a number of approaches using AI techniques
for robot task planning. To name a few, these planning sys-
tems are implemented for performing service tasks in a k-
itchen environment [Keller et al., 2010], finding sequence
of actions required by several different robots [Buehler and
Pagnucco, 2014], or embedded into Robot Operating System
(ROS) [Cashmore et al., 2015]. [Hanheide et al., 2015] im-
plemented a three-layer architecture on a mobile robot to en-
able robots to plan with uncertain and incomplete informa-
tion. Some approaches [Gaschler et al., 2013] do not only
reason about low-level executable actions but also on geomet-
ric preconditions and the effects of complex actions. Howev-
er, most of them require hand-coded action effects for specific
domains with restricted scalability and generality.

Our meta-language is related to the Modular Action De-
scription (MAD) language proposed by [Lifschitz and Ren,
2006]. MAD is devised to compile a general-purpose
database of knowledge about actions, in which one can “fac-
tor out” common elements of specific action domains on com-
monsense reasoning and planning. There are also several
significant differences from ours. Firstly, our meta-language
is motivated to express rewritten knowledge related to com-
mon verbs and their corresponding user tasks, while MAD
focuses on representing common features of actions in order
to make the language more elaboration tolerant [McCarthy,
1998]. Secondly, the definition of a common verb may in-
volve a sequence of steps on how to accomplish the corre-
sponding tasks as in our meta-language.

6 Conclusion
We have presented a novel integrated system for large-scale,
general-purpose robot task planning. Specifically, we pro-
posed a new method that combines automated planning in
ASP and semantic roles of common verbs defined in seman-
tic dictionaries (e.g., FrameNet). Our experimental result-
s on the OMICS datasets show that the integrated system
benefitted from the knowledge about actions obtained from
FrameNet and significantly outperformed the state-of-the-art
solution. Furthermore, based on the planning system, our ser-
vice robot achieved encouraging results with one champion
and one runner-up in the RoboCup@Home competitions.

For future work, one potential direction is to automatical-
ly extract knowledge about actions from not only semantic
dictionaries but also other resources including plain texts and
web pages. Additionally, we plan to consider a richer syntax
that is able to represent different kinds of knowledge.
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