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Abstract
This paper focuses on a generalization of the trav-
eling salesman problem (TSP), called the subpath
planning problem (SPP). Given 2n vertices and n
independent edges on a metric space, we aim to
find a shortest tour that contains all the edges. SPP
is one of the fundamental problems in both artifi-
cial intelligence and robotics. Our main result is to
design a 1.5-approximation algorithm that runs in
polynomial time, improving the currently best ap-
proximation algorithm. The idea is direct use of
techniques developed for TSP. In addition, we pro-
pose a generalization of SPP called the subgroup
planning problem (SGPP). In this problem, we are
given a set of disjoint groups of vertices, and we
aim to find a shortest tour such that all the vertices
in each group are traversed sequentially. We pro-
pose a 3-approximation algorithm for SGPP. We
also conduct numerical experiments. Compared
with previous algorithms, our algorithms improve
the solution quality by more than 10% for large in-
stances with more than 10,000 vertices.

1 Introduction
The Subpath Planning Problem (SPP) is one of the funda-
mental problems in the artificial intelligence (AI) research
community, as well as in the robotics research community.
SPP can be formulated as follows: Given n independent
edges (subpaths) in a complete graph on 2n vertices with
length (weights) assigned to edges, we need to find a shortest
tour that travels all given subpaths. SPP has widespread ap-
plications in those areas, such as a polishing robot [Tong-ying
et al., 2004] and electronic printings [Gyorfi et al., 2010]. For
example, a “polishing” robot needs to polish nicks on a sur-
face of a car. We can regard the nicks as subpaths in the 2-
dimensional plane, like Figure 1 (a). To reduce the operation
cost, we need to design a shortest route that goes through the
given three paths as shown in Figure 1 (b). For other applica-
tions, see e.g., [Safilian et al., 2016] and references therein.

SPP is a (strict) generalization of the well-known prob-
lem, the traveling salesman problem (TSP). Indeed, when
every subpath is identical to one vertex and the lengths of

subpath 1

subpath 2 subpath 3
(a) (b)

Figure 1: An SPP instance with n = 3.

subpaths are all zero, the corresponding problem of SPP is
exactly TSP. TSP is the central combinatorial optimization
problem and it has been studied extensively in both theory
and applications. While TSP is NP-hard and inapproximable
within any approximation ratio [Sahni and Gonzalez, 1976],
some approximation algorithms are proposed for some spe-
cial cases, such as the metric TSP [Christofides, 1976], the
Euclidean TSP [Arora, 1998; Mitchell, 1999] and the graphic
TSP [Mömke and Svensson, 2011; 2016]1. Many practically
efficient heuristics are also proposed; for example, 2-Opt, 3-
Opt, the Lin-Kernighan algorithm [Lin and Kernighan, 1973]
and bio-inspired algorithms (such as genetic algorithms and
the artificial ant colony [Dorigo and Gambardella, 1997]).

Since SPP is at least as hard as TSP, the main focus is to
develop efficient algorithms that find a nearly optimal solu-
tion. Hereafter, we assume that SPP is metric, i.e., the tri-
angle inequality holds for any edge except for the subpaths.
Meta-heuristics based on genetic algorithms are proposed in
[Tong-ying et al., 2004; Gyorfi et al., 2010]. However, the al-
gorithms have no theoretical guarantee on the solution qual-
ity, and not scalable as reported in [Safilian et al., 2016]. The
first scalable algorithm with theoretical approximation guar-
antee was presented by Safilian et al. [2016]. Their algorithm
can find a 2-approximate solution2 in O(n3) time, where n is
the number of input subpaths.

In this paper, we provide the following result for SPP.

Theorem 1.1. There exists a 1.5-approximation algorithm
that runs in O(n3) time for the metric SPP.

The idea of our algorithm is to make direct use of

1In the graphic TSP, the metric is defined by the shortest path
distance on a graph.

2A feasible solution is α-approximate if its objective value is at
mostα times the optimal value. Anα-approximation algorithm is an
algorithm that returns an α-approximate solution for any instance.
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Christofides’ techniques [Christofides, 1976] developed in
the literature of TSP. Christofides’ algorithm is applicable
only for the metric TSP, but edge lengths in the underlying
graph for the metric SPP may not satisfy the triangle inequal-
ities, because given subpaths may be longer than the distances
between the end vertices. The previous algorithm [Safilian et
al., 2016] constructs a TSP instance, which is nearly met-
ric, from a given SPP instance, and then applies Christofides’
techniques to obtain a 2-approximate solution. In order to
make an obtained tour go through all the subpaths, their algo-
rithm needs an additional step. This makes the approximation
ratio worse than the ratio 1.5 (that is the case for the metric
TSP). In contrast, we directly apply Christofides’ techniques
to a given SPP instance. The main technical challenge is to
modify each step of Christofides’ algorithm so that an ob-
tained tour always goes through the subpaths. We prove that
the adaption does not make the ratio worse, which leads to an
1.5-approximation algorithm for the metric SPP.

We further show that our analysis is tight in the sense that
there is an instance of the metric SPP such that our algorithm
returns a solution whose ratio is arbitrarily close to 1.5. Let
us remark that Christofides’ algorithm (for the metric TSP) is
also known to be tight, and it has been a long-standing open
problem to improve the approximation ratio 1.5 for the metric
TSP. As mentioned above, SPP is a generalization of TSP, and
thus improving the approximation ratio in Theorem 1.1 would
also improve the approximation ratio 1.5 for the metric TSP.
So the prospect is not at all bright to improve approximation
ratio of Theorem 1.1.

In addition, we introduce a more general problem called
the subgroup planning problem (SGPP). Instead of subpaths
given in SPP, we are given pairwise disjoint groups of ver-
tices. We need to find a shortest tour that travels all the ver-
tices consecutively in each group. In Figure 2 (a), we are
given three groups, and the purpose here is to make a tour
that travels every group like Figure 2 (b). SGPP is a natural
generalization of both TSP and SPP, as it coincides with TSP
when all groups have size one, and with SPP when all groups
have size two. SGPP can model some scheduling problems
in which similar jobs are required to be processed at once; for
example, controlling a robot arm to do different jobs, elec-
tronic printings with different types of holes, and so on. See
also the later paragraph about related work. By extending
our approximation algorithm in Theorem 1.1, we propose
a (1.5 + α)-approximation algorithm for the metric SGPP,
i.e., the triangle inequality holds for any edge outside groups.
Here α is an approximation ratio for the traveling salesman
path problem (TSPP), i.e., the problem of finding a shortest
path that starts from a vertex s and ends at another vertex
t after traveling all vertices. Christofides’ technique can be
adapted to obtain an algorithm with α = 1.5 [Hoogeveen,
1991]. When two vertices s and t are specified, TSPP admits
only 1.566-approximation [Gottschalk and Vygen, 2016].
Theorem 1.2. There exists a 3-approximation algorithm run-
ning in polynomial time for the metric SGPP.

We also conduct numerical experiments on VLSI open
datasets to show the superiority of our approximation algo-
rithms over the state-of-art algorithm [Safilian et al., 2016].

group 1

group 3group 2
(a) (b)

Figure 2: An SGPP instance with three groups.

Our approximation algorithms can solve instances with more
than 10,000 vertices. The solution quality is improved by
more than 10% for large instances.

Related Work SPP is a variant of path planning problems
with spatial constraints, which have been extensively stud-
ied in various areas such as AI, robotics, computer games;
see e.g., [Jaillet and Porta, 2013; Kapadia et al., 2013;
Nash et al., 2009; Surynek, 2015]. We remark that SPP has a
close connection to the Rural Postman Problem (RPP) [Fred-
erickson, 1979]. RPP and its variants have applications re-
lated to those areas, such as street sweeping, snow plowing,
and so on [Eiselt et al., 1995]. Existing papers on the metric
RPP assume that all edges satisfy the triangle inequality. On
the other hand, this paper assumes a weaker property that the
triangle inequality holds only for a subset of edges, demanded
from AI applications. We also remark that the metric SGPP
is a generalization of the metric clustered TSP (CTSP), weak-
ening triangle inequality in a similar way. CTSP can also be
used to applications arising in AI and robotics, such as auto-
mated warehouse routing [Chisman, 1975; Lokin, 1979] and
production planning [Lokin, 1979].

Besides related work on TSP we have mentioned before,
TSP and its related problems have been studied in the AI re-
search community, due to widespread applications [Ducom-
man et al., 2016; Kumar et al., 2013; Tu et al., 2010;
Zhang and Looks, 2005]. For example, [Zhang and Looks,
2005] proposed a heuristic based on the Lin-Kernighan algo-
rithm [Lin and Kernighan, 1973] by incorporating backbone
information of TSP.

Organization Section 2 gives precise definitions of SPP
and SGPP. Section 3 proposes the 1.5-approximation algo-
rithm for SPP and shows that our analysis is tight. Ex-
tending this algorithm, Section 4 provides the (1.5 + α)-
approximation algorithm for SGPP. Section 5 shows the ex-
perimental results. Finally, Section 6 concludes this paper.

2 Preliminaries
In this section, we define terminologies and give precise def-
initions of SPP and SGPP. Let G = (V,E) be an undi-
rected graph. For any vertex subset U , we say that a path
is U -Hamiltonian if it travels only vertices in U and visits ev-
ery vertex in U exactly once. A tour on G is a cycle going
though all the vertices.

2.1 The Subpath Planning Problem
Given a set V of 2n vertices, a set S of n independent edges
on V , and edge lengths c : V × V → R+, the subpath plan-
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Figure 3: The underlying complete graph in an SPP instance. Each
subpath is shown in a thick edge.

ning problem (SPP) is to find a tour T = e1, . . . , e2n in the
complete graph G = (V,E) on V such that T contains all
edges in S, and the total length

∑2n
i=1 c(ei) of T is minimized.

Each edge e ∈ S is called a subpath. We denote the problem
instance by (V, S, c). For any path P = e′1, . . . , e

′
`, we write

the total length of edges in P as c(P ) =
∑`

i=1 c(e
′
i).

We say that (V, S, c) is metric if the triangle inequal-
ity c(u, v) + c(v, w) ≥ c(u,w) is satisfied for all
(u, v), (v, w), (u,w) ∈ E such that (u,w) ∈ E \ S. Note
that the metric SPP is a generalization of the metric TSP.

We remark that the original subpath planning prob-
lem [Safilian et al., 2016] was defined on the 2-dimensional
plane with n subpaths p1, . . . , pn. The problem falls into the
metric SPP by defining c(u, v) to be the length of pi if u and
v are the end vertices of pi, and the distance between u and v
otherwise. The triangle inequality c(u, v)+c(v, w) ≥ c(u,w)
holds for any vertices u, v, w except for the case when u,w
are the end vertices of some subpath, since its length may be
longer than the distance between the end vertices. Thus the
metric SPP generalizes this setting. For example, Figure 1
can be represented as the complete graph as in Figure 3.

2.2 The Subgroup Planning Problem
The subgroup planning problem is a generalization of SPP.
Given a vertex set V , a set S of n pairwise disjoint vertex sets
S1, . . . , Sn with

⋃
i Si = V , and edge lengths c : V × V →

R+, the subgroup planning problem (SGPP) is to find a tour T
in the complete graph G = (V,E) on V such that T contains
an Si-Hamiltonian path for all i = 1, . . . , n, and the total
length of T is minimized. Each vertex set in S is called a
subgroup. Note that if the size of each subgroup is exactly
two, then SGPP coincides with SPP. We denote the problem
instance by (V,S, c).

In the complete graphG = (V,E), we say that edges (u, v)
with u, v ∈ Si (i ∈ {1, . . . , n}) are inner edges, and the
other edges are outer edges. Outer edges connect vertices in
different subgroups. Similarly to SPP, we say that (V,S, c) is
metric if the triangle inequality c(u, v) + c(v, w) ≥ c(u,w)
is satisfied for any inner edges (u, v), (v, w), (u,w) in each
subgroup, and for any edges (u, v), (v, w), (u,w) such that
(u,w) is an outer edge.

3 Improved Algorithm for the Metric SPP
In this section, we describe an approximation algorithm for
the metric SPP. Let (V, S, c) be an instance of the metric SPP.
We denote by G = (V,E) the complete graph on V .

Our algorithm is based on Christofides’ algorithm for the
metric TSP. So let us review it. We first find a minimum
spanning tree R in the graph G, and then find a minimum-
weight perfect matching M in the subgraph induced by the

odd-degree vertices in R. Then each vertex in the subgraph
R ∪M has even degree, and hence we can construct an Eu-
lerian cycle in R ∪M , i.e., a cycle C that uses every edge in
R ∪M exactly once. From this Eulerian cycle C, we create
a tour by skipping visited vertices (shortcutting) as follows.
Traverse C starting from an arbitrary edge, and define the or-
der (u1, . . . , u2n) of vertices in which they appear for the first
time in C. Then set T = (u1, u2), (u2, u3), . . . , (u2n, u1).
We see that the total length of R is at most the optimal
value, and the total weight of M is at most a half of the op-
timal value. This guarantees that the obtained tour is 1.5-
approximation. The triangle inequality is necessary to show
that the shortcutting does not increase the tour length.

For the metric SPP, the difference from the metric TSP is
in the constraint that we have to go though all the given sub-
paths, and that c does not necessarily satisfy the triangle in-
equality in the whole graph. We need to find a minimum
spanning tree containing all the edges in S, and to shortcut
edges while keeping the edges in S in the tour, without in-
creasing the length.

For any edge set S′, we say that a tree is S′-spanning if it
is a spanning tree that contains all edges in S′. The following
lemma shows that, if edges in S do not share the end vertices,
then we can find a minimum S-spanning tree by contracting
each edge in S.

Lemma 3.1. Let G = (V,E) be a connected graph on n
vertices with edge weight c : V ×V → R+, and let S ⊆ E be
a set of independent edges. There is an O(n2) time algorithm
to find a minimum S-spanning tree of G.

Proof. We construct a graph G′ = (V ′, E′) by contracting
each edge in S to one vertex. The edge weights c′ on E′ are
defined as the minimum weight among parallel edges when
contracting edges. Note that |V ′| = |V | − |S|.

It is not difficult to see that any S-spanning tree T on G
corresponds to some spanning tree T ′ on G′ by contraction.
Moreover, c′(T ′) ≤ c(T )−c(S), and the equality holds when
T is a minimum spanning tree. Conversely, for any spanning
tree T ′ on G′, we can obtain some S-spanning tree T on G
by uncontraction (i.e., the reverse operation of contraction),
since edges in S are independent. The weight of T satisfies
that c(T ) = c′(T ′) + c(S).

Thus finding a minimum S-spanning tree on G is equiv-
alent to finding a minimum spanning tree on G′, which can
be found in O(n2) time by Prim’s algorithm (see e.g., [Korte
and Vygen, 2002] for the description). Hence we can obtain
a minimum S-spanning tree for G in O(n2) time.

From an Eulerian cycle C, we create a tour T by skipping
edges not in S to guarantee that S ⊆ T . Traverse C starting
from an arbitrary edge. We write C = e1, . . . , el. Since
S ⊆ C, we can define the order (ei1 , . . . , ein) of edges in S
such that they appear in this order. In our tour T , instead of
going through the path eij+1, . . . , eij+1−1 (j ≤ n), we take a
shortcut by an edge e′j connecting the end vertices of the path.
Here we denote in+1 = i1. We will prove that each e′j is
indeed a shortcut. Then set T = ei1 , e

′
1, ei2 , e

′
2, . . . , ein , e

′
n.

Our algorithm is described below. We remark that Steps 1
and 5 are uniquely designed for the metric SPP.
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Algorithm 1
1. Find a minimum S-spanning tree R of G.

2. Let V ′ be the set of vertices having odd degree inR, and
let G′ be the subgraph induced by V ′.

3. Find a minimum-weight perfect matching M in G′

(weight for M is defined by
∑

e∈M c(e)).

4. Construct an Eulerian cycle C on R ∪M .

5. Traverse C starting from an arbitrary edge. Let eij be
the jth subpath appearing in C. Let e′j be the edge con-
necting the end vertices of the path eij+1, . . . , eij+1−1.
Output the tour T = ei1 , e

′
1, ei2 , e

′
2, . . . , ein , e

′
n.

We first estimate the running time. We can findR in O(n2)
time by Lemma 3.1. A minimum-weight perfect matching on
a complete graph can be found in O(n3) time by using, e.g.,
the algorithm proposed in [Gabow, 1990]. The Eulerian cycle
C can be found in O(n) time since |R ∪M | = O(n). Since
C has O(n) edges, we need O(n) time to construct the output
T . Thus the running time is O(n3).

We remark that the output T of Algorithm 1 is a tour on G
that contains all edges in S. To prove Theorem 1.1, it remains
to show the approximation ratio. The following observation
follows because (V, S, c) is metric.

Lemma 3.2. For any path (u1, u2), . . . , (uk−1, uk) on G, if
(u1, ui) 6∈ S for any i > 2, then (u1, uk) is a shortcut, i.e.,
c(u1, uk) ≤

∑k−1
i=1 c(ui, ui+1) holds.

Proof. By definition of the metric SPP, we have c(u1, ui) +
c(ui, ui+1) ≥ c(u1, ui+1) for i = 2, . . . , k − 1. Combining
all inequalities leads to

∑k−1
i=1 c(ui, ui+1) ≥ c(u1, uk).

Proof of Theorem 1.1. We prove the theorem by showing that
Algorithm 1 outputs a 1.5-approximation solution to the met-
ric SPP. Let T be the output of Algorithm 1, and let T ∗ be
any optimal tour. We denote OPT = c(T ∗).

We first observe that c(R) ≤ OPT. Indeed, any path ob-
tained by removing an edge in T ∗ \ S is also an S-spanning
tree ofG. SinceR is a minimum one, c(R) is at most the total
length of the path obtained from T ∗, which is at most OPT.

We now bound c(M). Let T ′ be a shortest tour on G′,
where G′ is a complete graph on V ′. We can obtain two
perfect matchings M1, M2 by selecting edges in T ′ alterna-
tively. Since M is a minimum-weight perfect matching, we
have c(M) ≤ min{c(M1), c(M2)} ≤ c(T ′)/2.

Let T̂ be a cycle obtained from T ∗ by skipping vertices
not contained in V ′. Since S ⊆ T ∗, any path in T ∗ satisfies
the condition in Lemma 3.2. Hence Lemma 3.2 implies that
edges in T̂ \ T ∗ are shortcuts, i.e., c(T̂ ) ≤ c(T ∗) = OPT.
Moreover, because T̂ is also a tour on G′, we have c(T ′) ≤
c(T̂ ). Thus c(M ′) ≤ c(T ′)/2 ≤ OPT/2, and hence it follows
that c(C) = c(R) + c(M) ≤ OPT + OPT/2 ≤ 1.5 · OPT.

Since S ⊆ T by construction of T , every edge (u, v) ∈
T \ S is a shortcut of a path in C connecting u and v by
applying Lemma 3.2 together with the fact that S ⊆ C. Thus
c(T ) ≤ c(C) holds, and this proves the theorem.

v1 v2

v3 v4

v5 v6

v7 v8

v9 v10

v11 v12

@
@
@

@
@
@

Figure 4: The bold edges denote edges in S, the dashed edges denote
edges in E1, and the other edges are in E2.

3.1 Lower Bounds
In this subsection, we show that there exists an instance with
positive subpath lengths such that our algorithm returns a so-
lution whose approximation ratio is arbitrarily close to 1.5.

Theorem 3.3. For any number ε > 0, there exists an instance
such that Algorithm 1 returns a solution T with c(T ) ≥ (1.5−
ε)OPT, where OPT denotes the optimal value.

Proof. Let n be an even integer greater than or equal to
1/(2ε + 2ε2). We first define a graph G = (V,E) by V =
{v1, v2, . . . , v2n−1, v2n}, S = {(v2i−1, v2i) | i = 1, . . . , n},
E1 = {(v2i, v2i+1) | i = 1, . . . , n− 1}, E2 = {(v2i, v2i+3) |
i = 0, . . . , n − 1}, and E = S ∪ E1 ∪ E2, where we de-
note v0 = v1 and v2n+1 = v2n for convenience. Figure 4
illustrates the graph when n = 6. Note that S,E1 and E2

are pairwise disjoint. Define the weight of each edge e ∈ E
by w(e) = 2 + ε for e ∈ S, 1 for e ∈ E1, and 1 + ε for
e ∈ E2. Using the graph G, define c to be the shortest-path
metric, i.e., c(u, v) is the total weight of a shortest path be-
tween u and v inG where the edge weight is w. For example,
c(v1, v12) = 9 + 3ε in Figure 4.

We show that (V, S, c) satisfies the condition of the the-
orem. We observe that the subgraph (V, S ∪ E1) is the
unique minimum S-spanning tree, because it consists of S
and minimum-weight edges. Since we have only two odd-
degree vertices v1 and v2n, the minimum-weight matching
is ({v1, v2n}). Since no shortcut occurs, our algorithm re-
turns a tour consisting edges in S ∪ E1 ∪ (v1, v2n), namely
(v1, v2), (v2, v3), . . . , (v2n, v1). The length of this tour is
c(S) + c(E1) + c(v1, v2n), which is equal to n(2 + ε) +
(n − 1) + n

2 (1 + ε + 2 + ε) = (4.5n − 1) + 2nε. On
the other hand, the optimal tour to the instance consists of
edges in S ∪ E2. Its length is c(S) + c(E2) = n(2 + ε) +
n(1 + ε) = (3 + 2ε)n. Therefore, the ratio is c(T )/OPT =
(4.5n− 1 + 2nε)/(3 + 2ε)n ≥ 1.5 − ε, where the inequal-
ity follows from the fact that n ≥ 1/(2ε + 2ε2). Thus the
theorem holds.

4 Algorithm for the Metric SGPP
In this section, we propose an approximation algorithm for
the metric SGPP. Let (V,S, c) be a metric SGPP instance.

One might think that we can easily extend the idea of Al-
gorithm 1 for the metric SPP. Namely, we find a minimum
spanning tree by contracting each subgroup Si to one vertex,
compute a minimum-weight matching on the odd-degree ver-
tices, and create a tour by shortcutting. However, shortcutting
would not work for the metric SGPP. Since the obtained Eu-
lerian cycle may go through some subgroup many times, the
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obtained tour may count the lengths in the subgroup many
times, and thus it is hard to bound the approximation ratio.

The difficulty of this approach comes from the fact that we
have to traverse all vertices in a subgroup sequentially; once
we enter into a subgroup, we need to choose another vertex
to leave after traveling all vertices in the subgroup. Thus we
need to decide two end vertices connecting other subgroups
when designing a route inside a subgroup. In the case of SPP,
since each subgroup has size two, the route is uniquely deter-
mined, and this issue does not occur. For SGPP, we resolve
the issue by dividing our algorithm into two phases: (i) de-
cide a route with two end vertices inside each subgroup Si,
and then (ii) solve an SPP instance defined by (i).

In the first phase, we use algorithms for TSPP; given an
undirected graph G = (V,E), TSPP is to find a shortest
V -Hamiltonian path. Note that end vertices are not speci-
fied. Let α be an approximation ratio for TSPP. Our algo-
rithm finds an α-approximate Si-Hamiltonian path for each
subgroup Si. Let (ui, vi) be the end vertices of the path in Si.
Note that, in our algorithm, we can use any α-approximation
algorithm for TSPP. For the metric TSPP, the current best ra-
tio is α = 1.5 [Hoogeveen, 1991]. When the subgroup size is
a small constant, we can use the dynamic programming algo-
rithm for TSP [Bellman, 1962; Held and Karp, 1962]. Note
that we can convert TSPP into TSP by adding a new vertex
v0 and setting c(v0, v) = 0 for all vertices v.

We then use our 1.5-approximation algorithm proposed in
Section 3. We construct an SPP instance consisting of ui and
vi for all i, and set the length of each subpath to be the original
length c(ui, vi). Note that we do not use the length of the
shortest Si-Hamiltonian path for (ui, vi) obtained in the first
phase, as the length of subpaths.

Our algorithm for SGPP is summarized below.
Algorithm 2

1. For each subgroup Si, find an α-approximate
Si-Hamiltonian path Pi and let (ui, vi) be the end
vertices of Pi.

2. Apply Algorithm 1 to obtain a feasible tour T ′ for the
SPP instance (V ′, S′, c), where V ′ = {ui, vi | i =
1, . . . , n} and S′ = {(ui, vi) | i = 1, . . . , n}.

3. Construct a tour T by replacing each edge (ui, vi) in T ′
with the path Pi for i = 1, . . . , n.

Step 1 with α = 1.5 can be implemented in polynomial
time by, e.g., the algorithm in [Hoogeveen, 1991]. Step 2
takes O(n3) time. The construction of the output can be done
in linear time when α = 1.5. Thus, our algorithm runs in
polynomial time. We also observe that Algorithm 2 outputs a
feasible solution for SGPP. Then we prove Theorem 1.2.

Proof of Theorem 1.2. We prove that Algorithm 2 is 3-
approximation algorithm. We denote by ALG the total length
of the output T from Algorithm 2. Let T ∗ be an optimal
tour of (V,S, c), and let OPT = c(T ∗). The tour T ∗ con-
sists of Si-Hamiltonian paths P ∗i (i = 1, . . . , n) and outer
edges which connect subgroups. Let OPTout (respectively,
ALGout) denote the total length of outer edges in T ∗ (respec-
tively, T ). Note that ALG = ALGout +

∑n
i=1 c(Pi) and

OPT = OPTout +
∑n

i=1 c(P
∗
i ).

Take an arbitrary index i ∈ [n]. Let P̂i denote the shortest
Si-Hamiltonian path. It follows from construction of Pi that
c(Pi) ≤ α · c(P̂i). Moreover, we have c(P̂i) ≤ c(P ∗i ) by
definition of P̂i. Then c(Pi) ≤ α · c(P ∗i ) holds for each i.

It remains to show that ALGout ≤ 1.5 · OPT. Let T̂ be an
optimal tour for (V ′, S′, c). We remark that (V ′, S′, c) is an
SPP instance obtained from (V,S, c) by deleting vertices not
in V ′. In particular, the edge length of (ui, vi) in (V ′, S′, c)

is the original one. Hence c(T̂ ) is at most OPT. Since T ′ is
the output of Algorithm 1, we have c(T ′) ≤ 1.5 · c(T̂ ). We
construct T by just replacing edges (ui, vi) in T ′. Thus we
have ALGout ≤ c(T ′) ≤ 1.5 · c(T̂ ) ≤ 1.5 · OPT.

Recall that
∑n

i=1 c(P
∗
i ) = OPT− OPTout. Therefore,

ALG = ALGout +
∑n

i=1 c(Pi)

≤ 1.5 · OPT + α
∑n

i=1 c(P
∗
i ) ≤ (1.5 + α)OPT.

Thus the approximation ratio of Algorithm 2 is (1.5+α). This
together with a polynomial-time α-approximation algorithm
with α = 1.5 for the metric TSPP completes the proof.

5 Experiments
In this section, we show experimental results to demonstrate
the effectiveness of the proposed algorithms. All experiments
were conducted on a server with Intel Xeon E5-2680 v3 and
1TB memory. All algorithms were implemented in C++.

5.1 Results for SPP
As SPP has applications in electronic printings [Gyorfi et al.,
2010], we use VLSI datasets for TSP available online3. Each
instance has the set of points in the 2-dimensional Euclidean
plane, where the number of points ranges from 130 to 21,214.
Since placements of subpaths might affect the performance,
we define the set of subpaths on each instance by the follow-
ing two ways: (a) find a minimum-weight perfect matching
with respect to the distances, and (b) find a perfect matching
randomly. The setting (a) means that the end vertices of a
subpath are expected to be close and the length will be short.
The setting (b) produces random instances. The lengths of a
subpath (u, v) are set to be X · d(u, v), where d is the origi-
nal distance between u and v and X is an integer drawn from
[2, 10] uniformly at random.

We implemented our 1.5-approximation algorithm and the
existing algorithm proposed in [Safilian et al., 2016]. The nu-
merical experiments conduced in [Safilian et al., 2016] report
that their algorithm outperforms other heuristic algorithms
of [Tong-ying et al., 2004; Gyorfi et al., 2010]. Thus we omit
comparison with these heuristic algorithms here.

Figure 5 shows the solution quality of the two algorithms
when subpaths are generated as (a). In the figure, the bars
represent the objective values excluding the total length of
the subpaths. We can see that our algorithm returns a bet-
ter solution for all the instances. In fact, the solution quality
is improved by more than 10% for large instances. The re-
sults for case (b) (Figure 6) show even a bigger improvement.
This is because case (b) has longer subpaths, which makes the

3http://www.math.uwaterloo.ca/tsp/vlsi/index.html
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Figure 5: The length for SPP (excluding subpaths) (a).
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Figure 6: The length for SPP (excluding subpaths) (b).

approximation ratio worse in an additional step of the previ-
ous algorithm. We also observe that the tour lengths almost
match the lower bounds given by minimum spanning trees,
which means that our solutions are almost optimal.

Figure 7 reports the actual execution time. Both algorithms
take O(n3) time, but ours is always faster than the previous
one by around 30%. This is because our algorithm is simpler
than the previous one. Note that an instance with up to 10,000
vertices can be solved within 20 minutes.

In summary, we observe that both the solution quality and
the computation time of our algorithm outperform the previ-
ous one’s.

5.2 Results for SGPP
Similarly to SPP, we use VLSI datasets for TSP. We define
the set of subgroups on each instance by the following two
ways: (a) make a group of neighboring vertices in a greedy
way, (b) make a group in a random way. We set the sizes
of subgroups to be all 3 or all 20. The length c(u, v) of an
inner edge (u, v) is set to be X · d(u, v), where d(u, v) is the
original distance between u and v and X is an integer drawn
from [2, 10] uniformly at random.

We implemented our (1.5 + α)-approximation algorithm
with α = 1. In the algorithm, we solve TSPP exactly as
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Figure 7: The execution time for SPP.
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Figure 8: The length for SGPP (a).

follows. When the subgroup size is 3, we solve it by enu-
merating all the possible paths; when the subgroup size is 20,
we use the dynamic programming algorithm [Bellman, 1962;
Held and Karp, 1962] which runs in O(k22k), where k is the
subgroup size. Thus the returned solution is expected to be
2.5-approximation.

To compare with our algorithm, we implemented a naive
heuristics based on Christofides’ algorithm. We first find a
tour in each subgroup Si from a minimum spanning tree and
a minimum-weight matching, and then find a tour after con-
tracting each subgroup to one vertex in a similar way. Con-
catenating the obtained tours, we construct a feasible tour.
This can be done in O(n3) time.

Figure 8 shows the solution quality of the two algorithms
when subgroups are generated as (a). One can see that Algo-
rithm 2 returns a better solution for all instances. The solu-
tion quality is improved by more than 10%. Interestingly, if
the subgroup size is larger, the improvement becomes more
significant. The results for (b) are similar, and so we omit
them.

We also confirm that our algorithm runs in O(n3) time for
a fixed subgroup size. Because we solve TSPP exactly, our
algorithm takes much time when the subgroup size is 20; for
example, Algorithm 2 took 4,877 seconds for an instance with
5,240 subgroups, while the heuristic 554 seconds.

6 Conclusion and Discussion
In this paper, we proposed a 1.5-approximation algorithm
for SPP, which improves the previous result [Safilian et al.,
2016]. We also introduced SGPP as a generalization of SPP,
and proposed a 3-approximation algorithm. Both of our re-
sults are obtained by utilizing the techniques developed for
TSP and TSPP. Our numerical experiments showed the supe-
riority of our approximation algorithms in terms of the solu-
tion quality and the computational time.

As we mentioned in the introduction, the metric SGPP is
a generalization of the metric CTSP. There exists a 11/4-
approximation algorithm for the metric CTSP [Guttmann-
Beck et al., 2000]. By incorporating the ideas used there, it
seems possible to improve the approximation ratio for SGPP.
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