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Abstract
Internet advertising revenue has surpassed broad-
cast revenue (including cable televisions) very re-
cently due to the rapid growth of e-commerce and
information technology. As online advertising has
become a major source of revenue for online pub-
lishers, such as Google and Amazon, one problem
facing them is to optimize the ads selection and al-
location in order to maximize their revenue. Al-
though there is a rich body of work that has been
devoted to this field, uncertainty about models and
parameter settings is largely ignored in existing al-
gorithm design. To fill this gap, we are the first to
formulate and study the Robust Ad Allocation prob-
lem, by taking into account the uncertainty about
parameter settings. We define a Robust Ad Allo-
cation framework with a set of candidate parame-
ter settings, typically derived from different users
or topics. Our main aim is to develop robust ad
allocation algorithms, which can provide satisfac-
tory performance across a spectrum of parameter
settings, compared to the (parameter-specific) opti-
mum solutions. We study this problem progressive-
ly and propose a series of algorithms with bounded
approximation ratio.

1 Introduction
In this paper, we are the first to study the Robust Ad Alloca-
tion problem, in which our goal is to maximize the expected
revenue by selecting and allocating a group of ads to an ad
space with limited number of slots. We assume that the rev-
enue can be generated only from a click on an ad. Different
from most of existing works, we take into account the impact
of unreliable estimates. We study our problem under a sim-
ple and intuitive model called the Cascade Model [Craswell
et al., 2008]. The cascade model was originally proposed in
organic search, and have been empirically verified using data
from commercial search engines [Gomes et al., 2009]. The
basic cascade model assumes that the user scans through slot-
s in order π. Having examined ad ai, the user clicks it with
(ad-specific) probability qi, and continues to scan the next ad
with (ad-specific) probability ci. Each ad is associated with
a per-click value λi. One common objective of ad allocation

is to maximize the expected revenue. Most existing works
assume that the parameters in the click-through models are
pre-known and accurate. However, this is generally not true
due to incomplete or inaccurate knowledge, and unreliable
estimations. Here we list two major contributors to this un-
certainty.

Unreliable estimation of user’s behavior. Due to incom-
plete knowledge of user’s profile, and limitations of the es-
timation model that has been used, some estimates, such as
click-through rate, are often inaccurate, or completely wrong
in the worst-case. In addition, user’s behavior can be heavily
influenced by environmental factors and therefore is highly
unpredictable.

Unreliable estimation of user’s identity. Sharing the
same account or device with multiple users has been increas-
ingly popular. [White et al., 2014] found that over half of the
machine identifiers comprise the search queries of multiple
users leading to disorganized search logs for the personalized
search service. As reported in [Giura et al., 2014], half of
the survey respondents share their tablets with their spouse,
resulting in the interweave of historical records without dis-
criminating different users. All these have made it even more
difficult to generate accurate estimates.

In this work, we introduce and study the Robust Ad Al-
location problem by taking into account the uncertainty of
underlying models. We present effective and efficient algo-
rithms with provable performance bound in the presence of
uncertain parameter settings. The ultimate goal is to find an
ad allocation that can simultaneously maximize the expected
revenue across all candidate models. Compared with stochas-
tic guarantees, our adversarial setting is able to generate more
robust solutions in practice.

The main contributions are summarized as follows.

1. To best capture all those uncertainties mentioned earli-
er, we introduce a model space Θ that is composed of
a number of candidate models. Each candidate model
θ ∈ Θ is derived from a possible parameter setting, in-
cluding click-through rate, continuation probability, and
slate sequence. We define our robust advertising prob-
lem based on this model space and aim at finding an ad
allocation that maximize the worst-case approximation
ratio across all candidate models.

2. The model we analyze evolves progressively, and we
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propose a serial of algorithms using Double Oracle
method. We prove that all of our approaches achieve
optimal or near-optimal performance.

3. We also extend our results to continuous space model
and show how to build a finite model space from a con-
tinuous model.

2 Related Work
Due to the increasing popularity of e-commerce and World
Wide Web, there is huge body of work that has been de-
voted to the topic of internet advertising (e.g., [Edelman et
al., 2005; Lahaie et al., 2007; Varian, 2007]). Some of
them [Dembczynski et al., 2008; Attenberg et al., 2009;
Xiong et al., 2012; Wang et al., 2013] focus on predict-
ing the click probability of an ad. Meanwhile, several pa-
pers focus on the effectiveness measurement of internet ad
campaign [Gerken, 2008; Lindsay et al., 2009; Harvey et
al., 2010]. The other category of work study internet ad
campaign problem [Lai et al., 2010; Baldacci et al., 2013;
Hwang et al., 2013] by formulating it as a multi-stage deci-
sion problem. Our work is closely related to sponsored search
auctions [Aggarwal et al., 2008]. One major challenge in our
setting is to deal with the negative externalities among adver-
tisements, e.g., the click probability of all future ads decreas-
es as a user may leave the site before examining them. [Ghosh
and Mahdian, 2008] adopted a choice model to describe user
click behaviors, and they show that the optimization prob-
lem under this model is NP-hard. [Aggarwal et al., 2008;
Kempe and Mahdian, 2008] study the social welfare maxi-
mization problem under the cascade model. However, ma-
jority of existing works assume that the click through rate is
known precisely in advance. This assumption may not always
hold due to incomplete or inaccurate knowledge, and unreli-
able estimations. We are the first to study the Robust Ad Al-
location problem, taking into account the uncertainty of un-
derlying models. We present a series of effective and efficient
algorithms in the presence of uncertain parameter settings.

3 Click-Through Model and Problem
Formulation

We consider the problem of selecting and allocating a set of n
adsA to display in an ad space with m slots. Each ad ai ∈ A
is associated with a per-click revenue λai , which specifies the
amount of advertising revenue that is generated from a click
on that ad. In order to maximize the expected revenue that
is generated, the ad network needs to optimize their selection
of ads and carefully decide the sequencing of selected ads in
an ad space. Next we introduce the click-through model and
important notations adopted in this paper.

3.1 Click-Through Model
Basic Model: We adopt Cascade Model [Craswell et al.,
2008] in this paper and assume that the user will view the ads
sequentially. After examining an ad, say ai, in the sequence,
the user clicks ai with probability qai . This click probabil-
ity is decided by the intrinsic quality or relevance of ad ai.
Independently of whether ad ai was clicked or not, the user

continues to examine the next ad with probability cai ; other-
wise, terminates the scanning process. Let σ ∈ Σ denote one
ad allocation, where Σ is the (ad allocation) strategy space,
we use σ(i) to denote the ad placed in slot i by σ. Given
any ad allocation σ ∈ Σ, the user will see a particular slot k
with probability

∏k−1
i=1 cσ(i), and the click-through rate of ad

aσ(k) is therefore qσ(k)

∏k−1
i=1 cσ(i). As a result, the expected

revenue of σ can be calculated as:

γ(σ) =
m∑
k=1

(λσ(k)qσ(k)

k−1∏
i=1

cσ(i)) (1)

3.2 Robust Ad Allocation
Our work is motivated by the following observation: Due to
the unreliable estimation of user’s preference and identity, the
parameters used in Equation (1), including the click proba-
bility and continuation probability of each ad, are not known
precisely. As a result, there may exist a number of candidate
click through models due to different parameter settings. In
addition, the sponsored search ads are often placed in multi-
ple different slates by search engines [Kempe and Mahdian,
2008], e.g., the mainline ads and the sidebar ads. It is possible
that different users may scan those slates in different orders.

To best capture these uncertainties, we introduce a model
space Θ that is composed of possible candidate models. Each
candidate model θ ∈ Θ can be represented by

θ , 〈qθ, cθ, πθ〉

• qθ = {qθai |ai ∈ A} is the click probabilities under model
θ, where qθai represents the click probability of ai under θ;
• cθ = {cθai |ai ∈ A} is the continuation probabilities un-

der model θ, where cθai represents the continuation probabili-
ty of ai under θ;
• πθ is the slate sequence of model θ. Assume there are L

of slates S = {s1, · · · , sL}, where L is a small constant in
practise. Each slate s ∈ S contains ms slots, we use πθ(l) to
denote the l-th slate that is examined by the user under θ.

In the rest of this paper, we assume that the model space is
much smaller than the allocation space: |Θ| � |Σ|. We will
relax this assumption in Section 8 by extending our results
to continuous space model. Given a candidate model θ and
allocation σ, let σ∗θ denote the optimal allocation under θ, we
define the approximation ratio of σ under θ as

ρθ(σ) =
γθ(σ)

γθ(σ∗θ)
.

Our objective is to find a mixed strategy of ad allocation that
maximizes the worst-case approximation ratio across all can-
didate models. Next we formally define our Robust Ad Allo-
cation problem (RA).

RA: Maximize minθ∈Θ

∑
σ∈Σ xσρθ(σ)

subject to: {∑
σ∈Σ xσ = 1

xσ ≥ 0, ∀σ ∈ Σ
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In the above formulation, xσ indicates the probability that
σ will be selected. Our goal is to find a mixed strategy xΣ =
{xσ|σ ∈ Σ} that performs well in the worst-case. Due to
space constraints, the missing proofs are deferred to the full
version.

4 Optimal Policy when θ , 〈qθ, c, π〉.
To motivate our ideas, we first study a special case by as-
suming both continuation probability and slate sequence are
model-independent, i.e., all models share the same continua-
tion probability c and slate sequence π.

After introducing an additional variable Z, below is the
standard formulation for computing a maximin strategy.

Primal: Maximize Zσ∈Σ

subject to: 
∑
σ∈Σ xσ = 1

xσ ≥ 0, ∀σ ∈ Σ

Z ≤
∑
σ∈Σ xσρθ(σ), ∀θ ∈ Θ

This LP has |Σ| variables which could easily be exponen-
tial in the number of ads. One possible approach to han-
dle this case is ellipsoid algorithm [Grötschel et al., 1981].
However, this method lacks of numerical stability and suffers
from poor performance. We decide to adopt Double Oracle
[McMahan et al., 2003] which is capable of solving certain
LP problems with exponential number of variables more effi-
ciently in practice.

4.1 Double Oracle
The basic idea of Double Oracle is to model RA as a zero-
sum game between the defender and the attacker. The pure
strategies of the defender correspond to the ad allocation s-
pace Σ, and the pure strategies of the attacker correspond to
the candidate model space Θ. Our goal is to find a maximin
strategy for the defender. The detailed description of Double
Oracle is listed in Algorithm 1. Σ is the set of ad allocations
generated so far and Θ is the set of attacker models generat-
ed so far. Primal(Σ,Θ) finds an equilibrium of the two-player
zero-sum game composed of the sets of pure strategies, Σ and
Θ. The formal definition of Primal(Σ,Θ) is listed as follows.

Primal (Σ,Θ): Maximize Zσ∈Σ

subject to:
∑
σ∈Σ xσ = 1

xσ ≥ 0, ∀σ ∈ Σ

Z ≤
∑
σ∈Σ xσρθ(σ), ∀θ ∈ Θ

Primal(Σ,Θ) and its dual return xΣ and yΘ, which are the
current equilibrium mixed strategies over Σ and Θ respective-
ly. The Defender Oracle (Section 4.2) generates an ad alloca-
tion σ ∈ Σ that is a best response for the defender against yΘ.
(This is a best response from Σ, not restricted to Σ). By enu-
merating all models in Θ, the Attacker Oracle (Section 4.3)
generates a attacker model θ that is a best response for the

attacker against xΣ. (This is the best response from Θ, not
just Θ.)

The starting point of double oracle is a small set of pure
strategies of each player, and we will expand this set in itera-
tions by applying the best-response oracles from both players
to the current solution. The convergence is achieved when Σ
and Θ can not be expanded further. A more detailed descrip-
tion and analysis of this approach can be found in [McMahan
et al., 2003]. As shown in [McMahan et al., 2003], if both
Defender Oracle and Attacker Oracle can be solved optimal-
ly, the double oracle approach returns an optimal mixed strat-
egy. Then the following theorem follows immediately from
Lemma 3 and the optimality of the Attacker Oracle.
Theorem 1 The double oracle approach (Algorithm 1) re-
turns an optimal mixed strategy of ad allocation xΣ.

Algorithm 1 Double Oracle for Robust Advertising

1: Initialize Σ by selecting an arbitrary ad allocation.
2: Initialize Θ by selecting an arbitrary model.
3: repeat
4: (xΣ, yΘ)← Primal(Σ,Θ);
5: σ ← DO (yΘ); B Algorithm 2
6: Σ = Σ

⋃
{σ};

7: θ ← AO (xΣ); B Section 4.3
8: Θ = Θ

⋃
{θ};

9: until convergence
10: Return (xΣ, yΘ)

4.2 Defender Oracle
In this section, we focus on solving the Defender Oracle prob-
lem and compute the best pure strategy for the defender.
Definition 1 (Defender Oracle Problem) Given an attacker
mixed strategy yΘ = {yθ|θ ∈ Θ}, i.e., θ ∈ Θ happens with
probability yθ, find arg maxσ

∑
θ∈Θ yθρθ(σ), i.e., an ad al-

location that maximizes the expected approximation ratio.
Given a fixed model θ, its optimal allocation σ∗θ and revenue
γ∗θ can be computed using dynamic programming [Kempe
and Mahdian, 2008]. To simplify the notation, we use γ∗θ
to represent γθ(σ∗θ).

Lemma 1 Consider any ad allocation σ, the expected ap-
proximation ratio of σ under yΘ is

ρ(σ) =
m∑
k=1

λσ(k)

∑
θ∈Θ

(yθ
qθσ(k)

γ∗θ

k−1∏
i=1

cσ(i))

 .

Proof: Since the click through rate of ad σ(k)

under θ is qθσ(k)

∏k−1
i=1 cσ(i), then the expected rev-

enue of σ(k) under θ is λσ(k)q
θ
σ(k)

∏k−1
i=1 cσ(i). Thus,

the expected approximation ratio of σ under yΘ is∑m
k=1

(
λσ(k)

∑
θ∈Θ(yθ

qθσ(k)

γ∗θ

∏k−1
i=1 cσ(i))

)
. 2

The next lemma reveals an important structural property of
any optimal ad allocation.
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Lemma 2 Assume σ is an optimal ad allocation under yΘ.
Consider any two ads σ(k1) and σ(k2) where k1 ≤ k2, we
have

λσ(k1)

∑
θ∈Θ(yθ

qθσ(k1)

γ∗θ
)

1− cσ(k1)
≥
λσ(k2)

∑
θ∈Θ(yθ

qθσ(k2)

γ∗θ
)

1− cσ(k2)
(2)

Given Lemma 2 in hand, we next show how to compute an
optimal ad allocation using dynamic programming. This part
is similar to the approach developed for traditional ad allo-
cation in [Kempe and Mahdian, 2008]. We first sort all ads

in non-decreasing order of
λai

∑
θ∈Θ(yθ

qθai
γ∗
θ

)

1−cai
. In the following

recurrence, ρ[ai, t] stores the optimum value that can be ob-
tained from ads ai, · · · , an in slots t, · · · , T . According to
Lemma 2, once ai has been selected, it should be placed in s-
lot t. The conditional optimal value gained from placing ai in

slot t can be calculated as λai
∑
θ∈Θ(yθ

qθai
γ∗θ

) + caiρ[ai−1, t−
1]. Otherwise, the optimal value is ρ[ai−1, t], conditioned on
ai is not selected. Thus we adopt the following recurrence:

ρ[ai, t] = max{λai
∑
θ∈Θ

(yθ
qθai
γ∗θ

)+caiρ[ai−1, t−1], ρ[ai−1, t]}.

Algorithm 2 DO (yΘ)

1: Sort all ads in non-decreasing order of
λai

∑
θ∈Θ(yθ

qθai
γ∗
θ

)

1−cai
2: Adopt dynamic programming to find the optimal ad allo-

cation

ρ[ai, t] = max{λai
∑
θ∈Θ

(yθ
qθai
γ∗θ

)+caiρ[ai−1, t−1], ρ[ai−1, t]}

Then we obtain the following lemma.

Lemma 3 Given an attacker mixed strategy yΘ, DO(yΘ) out-
puts an optimal ad allocation.

4.3 Attacker Oracle
The Attacker Oracle problem can be formulated as follows.
Definition 2 (Attacker Oracle Problem) Given a defender
mixed strategy xΣ = {xσ|θ ∈ Σ}, i.e., σ ∈ Σ happens with
probability xσ , find arg minθ∈Θ

∑
σ∈Σ xσρθ(σ), i.e., a mod-

el that minimizes the expected approximation ratio.
Since we are assuming |Θ| � |Σ|, a best attacker’s re-

sponse arg minθ∈Θ

∑
σ∈Σ xσρθ(σ) can be found through

enumeration.

5 PTAS when θ , 〈q, c, πθ〉
In this section, we discuss another special case when all mod-
els share the same click-through rate and continuation proba-
bility θ , 〈q, c, πθ〉. Notice that the only difference between
different candidate models come from the slate sequence πθ.
It turns out that the Defender Oracle problem under this case

has already be studied in [Kempe and Mahdian, 2008] where
they provide a polynomial-time approximation scheme (P-
TAS). As a result, we can use their approach to build a De-
fender Oracle and find a PTAS for the original problem.

6 Approximate Policy when θ , 〈qθ, c, πθ〉
We next study a generalized model by assuming all model-
s share only the same continuation probability c. We still
leverage the double oracle method to tackle this case.

6.1 Double Oracle
We first notice that previous Attacker Oracle can still find the
best response for the attacker in each iteration through enu-
meration. However, as shown in Corollary 3, our Defender
Oracle (a-DO) can only find a (1 − δ) approximate best re-
sponse in each iteration, where δ ∈ (0, 1] is a control param-
eter. Based on Theorem 2 in [McMahan and Gordon, 2003],
we have the following performance bound when the Defender
Oracle is only approximate best response oracle.

Theorem 2 The double oracle approach with a-DO (Algo-
rithm 3) as an approximate Defender Oracle returns a (1−δ)
approximate solution.

6.2 Defender Oracle
We first introduce the outline of a-DO (Algorithm 3). Our
main idea is to convert the original Defender Oracle prob-
lem to an new problem with smaller size, which enables us
to find an approximate solution through enumeration. With-
out loss of generality, assume a1, · · · , a|A| are sorted in non-
increasing order of their continuation probabilities, let g be
the largest number that satisfies

∏g
i=1 cai ≥ δ. Recall that

ms is the size of slate s in the original setting, we now intro-
duce a restricted Defender Oracle problem by restricting s’s
size to min{g,ms} for every slate s ∈ S. We next show that
the gap between the restricted optimal solution and the actual
optimal solution can be bounded.

Lemma 4 Given any attacker mixed strategy yΘ, let σr de-
note the restricted optimal ad allocation with slate size |s| =
min{g,ms} for all slates s ∈ S, and σo denote the optimal
allocation under the original setting, it holds that∑

θ∈Θ

yθρθ(σ
r) ≥ (1− δ)

∑
θ∈Θ

yθρθ(σ
o).

Since the size of each slate is upper bounded by g, we can
find the best ad allocation through enumeration and its time
complexity is O(NgL). The parameter g can be fine tuned,
giving the tradeoff curve with time complexity on the one
end and the approximation ratio on the other end. Based on
Lemma 4, we have

Corollary 3 Given any attacker mixed strategy yΘ, a-
DO(yΘ) achieves approximation ratio (1− δ).

6.3 Improving the Time Complexity
In fact, we can further reduce the time complexity of Al-
gorithm 3. In Lemma 5, we prove that a result similar to
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Algorithm 3 a-DO (yΘ)

1: Assume a1, · · · , a|A| are sorted in non-increasing order
of their continuation probabilities;

2: Find the largest g that satisfies
∏g
i=1 cai ≥ δ;

3: Return the best restricted solution σr;

Lemma 2 also holds within each slate for this case. Giv-
en θ, let

←−−−
Sθ(s) denote all slates examined before s un-

der slate sequence πθ. We write an ad allocation as σ =
{σ1, · · · , σL} where σs represents the ad allocation with-
in each slate s. Consider any model θ and allocation σ,
the probability that slate s can be examined by the user is
Cθs (σ) ,

∏
s∈
←−−−
Sθ(s)

∏
a∈σs ca.

Lemma 5 Assume σ = {σ1, · · · , σL} is an optimal alloca-
tion under yΘ. Consider any two ads σs(k1) and σs(k2) in
slate s with k1 ≤ k2, we have

λσs(k1)

∑
θ∈Θ(yθ

Cθs (σ)

γ∗
θ
qθσs(k1))

1− cσs(k1)

≥
λσs(k2)

∑
θ∈Θ(yθ

Cθs (σ)

γ∗
θ
qθσs(k2))

1− cσs(k2)

(3)

Lemma 5 implies that given a group of candidate ads in
each slate, we do not really need to enumerate all possible
orderings. Instead, we can simply sort them in non-increasing

order of
λa

∑
θ∈Θ(yθ

Cθs (σ)

γ∗
θ

qθa)

1−ca .

7 Approximate Policy when θ , 〈qθ, cθ, πθ〉
For the ultimate model when θ , 〈qθ, cθ, πθ〉, we can stil-
l use a-DO (yΘ) as a Defender Oracle to get an approxi-
mate solution. The only difference is that we need to sort
all ads in non-increasing order of their continuation proba-
bilities for each model, and find the largest g that satisfies
maxθ∈Θ

∏g
i=1 c

θ
ai ≥ δ. However, the enhanced approach

developed in Section 6.3 can not apply to this case. This is
because the property established in Lemma 5 does not hold
when the continuation probabilities are different across dif-
ferent models.

Lemma 6 Given any attacker mixed strategy yΘ, a-DO (yΘ)
outputs an ad allocation with approximation ratio (1− δ).

Then we have the following theorem.

Theorem 4 The double oracle approach with a-DO (yΘ) as
an approximate Defender Oracle returns a (1 − δ) approxi-
mate solution.

8 Extensions to Continuous Model Space
So far we assume a discrete model space, we next discuss the
case when the model space is continuous. One important spe-
cial case of this model is the Perturbation Interval (PI) model
[He and Kempe, 2016]. In their model, the uncertainty about
parameters are characterized as an interval. For each ad ai,
we have two intervals Iqai = [lqi , r

q
i ] and Icai = [lci , r

c
i ], and

we only know that the actual click probability of ai lies in
interval Iqai and the actual continuation probability of ai lies

in interval Icai ; the exact value can be decided by an adver-
sary. It seems that Θ is infinite, e.g., the number of candidate
models is infinite under this model.

Our solution to this difficulty is to discretize the space mod-
el as follows: We partition each interval into a group of points
with step-size ε. Thus, for each ad ai, interval Iqai is mapped

to b r
q
i−l

q
i

ε c points: Qai = {lqi + ε, lqi + 2ε, · · · , rqi }, and in-
terval Icai is mapped to b r

c
i−l

c
i

ε c points: Cai = {lci + ε, lci +
2ε, · · · , rci }. Then we can build an approximate discrete s-
pace model as Θ = ×ai∈A(Qai × Cai). We next prove
that the solution derived under the approximate discrete space
model is close to the optimal solution under the PI model.

Lemma 7 The gap between the worst case approximation
ratio achieved by the optimal solution under PI model and the
one achieved under the approximate discrete space model is
upper bounded by m(m+3)

2
λmaxε
γ , where γ = minθ∈Σ γθ(σ

∗
θ).

Proof: Given any model θ̂ in PI model, we round down
qθ̂ai and cθ̂ai to the nearest point in Qai and Cai , respective-
ly. Now consider an ad allocation σ and any ad σ(k) at
the k-slot, the probability that σ(t) is clicked is

∏k−1
t=1 cσ(t).

After rounding down cθ̂ai , this probability is decreased to∏k−1
t=1 (cσ(t) − min{ε, cσ(t)}). We next prove that the gap

between the “reachability” of σ(k) before and after rounding
down is bounded by kε:

k−1∏
t=1

(cσ(t) −min{ε, cσ(t)}) ≥
k−1∏
t=1

cσ(t) − kε.

We prove this through induction on k. The base case when
k = 1 is obvious since the probability to examine the first ad
is always 1. Next we assume that this relation holds when k =

i, i.e., (
∏i−1
t=1(cσ(t)−min{ε, cσ(t)})) ≥

∏i−1
t=1 cσ(t)−(i−1)ε.

It follows that
i∏
t=1

(cσ(t) −min{ε, cσ(t)})

=

(
i−1∏
t=1

(cσ(t) −min{ε, cσ(t)})

)
(cσ(i) −min{ε, cσ(i)})

≥

(
i−1∏
t=1

cσ(t) − (i− 1)ε

)
(cσ(i) −min{ε, cσ(i)}) (by induction)

=

i∏
t=1

cσ(t) − (i− 1)ε(cσ(i) + min{ε, 1− cσ(i)})

−
i−1∏
t=1

cσ(t) min{ε, cσ(i)}

≥
i∏
t=1

cσ(t) − (i− 1)ε− ε =

i∏
t=1

cσ(t) − iε

By similar approach, we can prove that rounding down qθ̂ai
will add another ε, thus the click through rate of σ(k) is de-
creased by at most (k+ 1)ε. Therefore, after rounding down,
the revenue of any given ad allocation is decreased by at most
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λmax

∑m
t=1(t + 1)ε = λmax

m(m+3)ε
2 . It follows that, the

approximation ratio of any model θ̂ is changed to

γθ̂(σ)− m(m+3)
2 λmaxε

γθ̂(σ
∗
θ̂
)

≥
γθ̂(σ)

γθ̂(σ
∗
θ̂
)
− m(m+ 3)

2

λmaxε

γ

This finishes the proof. 2

8.1 Pure Strategy Setting
We next reveal another interesting property of PI model un-
der pure strategy setting. If only pure strategy is allowed, PI
model can be reduced to an equivalent discrete space model.
Lemma 8 Under PI model with a fixed slate sequence, the
worst case for the ratio in ρ for any ad allocation σ is
achieved by making each qai equal to lqi or rqi , and each cai
equal to lci or rci .
Proof: Our analysis is inspired by the one conducted in [He
and Kempe, 2016]. We first consider the selection of the
click probability. Pick any ad a and fix the parameters of
the other ads a 6= a. Consider any ads allocation σ and
define γσ(x) as the expected revenue of σ when the click
probabilities of all ads a 6= a are qa and the click proba-
bility of a is x. In addition, we assume that the continu-
ation probabilities of all ads a, including a, are ca. Then
γσ(x) can be calculated as follows: if a is not selected in
σ, γσ(x) =

∑m
k=1(λσ(k)qσ(k)

∏k−1
i=1 cσ(i)); otherwise, if a is

located in slot z,

γσ(x) =

z−1∑
k=1

(λσ(k)qσ(k)

k−1∏
i=1

cσ(i)) + λax

z−1∏
i=1

cσ(i)

+
m∑

k=z+1

(λσ(k)qσ(k)

k−1∏
i=1

cσ(i)).

It follows that γσ(x) is a linear function of x.
Let γ∗σ(x) = arg maxσ γσ(x) denote the maximum rev-

enue gained from this model. Since γ∗σ(x) is a maximum of
linear functions of x, it is convex and piecewise linear. Thus
using level set argument, we can prove that the approximation
ratio γσ(x)

γ∗σ(x) is quasi-concave. As a result, the minimum value
of this function lies at one of the endpoints of the interval.

We next consider the selection of the continuation prob-
ability. Pick any ad a and fix the parameters of the other
ads a 6= a. Consider any ads allocation σ and define γσ(y)
as the expected revenue of σ when the continuation proba-
bilities of all ads a 6= a are ca and the continuation prob-
ability of a is y. In addition, we assume that the continu-
ation probabilities of all ads a, including a, are ca. Then
γσ(x) can be calculated as follows: if a is not selected in
σ, γσ(x) =

∑m
k=1(λσ(k)qσ(k)

∏k−1
i=1 cσ(i)); otherwise, if a is

located in slot z,

γσ(x) =
z∑
k=1

(λσ(k)qσ(k)

k−1∏
i=1

cσ(i))

+
m∑

k=z+1

(λσ(k)qσ(k)

z−1∏
i=1

cσ(i)y
k−1∏
i=z+1

cσ(i)).

Figure 1: Worst-case approximation ratio vs. case number.

In either case, γσ(y) is a linear function of y. Let γ∗σ(y) =
arg maxσ γσ(y) denote the maximum revenue gained from
this model. Since γ∗σ(y) is a maximum of linear functions
of y, it is convex and piecewise linear. Similar to the proof
for the selection of click probability, we can prove that the
minimum value of this function lies at one of the endpoints
of the interval.

This lemma can be proved by repeating the same argu-
ments on all ads one by one. 2

Based on Lemma 8, we can easily construct a discrete mod-
el space Θ by enumerating all slate sequences, and parame-
ters chosen from qai ∈ {l

q
i , r

q
i }, and cai ∈ {lci , rci } for each

ad ai.

9 Numerical Evaluation
We generate multiple sets of candidate click-through models
as follows. For each candidate model θ ∈ Θ, we set the num-
ber of ads n = 100, the number of slates L = 3, the number
of ad slots in each slate ms = 5, the continuation probability
of each ad cθai = 0.9. The click through probability of each
ad, qθai , is randomly sampled from [0, 1], and the revenue of
clicking each ad is randomly selected from [1, 10]. A slate se-
quence, πθ, is randomly generated for each candidate model.
We run the simulations for each set of candidate models mul-
tiple rounds and report the worst-case approximation ratio in
Figure 1. As shown in the figure, the approximation ratio s-
tays above 0.71 across all the test cases, which empirically
demonstrates the effectiveness of our algorithm.

10 Conclusion
In this paper, we study the Robust Ad Allocation problem
with unreliable estimates. The input of our problem is a set of
candidate parameter settings, typically derived from different
users or topics, our goal is to develop a robust ad allocation
scheme, which can provide satisfactory performance across a
spectrum of parameter settings, compared to the (parameter-
specific) optimum solutions. We study this problem progres-
sively and propose a series of algorithms based on Double
Oracle approach with bounded approximation ratio. We also
extend our results to continuous space model. One limitation
of this work is that we assume the size of model space is rela-
tively small, and the Attacker Oracle problem is solved using
the brute force approach. We leave it as future work to find
scalable solutions for the Attacker Oracle problem.
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