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Abstract
Deceptive path-planning involves finding a path
such that the probability of an observer identifying
its final destination—before it has been reached—
is minimised. This paper formalises deception as
it applies to path-planning and introduces the no-
tion of a last deceptive point (LDP) which, when
measured in terms of path completion, can be used
to rank paths by their potential to deceive. Build-
ing on recent developments in probabilistic goal-
recognition, we propose a formula to calculate an
optimal LDP and present strategies for the genera-
tion of deceptive paths by both simulation (‘show-
ing the false’) and dissimulation (‘hiding the real’).

1 Introduction
In this paper, we study deceptive path-planning (DPP): the
problem of finding a path through a map (or model) of a do-
main such that an observer, watching an agent make her way
along the path, will be unable to determine—until the last
possible moment—where the agent is going.

This work lies at the intersection of two well-established
and much-studied disciplines within Computer Science:
path-planning, which is the problem of finding a path through
a graph or grid from a given start location to a given goal [Hart
et al., 1968; Korf, 1990; LaValle, 2006]; and goal recogni-
tion, which tries to determine an agent’s purpose by observing
her actions [Kautz and Allen, 1986; Charniak and Goldman,
1991; Ramirez and Geffner, 2010].

The deception problem is significant. It is a topic with
a long history in Computer Science, particularly within the
realms of Artificial Intelligence [Turing, 1950] and game
theory [Hespanha et al., 2000], and one of increasing rel-
evance in social robotics [Arkin et al., 2012], where inter-
actions between autonomous situated agents and (sometimes
vulnerable) humans may usefully, it is argued, include decep-
tive practices [Sharkey and Sharkey, 2012; Shim and Arkin,
2013]. Deception is a key indicator for intelligence [Alloway
et al., 2015]; furthermore, agents and game characters who
lie and cheat are more believable, more interesting and more
fun to play against than those that play fair [Dias et al., 2013].

When advocating deception, the literature sometimes
prefers to characterise it as ‘privacy protection’ [Keren et al.,

2016]. Consider a convoy escorting a VIP to one of five pos-
sible destinations. An observer plans to deploy an assassin
once the VIP’s destination is known. What (deceptive) path
will (protect her privacy so as to) minimise the likelihood of
the observer correctly identifying the convoy’s destination?

We base our definitions on a general theory of deception
[Bell, 2003; Whaley, 1982; Bowyer, 1982], which describes
the concept in terms of simulation (showing the false) and dis-
simulation (hiding the true). Technically, though, our work
builds on—and inverts—recent model-based approaches to
goal recognition [Ramirez and Geffner, 2010]. In particu-
lar, we depend on the ability to determine the probability of
each goal at any given point along a path. Informally, the
solution to a probabilistic goal recognition problem is a prob-
ability distribution that ranks goals by their likelihood. Our
thesis is based on the simple proposition that goals ranked for
likelihood can similarly be ranked for unlikelihood. Once we
know how unlikely an observer believes the real goal to be,
we have a measure by which to assess how successfully she
has been deceived.

To quantify path deceptivity, we measure its magnitude
(at each step), density (number of steps) and extent (distance
travelled). We define all three concepts but, in this paper, fo-
cus particularly on extent. We introduce the notion of a ‘last
deceptive point’ (LDP) and present a novel way of measuring
its location using ‘path-completion’. This method (as distinct
from actual path length or counting steps [Keren et al., 2015])
enables us to identify a position in a suboptimal path without
having to place budgetary limits on its length or cost.

To compute deceptive paths, we exploit the recent finding
that, given an agent’s starting point and current location, goal
recognition for path-planning can be achieved without refer-
ence to any other observation [Masters and Sardina, 2017].
That is, a probability distribution can be precalculated at any
node and remains constant irrespective of the path taken to
reach it. We present a formula to calculate the radius within
which the probability of a goal dominates and show that,
when it corresponds to the LDP of a path, the deceptivity of
that path, in terms of extent, is optimal within the domain.

In the rest of this paper, we set out the background, then
formally define deception in terms of path-planning. We
show how to maximise the LDP and present strategies for
computing deceptive paths. Finally, we provide an empirical
evaluation, review related work and present our conclusion.
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2 Background
Path-planning is the problem of finding a path from a given
initial location to a given final destination in a given map
(or model) of a domain. It is a problem with multiple ap-
plications, from robotics [Siegwart et al., 2011] and video
games [Millington and Funge, 2009] to road network naviga-
tion [Bast et al., 2015].

Formally, a path-planning domain is a triple D =
〈N,E, c〉, where:

• N is a non-empty set of nodes (or locations);

• E ⊆ N ×N is a set of edges between nodes; and

• c : E 7→ R+
0 returns the cost of traversing each edge.

A path π through a path-planning domain is a sequence of
nodes π = n0, n1, .., nk such that (ni, ni+1) ∈ E for each
i ∈ {0, 1, .., k − 1}. We use πi to denote the i-th node in
π, and |π| to denote the length of π, being the total num-
ber of edges in π, that is, π|π| = nk. The cost of π is
the cost of traversing all edges in π, that is, cost(π) =∑k−1
i=0 c(π

i, πi+1). The set of all paths in the domain is de-
noted by Π, and the set of all paths π starting at π0 = n1 and
ending at π|π| = n2 is denoted by Π(n1, n2).

A path-planning problem is a tuple 〈D, s, g〉, where:

• D = 〈N,E, c〉 is a path-planning domain;

• s ∈ N is the start location; and

• g ∈ N is the goal/destination location.

The solution to a path-planning problem or solution path is a
path π in the corresponding domain D such that π0 = s and
π|π| = g; the set of all of them being Π(s, g). An optimal
path is a solution path with the lowest cost among all solution
paths. The optimal cost between two nodes is the cost of an
optimal path between them and the optimal cost from ni to nj
is denoted by optc(ni, nj). To find an optimal path, typical AI
approaches use advanced variations of A* [Hart et al., 1968],
a well-known best-first search algorithm.

In this paper, domain costs are synonymous with distance:
when we speak of ‘radius’, it is properly a ‘cost radius’.

2.1 Goal Recognition in Path-Planning
The act of deception implies the existence of an observer to
be deceived; deception by path-planning implies an observer
who is trying to work out where the path is going, such as the
assassin’s controller in our motivating example. This is the
domain of goal or plan recognition:1 the problem of identify-
ing an agent’s goal or intent by observing her actions.

A probabilistic goal recognition problem (in a path-
planning domain) is a tuple 〈D,G, s,O,Prob〉, where:

• D = 〈N,E, c〉 is a path-planning domain;

• G ⊆ N is the set of possible goal locations;

• s ∈ N is the start location;

• O = o1 · · · ok ∈ N∗, where k > 0, is a sequence of
observations (which may or may not be adjacent); and

1Goal recognition is a subproblem of plan recognition. The liter-
ature uses both terms and we use them interchangeably in this text.

• Prob represents the prior probabilities of the goals
(though we assume that priors for all goals are equal).

A solution is a (conditional) probability distribution across
G: Pr(g|O) denotes the probability of location g ∈ G being
the destination, given the observations O. We use gr ∈ G to
denote the real goal (i.e., the goal which the agent is targeting
and at which the path will eventually terminate). The quality
of a solution, then, is measured by its success in determining
that Pr(gr|O) ≥ Pr(g|O) for all g ∈ G \ {gr}.

Traditionally, goal recognition has relied on a library
of pre-existing plans against which to match observations
[Kautz and Allen, 1986; Charniak and Goldman, 1991], the
idea being that, having identified the plan, you have implicitly
identified the goal [Demolombe and Hamon, 2002].

A recently introduced alternative technique, based on the
assumption that a rational agent is taking the optimal (or ’least
suboptimal’) path to goal, dispenses with the plan library and
instead associates the probability of a plan with its cost [Baker
et al., 2009; Ramirez and Geffner, 2009]. We focus on the
probabilistic approach taken in [Ramirez and Geffner, 2010]
whereby an off-the-shelf planning system is used to deter-
mine (for each goal) the cost difference between the cheapest
plan that incorporates the observations and the cheapest plan
that (at least partially) avoids them.

costdifRG(s, g, O) = optc(s,O, g)− optc¬(s,O, g)

By comparing cost differences across goals, a probability dis-
tribution is generated that conforms to the intuition: that is,
the lower the cost difference, the higher the probability.

In grounding the Ramirez and Geffner formula to path-
planning, Masters and Sardina [2017] achieve an almost iden-
tical probability distribution2 without reference to any but the
final observation in the sequence:

costdif(s, g, n) = optc(n, g)− optc(s, g), (MS1)

where s is the start, g is a goal and n = O|O| (that is, n is the
most recently observed/current location of the agent whose
destination we wish to determine). The posterior probabil-
ity distribution P (G|N) retains the essential property that the
lower the cost difference, the higher the probability:
Lemma 1 P (g|n) > P (g′|n) if and only if costdif(s, g, n) <
costdif(s, g′, n).

The impact of Equation (MS1) is that the probability dis-
tribution at any given location remains constant, regardless of
the path that led to it (or how often it is revisited) and can be
precalculated even before an agent enters the domain. This
allows for precalculation of a sort of ‘heat-map’ showing the
probability of each goal at any/every location. Furthermore,
by means of the heat-map, it is possible to plot a perimeter
around each goal within which its probability exceeds that of
any other goal in the domain.

In Section 4, we will see that the deceptivity of a path is
constrained by this perimeter; and in Section 4.2, we present
a simple formula to calculate its closest distance from goal.

2The ordering of goals by probability differs only if all optimal
paths must incorporate the observations, which, as noted by Ramirez
and Geffner, is arguably a non-realistic case.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4369



3 Deceptive Path-Planning
In this section, we take definitions of deception and related
concepts from the fields of social science and diplomatic
strategy and formalise them in the context of path-planning.

Whereas path-planning finds a path (typically the least ex-
pensive path) to a goal and goal recognition attempts to iden-
tify which, in a set of possible goals, an observed path is
targeting, deceptive path-planning finds a path to goal that
minimises the likelihood of an observer identifying which, in
a set of goals—such as the multiple possible destinations of
our VIP’s convoy—is being targeted.

Definition 1 A deceptive path-planning (DPP) problem is a
tuple 〈〈D, s, gr〉, G, P 〉, where:

• 〈D, s, gr〉 is a path-planning problem, with D =
〈N,E, c〉 being its path-planning domain, s ∈ N the
start location and gr ∈ G the real goal;

• G ⊆ N is the set of possible goal locations; and

• P (G|O · n) denotes the posterior probability of a goal
given a sequence of observations (or last node in that se-
quence). That is, P stands for the model of the observer.

The solution to a DPP problem is a solution to its path-
planning problem that is ‘deceptive’. The quality of the so-
lution depends on the magnitude, density, and extent of the
deception, as we now discuss.

Deception is the “distortion of perceived reality” [Bowyer,
1982, p.47] and may be achieved in one of two ways: by
simulation (‘showing the false’) or dissimulation (‘hiding the
real’) [Bell, 2003; Whaley, 1982]. In path-planning, the only
reality is movement towards a goal. In this context, ‘hiding
the real’ and ‘showing the false’ equate to obscuring the path-
planner’s true destination and/or creating the impression that
she is going somewhere that she is not.

3.1 A Deceptive Step
We first examine deception as it applies to an individual node
or step along the path. It is at this level that we assess de-
ceptive magnitude, captured here in two distinct notions of
simulation and dissimulation.

Definition 2 A truthful step is a node at which the probabil-
ity of the real goal gr is greater than the probability of any
other possible goal, that is, P (gr|O ·n) > P (g|O ·n), for all
g ∈ G \ {gr}. Otherwise, the step is deceptive.

Definition 3 Simulation (showing the false) occurs when the
probability of a bogus goal is strictly greater than the prob-
ability of the real goal gr, that is, there exists g ∈ G \ {gr}
such that P (gr|O · n) < P (g|O · n).

We quantify simulation by measuring the amount by which
a false goal dominates the real goal. The greater the domi-
nance, the greater the deception.

simulation(O·n) = max
gi∈G\{gr}

P (gi|O·n)−P (gr|O·n). (1)

If we simulate successfully, our hypothetical assassin is de-
ployed to the wrong location; the VIP survives.

Definition 4 Dissimulation (hiding the real) occurs when
the probability of the real goal gr is less than or equal to the
probability of another goal, that is, there exists g ∈ G \ {gr}
such that P (gr|O · n) ≤ P (g|O · n).
Following Bowyer [1982], our definition of deception always
involves dissimulation and may also involve simulation. We
quantify that aspect of deception exclusive to dissimulation
(the degree of ambiguity) using Shannon’s entropy:

dissimulation(O ·n)=
∑
gi∈G

P (gi|O ·n)× log2(P (gi|O ·n)).

(2)
If we dissimulate successfully, the controller does not know
where to send the assassin; though she may guess correctly.

3.2 A Deceptive Path
In life, a deception might not be uncovered for months or
years after it occurs (if ever); but a deceptive path, with full
observability, is always ultimately truthful because the final
step always arrives—and is seen to terminate—at its goal.3
Thus, in a multi-goal domain (assuming equal priors) every
path is deceptive at its start and truthful at its goal. It follows
that, in every such path, there is one truthful node prior to
which all previous steps (if any) are deceptive; and one de-
ceptive node beyond which all subsequent steps (if any) are
truthful. We call these the first truthful point (FTP) and last
deceptive point (LDP) respectively.
Definition 5 Given a path π, its first truthful point FTPπ is a
node πi, which is itself truthful whereas all (if any) previous
nodes πj , for all j ∈ {0, . . . , i− 1}, are deceptive.
Definition 6 Given a path π, its last deceptive point LDPπ
is a node πi, which is itself deceptive whereas all (if any)
subsequent nodes πj , for all j ∈ {i+1, . . . , |π|}, are truthful.

Depending on the relative location of these two points, we
can identify two extreme notions of a deceptive path.
Definition 7 A strongly deceptive path π is continually de-
ceptive to its LDP, that is, if LDPπ = πi, then FTPπ = πi+1.
Definition 8 A weakly deceptive path π includes truthful
steps before its LDP, that is, if LDPπ = πi, then FTPπ = πj ,
for some j < i.
To assess the relative strengths of two paths, we measure their
deceptive density. Clearly, we want to minimise the opportu-
nities for an observer to correctly identify the real goal; that
means minimising the number of truthful steps. The fewer
such steps a path π contains, the greater its deceptive density:

density(π) =
1

|Nt|
, (3)

where Nt is the set of all truthful steps in π.
In the next section, we will use the LDP to measure a path’s

deceptive extent. Before proceeding, we briefly mention the
potentially confusing relationship between path optimality
and deceptivity. Note that a path can be truthful without be-
ing optimal (it may favour the real goal more than any bogus
goal but still be a suboptimal path) and deceptive without be-
ing suboptimal (it may be an optimal path to multiple goals).

3Implicitly, we assume an observation at the final time-step+1,
at which the agent is seen to remain—i.e., terminate—at her goal.
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4 Maximising the Last Deceptive Point
As discussed, we measure a path’s deceptivity at three levels
of granularity: its LDP tells us the extent of the deception; the
number of truthful steps determines density; and the degree
of simulation or dissimulation per step gives us its magni-
tude (though full discussion of the latter is reserved for future
work). In this section, we demonstrate a novel method of as-
sessing distance travelled along a suboptimal path; then, as-
suming an observer consistent with the Ramirez and Geffner
model, we present a formula to calculate the distance from
goal within which every path is truthful.

4.1 Path Completion
The LDP is significant because it represents the point in a path
at which a rational observer ceases to be deceived; that is, the
moment when, in the eyes of the observer, the probability of
the real goal comes to outweigh the probability of any other
possible goal and beyond which the probability of that real
goal dominates continuously until the goal is reached.

Intuitively, we want to delay the LDP until as late in the
path as possible; but although the LDP is easy to identify,
expressing its location in terms that allow for comparison be-
tween paths of different lengths and shapes is problematic.

Example 1 Consider two paths πa, πb ∈ Π(s, gr) of differ-
ent lengths taking entirely different routes from s to gr. Sup-
pose that LDPπa occurs at π312

a and LDPπb
at π203

b . LDPπa

is clearly ‘later’ if we are counting steps; but does that make
πa the more deceptive path? Suppose that |πa| − 312 = 200
and |πb − 203| = 10, that is, there are many more truthful
steps from LDPπa

to gr than from LDPπb
to gr. This means an

agent on πb will be much closer to the goal before the path
stops being deceptive. So, which LDP is really ‘later’?

In the absence of a cost or time constraint, a deceptive path
may loop or backtrack indefinitely, delaying the LDP without
making any progress towards the goal or, as in Example 1,
causing an agent to traverse more truthful steps, not less! We
therefore propose to ignore the actual path length and instead
focus on the position of a node in terms of how much ‘true
work’ has been completed towards the end goal.

If a path can be said to have a purpose, then its purpose is
its goal. To capture ‘true work’, we define the notion of path
completion, which uses optimal cost (from s to g) to calcu-
late how close the meandering suboptimal path π has come
to achieving its purpose/reaching its goal g when it reaches a
node n. Formally:

pcomp(n, s, g) = optc(s, g)− optc(n, g). (4)

Figure 1 depicts this equation graphically. This concept is
similar to ‘task completion’ in a project plan. No matter what
resources or how many wrong, unnecessary and/or costly
subtasks have been attempted, task completion is ultimately
based on how much is left still to do.

When we measure the position of the LDP in terms of path
completion, we learn how far an agent has been able to travel
deceptively and (therefore) how far remains to be travelled ‘in
plain sight’. It is a method that explicitly enables us to distin-
guish between ‘deceiving longer’ (e.g., a path that repeatedly

s

g

π

n

α

Figure 1: Path completion α based on optimal path (Equation 4).
Straight lines represent optimal paths.

circles a bogus goal) and ‘deceiving further’ (i.e., a path that
gets close to the real goal before it stops being deceptive).

In the remainder of this paper, we make deceptive extent—
and therefore path completion at the LDP—our primary focus
in planning a deceptive path. So, we say that we have max-
imised the last deceptive point when pcomp(LDPπ, s, g) ≥
pcomp(LDPπi

, s, g), for all πi ∈ Π(s, g).

4.2 The Radius of Maximum Probability
So far our framework has been agnostic with regard to the
model of the observer (denoted by P in a deceptive path-
planning task). From this point forward, however, we focus
on a particular observer as represented by the goal recogni-
tion model in [Ramirez and Geffner, 2010].

Recall from Section 2.1 that, assuming an observer con-
sistent with that model, the probability distribution across
goals at each node remains constant, regardless of the path
taken [Masters and Sardina, 2017]. Following this approach,
all probabilities could be precalculated to create a ‘heat-map’
which would reveal the perimeter within which any given
goal becomes ‘most probable’. We identify the minimum dis-
tance from such a perimeter to a potential goal g as follows.
Definition 9 The radius of maximum probability for a pos-
sible goal g, denoted RMPg , is x ∈ R such that:

1. for all n ∈ N such that optc(n, g) < x, it is the case
that P (g|n) > P (g′|n), for all g′ ∈ G \ {g}; and

2. there exists a node n′ ∈ N such that optc(n′, g) = x
and P (g|n′) ≤ P (g′|n′) for some g′ ∈ G \ {g}.

The RMP at the real goal, RMPgr , is of particular interest. It
occurs at the minimum distance between a deceptive node and
the real goal, and therefore represents a constraint, imposed
by the domain, on the maximum value of any path’s LDP.
Theorem 1 Let π be a path such that π ∈ Π(s, gr). Then,
optc(LDPπ, gr) ≥ RMPgr .
Proof. By Definition 9, for all n ∈ N such that optc(n, gr) <
RMPgr , n is truthful. But LDPπ is deceptive. Therefore
optc(LDPπ, gr) ≮ RMPgr and the proposition follows. �

That is, LDPπ cannot lie within the real goal’s radius of max-
imum probability.
Corollary 1 An LDP at RMPgr from gr cannot be exceeded:
if RMPgr = optc(LDPπ, gr), then pcomp(LDPπ, s, gr) ≥
pcomp(LDPπi , s, gr), for all πi ∈ Π(s, gr).

Thus, if we know the value of the RMPgr , we know the
maximum LDP for the domain, namely:

max
π∈Π(s,gr)

pcomp(LDPπ, s, gr) = optc(s, gr)− RMPgr . (5)
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A closed formula to calculate a lower bound for RMPgr
A naive way to compute RMPgr and identify a node at which
the LDP can be maximised (i.e., a node at RMPgr from gr)
would be to perform a sort of breadth first search radiating out
from the real goal, computing probabilities at every node until
the first deceptive node has been reached. Taking the optimal
cost from that node to goal gives us RMPgr . This is compu-
tationally onerous. Instead, we propose a simple formula that
will enable us to calculate a theoretical radius within which
we can guarantee that no deceptive node occurs; and we do
this without having to calculate any probabilities whatsoever.

Intuitively, RMPgr signals a tipping point, where the prob-
ability of gr becomes equal to the probability of some other
goal g′ ∈ G \ {gr}, that is, a point where probabilities
‘flip’ from favouring one goal to favouring another. Since
such probabilities are based on cost difference, a (hypothet-
ical) node n at that tipping point will have the property, by
Lemma 1, that costdif(s, gr, n) = costdif(s, g′, n).

We want to find, in a convenient way, how far (in terms
of cost) that hypothetical node n is from gr and, if it exists,
the node itself. Referring to Figure 2, we are constructing
a formula for β. There, a = optc(s, gr), b = optc(s, g′),
c = optc(gr, g

′), y = c − β. The tipping point (node n)
ought to be located on an optimal path from gr to g′, at a
point where optc(n, gr) = β and optc(n, g′) = y. Using
Equation (MS1), we get:

costdif(s, gr, n) = costdif(s, g′, n)

β − a = y − b
y = β + b− a
c = β + (β + b− a) from y = c− β

= 2β + b− a

β =
c+ a− b

2

This gives us β, the optimal cost from gr to the point at
which the hypothetical node n must occur. Since the domain
may include many possible goals, we take the minimum (re-
call s is the starting point and G the set of possible goals):

βmin = min
gi∈G

optc(gr, gi) + optc(s, gr)− optc(s, gi)

2
. (6)

So, βmin represents the optimal cost from gr to the point
at which nmin must occur (w.r.t. some possible goal gmin).
However, due to the discrete nature of our setting, the (pre-
cise) node nmin, where the probabilities for gr and some other
goal gmin coincide, may not actually exist! If it does, then
βmin = optc(nmin, gr) = RMPgr ; otherwise βmin represents
a (useful) lower bound for RMPgr .

The above equation is significant because it frees us from
calculating probabilities at any particular node (or any node
at all). We now use it to identify deceptive ‘target nodes’ at
which an LDP can be maximised.
Definition 10 A target node t ∈ N is a deceptive node such
that optc(t, gr) ≈ βmin.4

4If there is no node at precisely βmin, we take an approximation
(always greater), and retreat to the closest actual node.

s

gr

g′

a

c

b

β
y

n

s

gr

gmin

πd1

t

πd2

Figure 2: Labels a, b, and c stand for optimal costs between nodes.

Note that not all (and perhaps few) nodes at RMPgr cost dis-
tance from gr are deceptive. Referring to Figure 2, however,
we can readily identify one such node by retreating along
(gr, g

′) through the radius β from gr (where a node may exist)
to the first actual node on that edge.

In Section 5, we refer to this target node t and to gmin (the
goal referenced by Equation 6), that is:

gmin=argmin
gi∈G

optc(gr, gi) + optc(s, gr)− optc(s, gi)

2
. (7)

5 Deceptive Path-Planning Strategies
Here we discuss approaches to the computation of paths
whose deceptivity is maximised in terms of extent. We con-
sider how the two fundamental deception strategies can help
to maximise a path’s deceptive density and minimise its cost.

Simulation. The simplest simulation (considered by Keren
et al. [2015] w.r.t. “bounded deception”) first takes an optimal
path towards a bogus goal. Referring to Figure 2, this strategy
generates πd1 = s, .., gmin, ..., gr. Computationally inexpen-
sive, this achieves a strongly deceptive path (every step to the
LDP is deceptive), and maximises deceptive density and ex-
tent (its LDP occurs at t). However, path cost is likely to be
high and, although it initially deceives both human and auto-
mated observers, reaching but not stopping at gmin immedi-
ately signals to a human that gmin is not the real goal; though
an automated observer utilising, for example, the [Ramirez
and Geffner, 2010] model, is deceived all the way to t.

Dissimulation Dissimulation seeks an ambiguous path.
The simplest such strategy takes an optimal path πd2 direct
from s to t, then on to gr. This generates the cheapest path
that can pass through t. It might be deceptive to a human ob-
server until later in the path than πd1 above. However, we
would expect πd2 to be only weakly deceptive, that is, truth-
ful steps are likely to occur before the LDP without additional
checks and balances. We therefore propose two refinements:

1. A path πd3 can be assembled using a modified heuristic
so that, while still targeting t, whenever there is a choice
of routes, it favours the bogus goal, increasing its likeli-
hood of remaining deceptive. Still using an off-the-shelf
path-planner, the usual heuristic h(n, t)—which returns
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the estimated cost from node n to target h—is modified
to also evaluate heuristics for gr and gmin:

if h(n, gr) < h(n, gmin) then h(n, t) = αh(n, t),

where constant α > 1. Path πd3 is computationally more
demanding than πd1 or πd2 (it evaluates more heuris-
tics), but aims to approach πd1’s deceptive density at
something close to πd2’s cost.

2. As an alternative—and perhaps definitive refinement
with respect to cost—we can use a precalculated ‘heat-
map’ of probabilities [Masters and Sardina, 2017] (or
calculate them on-the-fly) to prune truthful nodes in the
search. The resulting path πd4 is strongly deceptive with
maximised LDP and maximum density at minimum cost.
Contrary to the common idea of a deceptive path—
that is, a rambling suboptimal path, full of expensive
loops and unnecessary detours—this brute force strategy
demonstrates that there is such a thing as a fully decep-
tive path that is also fully rational.

Differences between strategies are highlighted at Figure 3.

5.1 Experimental Evaluation
Though not proposed as optimised algorithms, we evaluated
the relative efficiencies (time/cost) of the above strategies
and the effectiveness (deceptivity) of paths they can produce.
We generated a problem set based on game maps from the
Moving-AI benchmarks [Sturtevant, 2012] to which we added
three extra candidate goals at random locations. For each of
50 problems, we generated one optimal path using a standard
implementation of A* and four deceptive paths (each using a
different strategy). We timed path generation and recorded
path costs. We truncated paths at the RMP (beyond which all
paths would be truthful) and, using Ramirez and Geffner’s
method of goal recognition, calculated probabilities at inter-
vals to confirm/assess deceptive density and extent.

Figure 4 captures our results. Comparison with A* shows
a clear trade-off between cost and deceptivity. Strategies πd2

and πd3 returned comparatively cheap paths and were com-
putationally efficient but performed erratically, each showing
an increase in the number of paths deceptive immediately be-
fore the RMP. This implies they are only weakly deceptive
(i.e., deceptive nodes may follow truthful ones). Simulation
(πd1) was strongly deceptive but the least efficient strategy in
terms of cost. Dissimulation with pruning (πd4) was fully de-
ceptive at much lower cost. (In fact, as we know, paths gener-
ated using this strategy are optimal amongst deceptive paths.)
Although generation of πd4 was slow, this is only because
we calculated each node’s deceptivity on the fly. If repeat-
edly considering deceptivity in a known domain, a probabil-
ity heat-map could be precalculated (as previously discussed),
enabling truthful nodes to be pruned in constant time, so clos-
ing the time difference between this and other strategies.

6 Related Work
Deceptive paths appear in the literature under various guises,
though not previously (to our knowledge) as the solution to a
path-planning problem.

Figure 3: Deceptive path-planning strategies. Clockwise from
bottom-left: paths πd1, πd2, πd3, πd4. Path πd3 is superimposed
on πd2 to highlight the differences. Paths πd1 and πd4 both have
maximum deceptive density but πd4 is optimal (amongst deceptive
solutions that pass through t) with respect to cost.

Jian et al. [2006] conducted a pencil and paper study to
find out if deceptivity could be detected from a path-plan.
Subjects were asked to assume that they were under surveil-
lance while drawing a path, from start to goal, without giving
away their true destination. The study found 38 recognisable
strategies, including “straight towards decoy”, our baseline
simulation strategy.

In his game theoretical account, Hespanha [2006] suggests
that, when an observer does not know what to believe, she
must make her decision as if she had made no observations
at all. This is precisely the objective of a dissimulation strat-
egy and one successfully exploited in an experiment by Root
et al. [2005] in which drones conduct reconnaissance while
under surveillance. In a domain modelled as a graph, the sys-
tem selects a ground path, then constructs a set of flight plans
that involve overflying not only that path but every edge capa-
ble of supporting military traffic. As predicted, execution of
the paths renders observation meaningless: the defender must
select from multiple routes, all with the same probability.

Simulation arises in a path-planning-related experiment
carried out by roboticists Shim and Arkin [2012], inspired
by the food-hoarding behaviour of squirrels. Computerised
robotic squirrels visit food caches and, if they believe them-
selves to be under surveillance, also visit false caches (where
there is no food). On the basis of observed activity, a com-
petitor decides which caches to raid and steals whatever food
she finds. In tests, the deceptive robots kept their food sig-
nificantly longer than non-deceptive robots, confirming the
effectiveness of the strategy.

Recent innovative work on goal recognition design (grd)
[Keren et al., 2014], which involves modifying a domain’s
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Path cost Gen. time 10% 25% 50% 75% 90% 99%
πA∗ 215.9 0.208 78 68 40 32 22 12
πd1 375.2 1.378 100 100 100 100 100 100
πd2 245.2 1.997 92 88 76 72 62 74
πd3 245.6 1.924 90 90 72 66 68 70
πd4 248.7 1423.8 100 100 100 100 100 100
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Figure 4: Results show the percentage of paths returned by each strategy that were deceptive when tested at 10%, 25%, etc., of their path
length prior to the RMP (beyond the RMP, all paths are truthful). Table columns show average (total) path costs and average time taken to
generate the (total) path. Generation time for all strategies exceeded that of A* by an order of magnitude. See inline text for discussion of
time taken to generate πd4. πd1 and πd4 were both strongly deceptive to the full extent but πd4 achieved this at much lower cost. (Two maps,
50 Moving-AI scenarios, each modified to include three extra goals. Experiments were conducted on a i7 3.6GHz machine with 8GB RAM.)

layout in order to achieve goal recognition more easily, has
several interesting parallels with deceptive path-planning.
The authors explicitly consider one type of deceptive path that
is somewhat similar to our simulation strategy but capped by
a budget (as noted in Section 5). The grd concept of worst
case distinctiveness (wcd)—the maximum distance that an
agent can travel along any path in the domain without reveal-
ing her goal—is superficially similar to our LDP. The wcd,
however, is a property of the domain (not the path) and is
measured by counting steps. When considering suboptimal
paths, therefore, (whose lengths are potentially infinite), the
authors encounter the problem discussed at 4.1. They im-
pose a budgetary constraint, which they call “bounded non-
optimality” [Keren et al., 2015]. Interestingly, modification
of a domain using grd can make deceptive path-planning eas-
ier, as it allows simulation (the unambiguous targeting of a
bogus goal) to begin at an earlier point.

The general problem of deception/privacy and location
tracking arises in many other settings which we mention here
only briefly: amongst the robotics community, for exam-
ple, in consideration of the panda tracker problem [O’Kane,
2009] and in numerous ambush, pursuit-evasion and pa-
trolling games [Shieh et al., 2012].

7 Conclusion
In this paper, we have presented a model of deceptive path-
planning. We have introduced the notion of a last deceptive
point and, in identifying its position, have demonstrated—in
path completion—a novel method of assessing distance trav-
elled along a suboptimal path. Based on [Masters and Sar-
dina, 2017], we presented a formula to capture a theoretical
lower bound for the ‘radius of maximum probability’ with-
out needing to calculate any actual probabilities. Finally, we
have discussed strategies to compute deceptive paths, includ-
ing one capable of achieving fully deceptive rational paths.

Our work is limited by two simplifying assumptions with
respect to the observer: that she is naive (does not expect to
be deceived) and rational (inherited from the goal recogni-

tion paradigm on which the model of the observer is based).
Of course, if an observer were to see the deceiving agent on
multiple occasions, one might expect that her goal recogni-
tion model would change/adapt, for example if using a ma-
chine learning approach (e.g., [Liao et al., 2007]). Neverthe-
less, for one-time, or first-time, scenarios, we believe these
assumptions to be reasonable.

In future work, we will incorporate magnitude into our
measurement of deception and explore how the three dimen-
sions can be combined into one index so that the relative
deceptivity of different paths can be more easily compared.
There is scope to develop optimised algorithms to implement
the proposed strategies. We also wish to introduce more so-
phisticated strategies, including those that recognise known
(or suspected) idiosyncrasies in the observer.
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