Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Lossy Compression of Pattern Databases Using Acyclic Random Hypergraphs

Mehdi Sadeqi and Howard J. Hamilton
Department of Computer Science, University of Regina, Canada
{sadeqi2m,hamilton} @cs.uregina.ca

Abstract

A domain-independent heuristic function created
by an abstraction is usually implemented using a
Pattern Database (PDB), which is a lookup table
of (abstract state, heuristic value) pairs. PDBs
containing high quality heuristic values generally
require substantial memory space and therefore
need to be compressed. In this paper, we intro-
duce Acyclic Random Hypergraph Compression
(ARHC), a domain-independent approach to com-
pressing PDBs using acyclic random r-partite 7-
uniform hypergraphs. The ARHC algorithm, which
comes in Base and Extended versions, provides
fast lookup and a high compression rate. ARHC-
Extended achieves higher quality heuristics than
ARHC-Base by decreasing the heuristic informa-
tion loss at the cost of some decrease in the com-
pression rate. ARHC shows higher performance
than level-by-level Bloom filter PDB compression
in all experiments conducted so far.

1 Introduction

A heuristic function is used by search algorithms such as A*
[Hart et al., 1968] and IDA* [Korf, 1985] to prioritize their
node expansion. An admissible heuristic function never over-
estimates the cost of reaching the goal state from any given
state and guarantees that A* and IDA* will find optimal so-
lutions [Hart et al., 1968; Korf, 1985]. Admissible heuristic
functions can be created effectively using abstraction and are
usually stored in memory in an efficient lookup table of (ab-
stract state, heuristic value) pairs called a pattern database
(PDB) [Culberson and Schaeffer, 1998]. Typically, larger
PDBs contain more accurate heuristic values. Unfortunately,
even with efficient representations, PDBs may not fit in mem-
ory. A common technique to address this problem is to com-
press the PDB.

Several approaches are proposed in the literature for com-
pression of PDBs. One approach is min compression [Felner
et al., 20071, which divides a PDB into buckets of size k and
stores only the minimum value in each bucket. Storing the
minimum value guarantees the admissibility of heuristic val-
ues in the compressed PDB. PDB compression can also be

achieved by using a Partial Pattern Database (PPDB) [An-
derson et al., 2007] in which only heuristic values up to and
including a certain maximum value (here called v) are stored
in the compressed PDB and a value v + 1 is used for the
remaining abstract states. A recent paper by Sturtevant et
al. [2014] illustrates that PPDBs that are effectively imple-
mented by Bloom filters can perform better than min com-
pression. Specifically, one particular variation of Bloom filter
PPDBs for an abstraction of Rubik’s cube shows superior per-
formance over min compression.

We introduce the Acyclic Random Hypergraph Compres-
sion (ARHC) algorithm for compressing PDBs. It pro-
vides fast lookup and a high compression rate. We begin
by explaining the role of abstraction in creating domain-
independent heuristics represented using PDBs and exist-
ing techniques for compressing them. We then describe the
ARHC algorithm for compressing PDBs using acyclic ran-
dom hypergraphs. This algorithm can be considered to be
an extension of the PDB representation approach introduced
by Sadeqi and Hamilton [2016]. We describe two versions
of ARHC: ARHC-Base provides higher compression and
lower heuristic quality and ARHC-Extended provides higher
heuristic quality at the expense of some decrease in the com-
pression rate. We then show the effectiveness of ARHC by
comparing it to a level-by-level Bloom filter PPDB [Sturte-
vant et al., 2014], in which each level of the PPDB is repre-
sented by a Bloom filter.

The experimental results show that ARHC performs sub-
stantially better than a level-by-level Bloom filter PPDB with
respect to three measures. The main advantages of ARHC are
its effectiveness with respect to the space usage and lookup
speed and its independence of the problem domain and ab-
straction of interest.

2 Abstractions, PDBs, and PDB Compression

Domain-independent heuristics for a problem formulated as
a state space search can be derived effectively using abstrac-
tion. To do so, we use abstraction to transform the original
search problem into a simplified version called the abstract
problem. The abstract problem is solved and the solution in
the abstract space is used as a heuristic. More precisely, dis-
tances in the abstract state space can be used as heuristic val-
ues when solving the original problem. A pattern database
is constructed by comprehensive expansion of the abstract

4376

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

state space, which is usually accomplished by performing a
breadth first search starting from the abstract goal state and
moving backwards in the abstract space. For each abstract
state, its corresponding distance to the abstract goal state is
stored in the PDB. This PDB is consulted by the search algo-
rithms to obtain heuristic values efficiently.

Two types of compression are applied to PDBs: lossless,
where all heuristic values in the original PDB are retained,
and lossy, where heuristic values in the compressed PDB are
less than or equal to their corresponding values in the original
PDB (to guarantee admissibility).

In alossless compression, PDB memory usage is decreased
while retaining the total heuristic information in the origi-
nal PDB. Lossless compression is not always effective be-
cause of the limitations of existing approaches or simply
because even after substantial compression, the compressed
PDB does not fit in memory. Binary Decision Diagrams
(BDDs) [Edelkamp, 2002; Jensen et al., 2002], 1.6-bit pat-
tern databases [Breyer and Korf, 2010] and ARH [Sadeqi and
Hamilton, 2016] are among the most effective approaches for
lossless compression of PDBs.

In lossy compression, some heuristic information present
in the original PDB is allowed to be lost but all heuristic val-
ues must remain admissible. An effective lossy compression
scheme tries to minimize the loss of heuristic information
while maintaining admissibility.

A simple approach for lossy compression of PDBs is min
compression [Felner et al., 2007], in which a PDB with N en-
tries is divided into buckets of size k£ and only the minimum
heuristic value in each bucket is stored. Storing the minimum
value in each bucket guarantees admissibility. When nearby
entries in the PDB have similar heuristic values, grouping
them in buckets causes little information loss. This, for ex-
ample, happens when the abstract states that form a clique
(all adjacent to each other in the abstract space) are entries
close to each other in the PDB. Due to such groupings, min
compression is effective in some problem domains, such as
4-peg Towers of Hanoi [Felner et al., 2007].

Samadi et al. [2008] proposed learning heuristic values
using an Artificial Neural Network (ANN). They also used a
lookup table where they placed an admissible value for ev-
ery case where the ANN predicted an inadmissible value.
When looking up a heuristic value corresponding to an ab-
stract state, this table is first consulted. If the abstract state is
in the table, the heuristic value is returned immediately. Oth-
erwise, the ANN is used to calculate the heuristic value.

PPDBs [Anderson et al., 2007] are another important tech-
nique for lossy compression of PDBs. A PPDB that only
stores up to and including a certain depth v of a given PDB is
usually denoted PPDB, (depth is equivalent to distance from
the goal). PPDBs can be effectively implemented using a par-
tial symbolic PDB [Edelkamp and Kissmann, 2008]. Bloom
filters have also proven to be effective for PPDB implemen-
tation [Sturtevant et al., 2014].

3 Acyclic Random Hypergraph PDBs

An efficient representation of PDBs using acyclic random hy-
pergraphs was proposed by Sadeqi and Hamilton [2016]. The

4377

basic idea of the ARH approach is to populate a lookup ta-
ble in such a way that the heuristic value associated with an
abstract state can be obtained from the combination of three
values in this table. These three values are at table posi-
tions determined by the three hash values of the abstract state.
Each entry in the lookup table corresponds to a vertex in an
acyclic random r-partite r-uniform hypergraph generated by
the ARH procedure and the three different entries calculated
using the three hash functions, correspond to a hyperedge in
this hypergraph. The aforementioned lookup table is pro-
duced by a two-step procedure. First, an acyclic random r-
partite r-uniform hypergraph is generated by a process called
mapping. The vertices of this hypergraph, which correspond
to the lookup table entries, are then assigned appropriate val-
ues in the assigning step. These steps are described below.

3.1 Step 1: Mapping

A hypergraph G is a generalization of a conventional undi-
rected graph where each edge has a size of two or more, i.e.,
it connects two or more vertices. If all the edges in G are
of size r, then G is an r-uniform hypergraph or r-graph for
short. An r-partite r-uniform hypergraph G,. = (V,E) has a
vertex set V = U/, V; where Vi, j,i # j : V; N V; = () and
each edge has only one vertex from each V;, i.e., no edge has
two or more vertices from the same V;. In a random r-partite
r-uniform hypergraph G,. = (V,E), each edge in E is gener-
ated by randomly choosing one from all possible edges with
repetitions allowed.

The goal of the mapping step is to find a random r-partite
r-uniform hypergraph that has no cycles. Here we consider a
hypergraph to be acyclic if and only if some sequence of re-
peated deletions of edges containing at least one vertex of de-
gree 1 yields a hypergraph with no edges [Czech et al., 1997].
In the mapping step, we repeatedly generate random r-partite
r-uniform hypergraphs until we find an acyclic one. If cer-
tain conditions are met, we are guaranteed to find an acyclic
random r-partite r-uniform hypergraph with high probabil-
ity: for a graph G, = (V,E), the space of random r-partite
r-uniform hypergraphs is dominated by acyclic ones when
V| > ¢ |E|. ¢ = ¢(r) is a constant and has a minimum
of approximately 1.23 at r = 3 [Czech et al., 1997], i.e., the
smallest acyclic random r-partite r-uniform hypergraphs are
3-graphs.

An algorithm suggested by Majewski et al. [1996] is used
to detect whether a hypergraph G, has any cycles. It starts
by queuing every edge of hypergraph G, that has at least one
vertex with degree one. The edges in this queue are then de-
queued one by one, removed from the hypergraph G,, and
stored in a list L, for later use in step 2. After removing an
edge from the hypergraph, if any of its vertices has degree
one now, the edge that contains that vertex is enqueued in the
queue. This is repeated until the queue is empty. G, is acyclic
if all its edges are removed by the algorithm.

3.2 Step 2: Assigning

After finding an acyclic random r-partite r-uniform hyper-
graph G, in the mapping step, the appropriate values are as-
signed to the vertices of this hypergraph in the manner similar
to what is proposed by Botelho ef al. [2007]. The vertices of

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

hypergraph G, correspond to the entries of the lookup table
T'. We start by initializing all the entries in 7" to 0. We then
move backwards in the list of edges L created in the mapping
step. By traversing L backwards, we never encounter an edge
such that all its vertices have already been assigned values
(see [Sadeqi and Hamilton, 2016] for more details). For ev-
ery edge e dequeued from this list from tail to head, we set
the value for its unassigned vertices such that the summation
of values of these vertices modulo the number of distinct en-
try values in the PDB is equal to the heuristic value of the
abstract state corresponding to edge e in the hypergraph.

3.3 The ARHC Approach: Acyclic Random
Hypergraph PPDBs for Lossy Compression

We propose ARHC, a PDB compression algorithm based on
the idea of acyclic random hypergraph PDBs. Ideally, we
would like to implement a PPDB, that retains heuristic values
0 to v and dedicates value v + 1 to the abstract states with
heuristic values greater than v. We say such a PPDB is per-
fect. As an example, consider a small PDB corresponding
to an abstraction ® containing six abstract states key, keys,
keys, keyy, keys, and keyg and their associated heuristic val-
ues 2, 0, 1, 5, 3, and 4, respectively. This PDB contains six
(key,value) pairs: (key1,2), (keys,0), (keys, 1), (keys, 5),
(keys,3), and (keys,4). Suppose we want to create a PPDB
with depth v = 2, i.e., a compressed version of the PDB that
will ensure that all heuristic values from 0 to 2 are kept intact.
We propose that the PPDB be an acyclic random hypergraph
PDB suited to values 0 to 2, with a small adjustment. Ordinar-
ily, each entry in this PDB would contain a value in {0,1,2}
(see Figure 1(a)) but here we also allow it to contain a special
value that can represent any heuristic value higher than 2. To
guarantee admissibility, this special value mustbe v + 1 = 3.
Ideally, using the hash functions shown in Figure 1, the PPDB
would thus contain six pairs: (keyi, 2), (keyz,0), (keys, 1),
(keys, 3), (keys, 3), and (keys, 3).

The ARHC method implements a PPDB, that retains
heuristic values 0 to v (as desired) and assigns values in the
range 0 to v + 1 to the abstract states with heuristic values
greater than v. If we extract a value from the PPDB for a key
that had a value less than or equal to v in the original PDB,
then we are guaranteed to get the correct heuristic value. In
this example, we will get correct values for key;, keys, and
keys. However, if we extract a value for some other key (one
that had a heuristic value greater than 2), we may get any of 0,
1, 2, or 3 (see Figure 1(b)). For keys, the mapping shown in
Figure 1 yields 3 as desired, but for key, and keys, the values
yielded are 1 and 0, indicating some loss of information. The
resulting PPDB, using the hash functions is shown in Fig-
ure 1. Thus, although it guarantees admissibility, ARHC may
lose some information (although ARHC-Extended substan-
tially decreases the loss of information). The PPDB generated
by ARHC contains six pairs: (keyi,2), (keysz,0), (keys, 1),
(keys, 1), (keys,0), and (keys, 3).

In more detail, given a key k, the ARHC approach is
to first apply three hash functions hy, ho, and hg to the
key, which yields three positions in a lookup table 7. As
with the ARH approach, the number of hash functions is al-
ways three and the size of the lookup table is approximately

4378

the number of abstract states times 1.23. By calculating
(T'[h1(k)]+T[ha(k)]+T[hs(k)]) modulo (v+2), a heuristic
value could be obtained in the range [0,v + 1]. The modulo
(v + 2) operation ensures that the calculated heuristic value
is in the range 0 to v + 1, with 0 to v for the retained heuristic
values and v + 1 for the special value described above. In
the lookup table in our example, the range is [0,3], although
it happens that only 1, 2, and 3 actually occur. In fact, the
ARHC procedure uses a slightly more complicated method
of obtaining values in [0,v + 1], as explained shortly. By us-
ing an acyclic random hypergraph PDB suited to values 0 to
v, we are guaranteed to get the original PDB heuristic val-
ues for those abstract states with a heuristic value less than or
equal to v.

3.4 The ARHC Procedure

To implement a PPDB,,, the ARHC procedure starts by con-
structing a PDB using the acyclic random hypergraph ap-
proach for the keys corresponding to heuristic values less than
or equal to v. To do so, an acyclic random r-partite r-uniform
hypergraph is generated for these keys (the mapping step) and
the appropriate values are assigned to the vertices of this hy-
pergraph (the assigning step). For the rest of the keys, we
wish to obtain v 4 1, but ARHC produces a value in [0,v + 1]
instead. The ARHC-Extended variation of ARHC, which is
described shortly, increases the probability of yielding v + 1.
The ARHC procedure can be summarized as follows:

1. Enumerate all the abstract states in the abstraction up to
and including depth v (assume m abstract states exist
in this set). Since the smallest acyclic random r-partite
r-uniform hypergraphs are achieved when using three
hash functions, an integer number n is chosen such that
n is the smallest integer number greater than or equal
to 1.23m where nmod3 = 0. A table T is then con-
structed with n entries. Each entry in T is represented
by b or more bits where b = [logs(v + 2)] (b bits for
ARHC-Base and more than b bits for ARHC-Extended).

2. Generate three Zobrist hash functions, A1, ho, and hgs.

3. Enumerate all the states in the abstraction in order to
generate the random 3-partite 3-uniform hypergraph':

(a) For every abstract state s, add a hyperedge to the
hypergraph. This hyperedge connects three Zobrist
hash values, hi(s), ha(s), and h3(s) where hq(s),
hs(s), and h3(s) have integer values in [0,5 — 1],
(2,22 — 1], and [2,n — 1], respectively.

(b) Test if the generated hypergraph is acyclic as in the
mapping step of ARH. The testing procedure will
also construct a queue of edges. If the hypergraph
has any cycles, return to step 2.

4. Initialize all entries of T to random values and assign
values to the nodes in the hypergraph as follows:

"Here we perform two separate enumerations of the abstract
states in steps 1 and 3 for sake of simplicity. We can adjust the
implementation such that we only need to enumerate the states in
the abstraction once.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

~
——— ey 2+1+2)mod4=1

COMPUTED HEURISTIC
VALUES

KEYS

LOOKUP TABLE

(a)

keys

27
qus‘:~ -

~ -

KEYS LOOKUP TABLE COMPUTED HEURISTIC

VALUES

(b)

Figure 1: An example of an acyclic random hypergraph PPDB,: (a) The lookup table is constructed so that when an abstract state with a
heuristic value less than or equal to v = 2 is looked up, the correct heuristic value is retrieved, and (b) when an abstract state with a heuristic
value greater than v = 2 is looked up, a value in the range 0 to v + 1 = 3 is retrieved.

(a) From the queue created in the mapping step, re-
move the hyperedges one by one. Since the gen-
erated hypergraph has no cycles, it is guaranteed
that at least one of the vertices of each removed
hyperedge has a corresponding unassigned entry.
Remember that each hyperedge corresponds to an
abstract state s.

(b) Assign random values to all but one of the
unassigned table entries T'[h(s)], T[h2(s)], and
T'[hs(s)]. Assign the remaining entry a value such
that the sum of these values modulo 2° is equal
to the heuristic value of the corresponding abstract
state s.

In a PPDB generated by ARHC, we assume that a heuristic
value greater than v is converted to any value in the range 0
to 2° — 1 with equal likelihood. As we will see later, this
uniform distribution of values is empirically confirmed in our
tested abstractions.

The ARHC-Base Method

In the ARHC-Base method, to obtain the heuristic value
corresponding to an abstract state, we simply calculate
(T[h1(s)] + T[h2(s)] + T[hs(s)]) modulo 2° where hy, ha,
and hg are three Zobrist hash functions [Zobrist, 1970] gener-
ated by the ARHC procedure. When a value is retrieved from
the ARHC PPDB, it is treated as v+ 1 if itis in [v +1,2° — 1].
Assuming a uniform distribution of values 0 to 2° — 1 in the
lookup table (and therefore among retrieved values for ab-
stract states with heuristic values greater than v) and consid-
ering that any value in [v 4 1,2° — 1] is treated as v + 1, there
is a probability of ?371’_1 that when a lookup is done, we get
value v + 1 for any abstract state that has a heuristic value
greater than v in the original PDB. A PPDB created this way
has a high compression rate but also high information loss.

ARHC-Extended Method: Increased Bits per Entry

In the ARHC-Extended method, we dedicate ¢ > b =
[log2(v+2)] bits to each entry in the lookup table and calcu-
late (T'[h1(s)] + T[ha(s)] + T'[h3(s)]) modulo 2€ rather than
modulo 2°. As with the ARHC-Base, all values greater than
v are considered to be representative of v 4+ 1. Assuming that

4379

any value in the range 0 to 2° — 1 is equally likely to be as-
signed to a key if its heuristic value is greater than v, there is
a probability of % that we get value v+ 1 for those keys.
Since ¢ > b, we will have a higher probability of getting value
v + 1 and therefore a lower rate of heuristic information loss.
For example, if v = 10 and ¢ = 7 bits are dedicated to each
entry, there is a probability of vztl = 11—218 ~ 0.086 of losing
information; using ¢ = 8 bits per entry, however, reduces the
probability of losing information to 5== ~ 0.043.

3.5 Level-by-Level Bloom Filter

A Bloom filter [Bloom, 19701 is an efficient data structure for
testing whether an item belongs to a set or not. To add a key to
a set, m locations in a bit array are all assigned 1, where these
locations are determined by m hash functions applied to that
key. Correspondingly, to determine whether a key belongs to
a set, the bits at the m locations specified by m hash functions
tell whether that key is a member of that set or not. If all these
locations have a 1 value, the key is reported as belonging to
the set; otherwise, it is not.

It can be the case that all values corresponding to a key that
does not belong to this set are 1, which causes a false posi-
tive. There is a nonzero probability of false positives but not
of false negatives. For example, for a given set represented by
a Bloom filter with a false positive rate of 0.01, there is a 0.01
chance that this filter falsely returns true for the membership
test of an item that does not belong to this set. However, if
an item is in the set, the Bloom filter will never return false
for the membership test of this item. For a Bloom filter rep-
resenting a set of size n with a bit array of size m bits using h
independent hash functions, the probability of a false positive
is [Mitzenmacher and Upfal, 2005]:

1

prp= (1= (1-—

To implement a PPDB,, a level-by-level Bloom filter PPDB
[Sturtevant et al., 2014] uses a separate Bloom filter to repre-
sent the abstract states at each depth O to v of an abstraction.
To find the heuristic value of an abstract state, a member-
ship test is executed against these Bloom filters one by one
starting from the depth 0 Bloom filter until the membership

)hn)h

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

test is positive. The first Bloom filter that returns positive
for the membership test of the given abstract state determines
the heuristic value of that abstract state. The level-by-level
Bloom filter approach was shown to be effective for imple-
menting PPDBs [Sturtevant er al., 2014]. Specifically, for
one particular abstraction of Rubik’s cube, a level-by-level
Bloom filter combined with a regular hash table was found
to be much more effective than min compression and also a
level-by-level Bloom filter alone. From this point forward,
we will refer to the level-by-level Bloom filter approach and
the level-by-level Bloom PPDB as the Bloom filter approach
and the Bloom PPDB, respectively.

In our experiments, we implemented all our Bloom PPDBs
using 3 hash functions per level. Since calculating new hash
values for each separate level is time consuming, we have
created a more efficient implementation. For a given abstract
state, we start by calculating 3 initial Zobrist hash values. The
hash values for each level are then obtained by finding the
remainder after the integer division of the initial hash values
and that level size.

4 Experimental Results

Experimental results in three problem domains, Sliding-Tile
Puzzle, Blocks World with Table Positions, and Scanalyzer,
are presented in this section. We start by explaining the types
of abstractions and how they are defined here. We consider
two types of abstraction in our experiments: domain abstrac-
tion and projection abstraction. A domain abstraction defines
a mapping from the original state space alphabet to a new,
smaller one. A projection abstraction keeps the original state
space alphabet unchanged but ignores some variables from
the state representation [Edelkamp, 2001].

An abstraction is typically defined implicitly by defin-
ing one or more rules describing the abstraction. A rule
a1 < a1,a3, . .. ,a; means that the symbols aq,as, . .. ,a) are
no longer distinguishable and are all mapped to the symbol
a1 (domain abstraction). A rule ignore [facts] means that the
variables encoding the listed facts are ignored (projection ab-
straction).

Next, we describe the problem domains and representa-
tions used in our experiments. They are specified using pro-
duction system vector notation (PSVN) [Holte ef al., 2014]
and are the same problem domains and representations used
for experiments in [Sadeqi and Hamilton, 2016].

Sliding-Tile Puzzle In the n xm-Sliding-Tile Puzzle there
is an nxm grid, in which tiles numbered 1 through n-m — 1
each fill one grid position and the remaining grid position is
blank. A move consists of swapping the blank with an adja-
cent tile. The goal is to have the numbered tiles in increas-
ing order from top left corner to bottom right corner with the
blank tile in the bottom right position. We have used a rep-
resentation of this puzzle where states are vectors of length
n - m and each component corresponds to either a numbered
tile or the blank. The value of a vector component represents
the grid position at which the corresponding tile is located.

Blocks World with Table Positions In the n-Blocks World
with p Table Positions, a state describes the constellation of
n blocks stacked on a table with p named positions, where at

4380

most one block can be located in a “hand”. In every move,
either the empty hand picks up the top block off one of the
stacks on the table, or the hand holding a block places that
block onto an empty table position or on top of a stack of
blocks. The goal is to stack up all numbered blocks in in-
creasing order, from bottom to top, on the goal position from
a given start state using the legal moves. We consider a repre-
sentation where a state vector has 14 p+n components, each
containing either the value 0 or one of n block names: (i) the
first component is the name of the block in the hand, (ii) the
next p components are the names of the blocks immediately
on table positions 1 through p, (iii) the last n components
identify, for each block, the block immediately on top of it.
In each case, the value 0 means “no block.”

Scanalyzer In the n-Belt Scanalyzer domain, a state de-
scribes the placement of n plant batches on n conveyor belts
along with information indicating which batches have been
“analyzed” (for a detailed description of this domain, see
[Helmert and Lasinger, 2010]). In a natural representation of
the n-Belt Scanalyzer, a state is encoded as a vector of length
2n in which each entries 27 and 27 + 1 represent the name of
the batch on conveyor belt ¢ and a flag indicating whether that
batch has been analyzed or not, respectively. The goal state
corresponds to having all plant batches analyzed and replaced
back on their original conveyor belts.

The first column of Table 1 shows the definitions of the
6 abstractions used for our experiments. We considered two
projection abstractions in the 3x4-Sliding-Tile Puzzle (each
containing 35,831,808 abstract states with maximum heuris-
tic values of 43 and 44 for their respective PDBs, two domain
abstractions in the Blocks World with 12 blocks and 3 table
positions, and two domain abstractions in the 10-Belt Scana-
lyzer (each having 309,657,600 abstract states and maximum
heuristic values of 24) in the representations described ear-
lier. We also noted the depth v selected for the PPDB,, and the
average heuristic value (Avg. H) for a perfect PPDB of this
depth.

In each experiment, to evaluate their effectiveness in solv-
ing search problems, we compare the efficiency of an ARHC
PPDB with a Bloom PPDB of the same depth and similar
size (same size or bigger) using three measures: (1) average
heuristic value over a 100,000 uniformly generated random
problem instances, (2) total number of nodes expanded for
solving 1,000 uniformly generated random problem instances
using IDA*, and (3) the total solution time in seconds for
these 1,000 instances. The average heuristic value is calcu-
lated by looking up the heuristic value of each of 100,000
problem instances in the PPDB and averaging the resulting
heuristic values. The IDA* implementation is adjusted to ef-
ficiently calculate the Zobrist hash values for a child state
from the hash values of its parent. In all our experiments,
the goal state is fixed and the random problem instances are
random start states. For each abstraction, we tried three dis-
tinct, reasonable sizes of ARHC PPDBs, which we refer to
as Small, Medium, and Large. For each size, we generated
a Bloom PPDB of similar or larger size (a larger size gives
an advantage) and the same depth for comparison. The aver-
age heuristic values, the total number of nodes expanded (in
millions) and the corresponding total solution time in seconds

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Construction Problem Solving
Abstraction ARHC | Bloom Small Size Medium Size Large Size
Perfect PPDB: Avg. H | Time (s) | Time (s) ARHC | Bloom | ARHC | Bloom | ARHC | Bloom
Sliding-Tile Puzzle
Abstraction 1: Size (MB) 5.7 6.2 6.6 6.9 7.6 7.7
ignore [tiles 1,3,6,9,11] 27 13 Avg. H 16.10 13.93 17.29 | 15.00 17.89 | 15.57
PPDB;g: 18.48 Nodes Exp. 5,395 9,842 4,124 | 7,220 3,767 | 6,068
Time (s) 2,028 4,601 1,419 | 3,441 1,296 | 3,234
Abstraction 2: Size (MB) 1.6 1.6 1.9 2.0 2.2 2.2
ignore [tiles 1,6,7,8,9] 7 5 Avg. H 15.35 11.67 16.57 | 14.58 17.17 | 15.19
PPDB,;: 17.81 Nodes Exp. 7,076 | 21,726 5,203 | 8,594 4,669 | 7,274
Time (s) 2,105 8,772 2,019 | 4,205 1,967 | 3,176
Blocks World with Table Positions
Abstraction 3: Size (MB) 152 165 186 192 220 220
Block 1 < Blocks 1,2,3,4 390 136 Avg. H 31.90 27.04 3271 | 29.18 3290 | 30.18
PPDB3,: 32.97 Nodes Exp. || 39,923 | 98,993 || 37,155 | 62,864 || 36,772 | 51,735
Time (s) 14,297 | 53,544 || 13,567 | 37,136 || 13,638 | 33,360
Abstraction 4: Size (MB) 95 103 116 120 137 137
Block 1 < Blocks 1,2 215 93 Avg. H 32.83 27.94 3371 | 29.95 33.92 | 30.95
PPDB33: 34.00 Nodes Exp. || 24,115 | 59,912 || 22,335 | 39,225 || 22,093 | 31,962
Time (s) 9,720 | 34,894 9,108 | 24,773 8,615 | 20,959
Scanalyzer
Abstraction 5: Size (MB) 111 155 127 168 143 181
Batch 0 + Batches 0,1,2 795 574 Avg. H 11.82 11.52 12.06 | 11.55 12.17 | 11.70
Batch 3 + Batches 3,4 Nodes Exp. || 31,505 | 70,407 5,572 | 55,351 2,819 | 27,928
PPDB;,: 12.29 Time (s) 9,436 | 32,297 1,714 | 24,859 1,047 | 11,898
Abstraction 6: Size (MB) 113 157 129 170 145 184
Batch 4 < Batches 4,5 905 640 Avg. H 11.81 11.34 12.04 | 11.51 12.15| 11.72
Batch 6 + Batches 6,7,8 Nodes Exp. || 31,461 | 158,161 5,646 | 63,871 2,864 | 20,752
PPDBy,: 12.26 Time (s) 9,505 | 67,414 2,075 | 26,870 1,444 | 8,239

Table 1: Different abstractions of 3x4-Sliding-Tile Puzzle, Blocks World with 12 blocks and 3 table positions, and 10-Belt Scanalyzer. The
average heuristic values (Avg. H) of 100,000 uniformly generated random problem instances using ARHC PPDBs are compared to those
using similar size Bloom PPDBs for three distinct, reasonable sizes of PPDBs. 1,000 uniformly generated random problem instances are also
solved using IDA* and the total number of nodes expanded (in millions) along with the total solution time in seconds is reported.

are shown in columns 5 to 10 of Table 1.

Before discussing the results of Table 1, we need to show
the validity of our assumption that the distribution is uniform
for the values in the lookup table of the ARHC implementa-
tion of our tested abstractions. Figure 2 shows these distri-
butions for 3 of the 6 tested abstractions (the other 3 show
similar behaviors). Each plot shows these distributions for 5
PPDBs of equal depth using 5 different numbers of bits per
entry, i.e., 5 different values for c¢. The almost flat lines for
each PPDB confirms our assumption that their distributions
are uniform. We show the distribution of values in the lookup
table rather than that of the heuristic values themselves. Re-
call that each heuristic value is calculated from three of the
uniformly distributed table values. For values up to v, the cal-
culated heuristic value is deterministic but for values greater
than v, it is calculated as the sum of three values from a ta-
ble where many values were chosen as random numbers uni-
formly distributed over the range 0 to 2° — 1.

4381

A careful examination of columns 5 to 10 of Table 1 re-
veals that for all tested abstractions and PPDB sizes, ARHC
PPDBs performed substantially better than similar sized
Bloom PPDBs. The performance difference between the two
approaches is quite substantial in almost every case. The
Bloom approach expands between 1.4 and 11.3 times as
many nodes as the ARHC approach. The Bloom approach
also requires between 1.6 and 14.5 times as much time for
problem solving. In 17 out of 18 cases, the Bloom approach
requires more than twice as much time as the ARHC ap-
proach. The cases with the minimum and maximum ratios
are bold-faced in Table 1. As well, the ARHC approach con-
sistently provides a higher average heuristic value than the
Bloom approach.

Construction time is another important efficiency criterion
for every PDB representation or compression technique. The
second column of Table 1 shows the construction time for
each of the six abstractions with the ARHC and Bloom ap-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Abstraction 2

Abstraction 4

Abstraction 6

5 Bits 9 Bits _6Bits
2.0e+06
6e+04 1.5e+05 Batch 4 < Batches 4, 5
ignore [tiles 1,6,7.8.9 Block 1 < Blocks 1,2
gnore [tiles 1,6,7,8,9] ’ Batch 6 Batches 6, 7, 8
1.5e+06
1.0e+05 . .
de+04 6 Bits ® 10 Bits 7 Bits
— 1.0e+06
y 5.0e+04 11 Bits 8 Bits
2¢+04 7 Bits _ s.0es05] ——
: 12 Bits 9 Bits
£ Brte 9 Bits 13 Bits 10 Bits
00400 0.0e+00 0.0e+00
oy % b o 0 © ~ 3

Figure 2: Plots of distributions of the lookup table values in 5 PPDBs of three representative abstractions. In each plot, 5 PPDBs of equal
depth are created using 5 different numbers of bits per entry. The x axis shows all possible values in the lookup table of a given PPDB and

the y axis shows the frequency of each value.

proaches. The construction time for the ARHC approach is
between 1.4 and 2.3 times longer than for the Bloom ap-
proach. However, since the compressed PDB can be used
for solving many problem instances, the ARHC construc-
tion time overhead can be amortized over many problem in-
stances. For example, for Abstraction 1, the ARHC with the
Small PPDB size has a construction time of 27 s that is neg-
ligible in comparison to the problem solving time of 2,028 s
for 1,000 problem instances.

4.1 Discussion

In all experiments, the ARHC PPDB performed better than
a similar sized Bloom PPDB. To get some intuition on why
this is the case, consider a Bloom PPDB that keeps only the
first depth with the desired false positive rate of 0.001. For
a Bloom filter with 3 hash functions, 28 bits per entry are
required to achieve this false positive rate. Even if we use say
8 hash functions, 14 bits per entry are still required to achieve
a 0.001 false positive rate for a Bloom filter. However, with
ARHC, which requires 3 hash functions, we only need 10 bits
per entry to achieve a 0.001 false positive rate.

In a PPDB, implemented using the Bloom approach, infor-
mation is lost by falsely assigning any heuristic value to a
smaller value. However, in ARHC, we never lose any heuris-
tic value information for values less than or equal to v. In
other words, the only source of error in ARHC is assigning
a lower heuristic value to an abstract state with an original
heuristic value greater than v. Further, the amount of informa-
tion lost for values greater than v in ARHC is just a function
of the number of bits dedicated to each entry in the lookup ta-
ble (this is due to uniform distribution of values in the ARHC
lookup table achieved by initializing 7" randomly and also as-
signing random values to free vertices in the ARHC proce-
dure). The free vertices are those vertices that can be assigned
any value—in the range dedicated to each lookup entry—in
the assigning step. In other words, if we hash an abstract
state to three entries in the lookup table and all three are unas-
signed, two of them are free vertices and can be assigned any
value in the appropriate range (if two are unassigned, one of
them will be a free vertex). The random assignment of free

4382

vertices guarantees that we get a uniform distribution of their
values in the assigning step. The error in a Bloom PPDB,
however, cascades from level to level and requires more bits
to recover from.

Finally, the PPDB approach for PDB compression has one
important advantage over the min compression in general that
makes it more applicable in practice. With min compression,
we need to compute the original PDB and then compress it.
In contrast, with PPDBs, we only need to compute the origi-
nal PDB up to a certain depth. This is useful in cases where
the original PDB does not fit in memory but the PPDB does.
As an example, for the 2 abstractions of the Blocks World do-
main in the experimental results, the original PDB is so huge
that we cannot compute it in the first place and therefore the
min compression could not be used for those two cases.

5 Conclusions and Future Work

We introduced ARHC, an efficient approach for lossy com-
pression of PDBs with high compression rate and low heuris-
tic information loss and the potential to lead to further im-
provements in combination with other compression strategies
such as 1.6-bit pattern databases. It is domain-independent,
effective, and addresses the weaknesses of the Bloom ap-
proach while maintaining its strengths. We showed that with
the same compression rate, ARHC consistently performed
better than the Bloom approach with respect to the average
heuristic value, the number of nodes expanded using IDA*
and the actual solution time. Our best results were achieved
using the ARHC-Extended method.

To reduce information loss in a PPDB,, one could also
merge some consecutive depths in the range [0,v] so that one
could increase the number of values that represent v + 1.
Preliminary experiments with this approach show notable
improvements in both ARHC and Bloom PPDBs. The ef-
fectiveness of this merging strategy, however, is determined
by a merge function that specifies which depths are merged
together. Finding the best merge function in a domain-
independent setting is not trivial and is the topic of future
research.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Anderson et al., 2007] Kenneth Anderson, Robert Holte,
and Jonathan Schaeffer. Partial pattern databases. In Pro-
ceedings of the Seventh International Symposium on Ab-

straction, Reformulation, and Approximation, pages 20—
34, 2007.

[Bloom, 1970] Burton H. Bloom. Space/time trade-offs in
hash coding with allowable errors. Communications of the
ACM, 13(7):422-426, 1970.

[Botelho et al., 2007] Fabiano C. Botelho, Rasmus Pagh,
and Nivio Ziviani. Simple and space-efficient minimal
perfect hash functions. In Proceedings of the Tenth In-
ternational Workshop on Data Structures and Algorithms,

volume 4619 of Lecture Notes in Computer Science, pages
139-150. Springer, 2007.

[Breyer and Korf, 2010] Teresa Maria Breyer and Richard E.
Korf. 1.6-bit pattern databases. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence,
Atlanta, Georgia, USA, July 11-15, 2010.

[Culberson and Schaeffer, 1998] Joseph Culberson and
Jonathan Schaeffer. Pattern databases. Computational
Intelligence, 14(3):318-334, 1998.

[Czech et al., 1997] Zbigniew J. Czech, George Havas, and
Bohdan S. Majewski. Perfect hashing. Theoretical Com-
puter Science, 182(1-2):1 — 143, 1997.

[Edelkamp and Kissmann, 2008] Stefan Edelkamp and Peter
Kissmann. Partial symbolic pattern databases for optimal
sequential planning. In KI 2008: Advances in Artificial
Intelligence, 31st Annual German Conference on Al, KI
2008, Kaiserslautern, Germany, September 23-26, 2008.
Proceedings, pages 193-200, 2008.

[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern
databases. In Proceedings of the Sixth European Confer-
ence on Planning, pages 13-24, 2001.

[Edelkamp, 2002] Stefan Edelkamp. Symbolifc pattern
databases in heuristic search planning. In Proceedings
of the Sixth International Conference on Artificial Intel-
ligence Planning Systems, April 23-27, 2002, Toulouse,
France, pages 274-283, 2002.

[Felner et al., 2007] Ariel Felner, Richard E. Korf, Ram
Meshulam, and Robert C. Holte. Compressed pattern
databases. Journal of Artificial Intelligence Research,
30:213-247, 2007.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination
of minimum cost paths. [EEE Transactions on Systems
Science and Cybernetics, SSC-4(2):100-107, 1968.

[Helmert and Lasinger, 2010] Malte Helmert and Hauke
Lasinger. The Scanalyzer domain: Greenhouse logistics as
a planning problem. In Proceedings of the Twentieth Inter-
national Conference on Automated Planning and Schedul-
ing, pages 234-237, 2010.

[Holte et al., 2014] Robert Holte, Broderick Arneson, and
Neil Burch. PSVN manual (june 20, 2014). Technical Re-

4383

port 14-03, Department of Computing Science, University
of Alberta, 2014.

[Jensen er al., 2002] Rune M. Jensen, Randal E. Bryant, and
Manuela M. Veloso. SetA*: An efficient BDD-based
heuristic search algorithm. In Proceedings of the Eigh-
teenth National Conference on Artificial Intelligence and

Fourteenth Conference on Innovative Applications of Arti-
ficial Intelligence, pages 668—673, 2002.

[Korf, 1985] Richard. E. Korf. Depth-first iterative-
deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97-109, 1985.

[Majewski et al., 1996] Bohdan S. Majewski, Nicholas C.
Wormald, George Havas, and Zbigniew J. Czech. A

family of perfect hashing methods. Computer Journal,
39(6):547-554, 1996.

[Mitzenmacher and Upfal, 2005] Michael = Mitzenmacher
and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005.

[Sadeqi and Hamilton, 2016] Mehdi Sadeqgi and Howard J.
Hamilton. Efficient representation of pattern databases
using acyclic random hypergraphs. In Proceedings of
the Twenty-Sixth International Conference on Automated
Planning and Scheduling, London, UK, June 12-17, pages
258-266, 2016.

[Samadi er al., 2008] Mehdi Samadi, Maryam Siabani, Ariel
Felner, and Robert Holte. Compressing pattern databases
with learning. In Proceedings of the Eighteenth Euro-
pean Conference on Artificial Intelligence, pages 495-499,
2008.

[Sturtevant et al., 2014] Nathan R. Sturtevant, Ariel Felner,
and Malte Helmert. Exploiting the Rubik’s cube 12-edge
PDB by combining partial pattern databases and Bloom
filters. In Proceedings of the Seventh Annual Symposium
on Combinatorial Search, 2014.

[Zobrist, 1970] Albert L. Zobrist. A new hashing method
with application for game playing. Technical Report 88,
1970.

