
Temporal Planning for
Compilation of Quantum Approximate Optimization Circuits

Davide Venturelli1,3, Minh Do2,4, Eleanor Rieffel1, and Jeremy Frank2

1 Quantum Artificial Intelligence Laboratory, NASA Ames Research Center
2 Planning and Scheduling Group, NASA Ames Research Center

3 USRA Research Institute for Advanced Computer Science (RIACS)
4 Stinger Ghaffarian Technologies (SGT Inc.)

Abstract
We investigate the application of temporal plan-
ners to the problem of compiling quantum circuits
to emerging quantum hardware. While our ap-
proach is general, we focus our initial experiments
on Quantum Approximate Optimization Algorithm
(QAOA) circuits that have few ordering constraints
and thus allow highly parallel plans. We report
on experiments using several temporal planners to
compile circuits of various sizes to a realistic hard-
ware architecture. This early empirical evalua-
tion suggests that temporal planning is a viable ap-
proach to quantum circuit compilation.

1 Introduction
We explore the use of temporal planners to optimize compi-
lation of quantum circuits to newly emerging quantum hard-
ware. Previously, only special purpose quantum hardware
was available, namely, quantum annealers that could run
one type of quantum optimization algorithm. The emerging
gate-model processors are universal in that, once scaled up,
they can run any quantum algorithm. IBM recently provided
public access to a 5-qubit gate-model processor through the
cloud [IBM, 2017], recently updated to 17 qubits, and scal-
able gate-model quantum computing architectures are being
manufactured by other groups, such as TU Delft [Versluis
et al., 2016], UC Berkeley [Ramasesh et al., 2017], Rigetti
Computing [Sete et al., 2016], and Google [Boxio, 2016].
All cited groups have announced plans to build gate-model
quantum processors with 40 or more qubits in the near term.

Quantum algorithms process information stored in qubits,
the basic memory unit of quantum processors, and quantum
operations (called gates) are the building blocks of quantum
algorithms, just as instructions on registers are the building
blocks of classical algorithms. Quantum algorithms must be
compiled into a set of elementary machine instructions (the
gates), which are applied at specific times, in order to run
them on quantum computing hardware. For a review of quan-
tum computing, see [Rieffel and Polak, 2011].

Quantum algorithms are often specified as quantum cir-
cuits on idealized hardware since physical hardware has vary-
ing constraints. For example, the emerging gate-model quan-
tum hardware mentioned above use superconducting qubits

in a planar architectures with nearest-neighbor restrictions on
the memory locations (qubits) to which the gates can be ap-
plied. Idealized circuits generally do not consider those near-
est neighbor constraints. For this reason, compiling idealized
quantum circuits to specific hardware requires adding supple-
mentary gates that move qubit states to locations where the
desired gate can act on them.

Quantum computational hardware suffers from decoher-
ence, which degrades the performance of quantum algorithms
over time. Thus, it is important to minimize the duration of
the circuit that carries out the quantum computation, so as to
minimize the decoherence experienced by the computation.
Optimizing the duration of compiled circuits is a challenging
problem due to the parallel execution of gates with differ-
ent durations. Further, for quantum circuits with flexibility
in when the gates can be applied, or when some gates can
be applied in a different order while still achieving the same
computation, the search space for feasible compilations is of-
ten very large. That freedom makes it more challenging to
find optimal compilations, but also means there is a greater
potential win from improved compilation optimization than
for less flexible circuits.

While there has been active development of software li-
braries to synthesize and compile quantum circuits from al-
gorithm specifications [Wecker and Svore, 2014; Smith et
al., 2016a; Steiger et al., 2016a; Devitt, 2016; Barends et al.,
2016], few approaches have been explored for compiling ide-
alized quantum circuits to realistic quantum hardware [Beals
et al., 2013; Brierly, 2015; Bremner et al., 2016], leaving
the problem open for innovation. An analogous issue arising
when compiling classical programs is the register allocation
problem, in which program variables are assigned to machine
registers to improve execution time; this problem reduces to
graph coloring [Fu et al., 2005]. Recent studies explore exact
schemes [Wille et al., 2014], approximate tailored methods
[Kole et al., 2017] or formulations suited for off-the-shelf
Mixed Integer Linear Programming (MILP) solvers such as
Gurobi [Bhattacharjee and Chattopadhyay, 2017].

In this paper, we apply temporal planning techniques to
the problem of compiling quantum circuits to realistic gate-
model quantum hardware. Specifically, we model machine
instructions as PDDL2.1 durative actions, enabling domain-
independent temporal planners to find a parallel sequence
of conflict-free instructions that when executed can achieve

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4440

what the high-level quantum algorithm intends to achieve.
While our approach is general, we focus our initial experi-
ments on QAOA circuits that have few ordering constraints
and thus allow highly parallel plans. We report on experi-
ments using several temporal planners to compile circuits of
various sizes to an architecture inspired by those currently be-
ing built. This early empirical evaluation suggests that tem-
poral planning is a viable approach to quantum circuit com-
pilation. A more elaborate discussions of the techniques and
results obtained can be found in the extended version of this
paper [Venturelli et al., 2017].

2 Architecture-Specific Compilation Problem
Quantum circuits for general quantum algorithms are often
described in an idealized architecture in which any 2-qubit
gate can act on any pair of qubits. In an actual architec-
ture, physical constraints impose restrictions on which pairs
of qubits support gate interactions. For superconducting qubit
architectures, qubits in a quantum processor can be thought of
as nodes in a planar graph, and 2-qubit quantum gates are as-
sociated to edges (Fig. 1). Gates that operate on distinct sets
of qubits may be able to operate concurrently though there
may be additional restrictions, such as requiring the sets to be
non-adjacent, as in Google’s proposed architecture [Boxio,
2016]). Furthermore, there are different types of quantum
gates, each taking different durations, with the duration de-
pending on the specific physical implementation.

In order for the computation specified by the idealized
circuit to be carried out, we use a particular type of 2-qubit
gate, the swap gate, which exchanges the state of two qubits.
A sequence of swap gates moves the contents of two distant
qubits to a location where a desired gate can be applied. Swap
gates may be available only on a subset of edges in the hard-
ware graph, and swap duration may depend on where they
are located. For the purposes of this study, we will consider
the case in which swap gates are available between any two
adjacent qubits on the chip and all swap gates have the same
duration, but our approach can handle the more general cases.

Problem definition: Given an idealized circuit used to
define a general quantum algorithm, the circuit compilation
problem is to find a new architecture-specific circuit that
implements the idealized quantum circuit by adding swap
gates as required. The objective is to minimize the overall
duration to execute all gates in a new circuit.

Compilation example: Fig. 1 shows the hypothetical chip de-
sign we will use for our experiments on circuit compilation.
It is inspired by the architecture proposed by Rigetti Comput-
ing Inc. [Sete et al., 2016]. Qubits are labeled with ni and the
colored edges indicate the types of 2-qubit gates available,
in this case swap gates and two other types of 2-qubit gate
(further described in Section 4).

To illustrate the challenges of finding effective compila-
tion, we present some concrete examples, with reference to
the 8-qubit section in the top left of Fig. 1. Suppose that at
the beginning of the compilation, each qubit location ni is
associated to the qubit state qi. Let us also assume that the

n8

n1 n2 n3

n4

n6
n7

n5

00
00

Figure 1: Left: A schematic for the hypothetical chip design used in
our numerical experiments, with available 2-qubit gates represented
by colored arcs in a weighted multigraph. Each color is associated
to a specified, distinct gate-type and duration: SWAP gates (black)
and two other types of 2-qubits gates (red and blue). The 1-qubit
gates are present at each qubit (black dot). Right: Dashed boxes in-
dicate the 3 different chip sizes used in our empirical evaluation (see
Sec. 5). For visual clarity, only the label locations and the SWAP-
gates for the smaller chip size, corresponding to the top-left sector
of the largest chip, are shown.

idealized circuit requires the application of a red gate to the
states q2 and q4, initially located on qubits n2 and n4. One
way to achieve this task would be to swap the state in n4 with
n1, while at the same time swapping n2 with n3. Another
swap, between n1 and n2, positions q4 in n2 where a red-gate
connects it to q2 (which is now in n3).

The sequence of gates to achieve the stated goal are:

{SWAPn4,n1
, SWAPn2,n3

} → SWAPn1,n2
→ REDn2,n3

≡ RED(q2, q4) (1)

The first line refers to the sequence of gate applications, while
the second corresponds to the algorithm objective specifica-
tion (a task defined over the qubit states). The sequence in
Eq. (1) takes 2τswap + τred clock cycles where τ? represents
the duration of the ?-gate.

As the second example, the idealized circuit requires
BLUE(q1, q2)∧ RED(q4, q2), in no particular order. If τblue >
3 × τswap, the compiler might want to execute BLUEn1,n2

while the qubit state q4 is swapped all the way clockwise in
five SWAPs from n4 to n3 where REDn2,n3

can be executed.
However, if τswap < 3 × τblue, it is preferable to wait until
the end of BLUEn1,n2

and then start to execute the instruction
sequence in Eq. (1).

3 Compiling QAOA for the MaxCut Problem
While our approach can be used to compile arbitrary quan-
tum circuits to a wide range of architectures, in this paper
we concentrate on one particular case: compiling QAOA
circuits [Farhi et al., 2014] for MaxCut to the architecture
shown in Fig. 1. We choose to work with QAOA circuits
because they have many gates that “commute” with each
other (i.e., no ordering enforced). Such flexibility means
that the compilation search space is larger than for other
less flexible circuits. Thus, compared to other less flexible
classes of circuits, finding the optimal compilation is more
challenging, but there is potential for greater compilation
optimization. We selected MaxCut as the target problem

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4441

q1

q5

q3

q4 q7

PS1 MX PS2

q6

Figure 2: An example 6-vertex MaxCut problem on a randomly gen-
erated graph (qstates q2 and q8 are not appearing in this instance) and
the p-s and mix gates for p = 2.

since it has become one of the de facto benchmark standards
for quantum optimization of all types and is considered a
primary target for experimentation in the architecture of
[Sete et al., 2016].

MaxCut Problem: Given a graph G(V,E) with n = |V |
vertices and m = |E| edges. The objective is to partition
the graph vertices into two sets such that the number of edges
connecting vertices in different sets is maximized.

A quadratic boolean objective function for MaxCut is:

UMaxCut =
1

2

∑
(i,j)∈E

(1− sisj), (2)

where si are binary variables, one for each vertex vi, with
values +1 or -1 indicating to which partition the vertex vi is
assigned. From this formulation, an idealized QAOA circuit
requires a 2-qubit gate for each quadratic term in Eq. (2), as
well as a 1-qubit gate for each vertex [Farhi et al., 2014].

Idealized QAOA circuits for MaxCut alternate between a
phase separation step (PS) and a mixing step. The phase-
separation step for QAOA for MaxCut is simpler than for
other optimization problems and consists of a set of identi-
cal 2-qubit gates that must be applied between certain pairs
of qubits, depending on the graph of the MaxCut instance un-
der consideration. We will refer to these as p-s gates, and the
main goal of the compilation is to plan out those gates. All p-
s gates can be carried out in any order (subject to constraints
on the chip). In the mixing phase, a set of 1-qubit operations
are applied, one to each qubit. All p-s gates that involve a
specific qubit q must be carried out before the mixing opera-
tor on q can be applied. These two steps are repeated p times.
We consider p = 1 and p = 2 in our experiments (detailed in
Section 5). Fig. 2 shows a concrete 6-vertex MaxCut example
with the set of available p-s and mix gates for p = 2.

With reference to Fig. 1, the constraints on the compilation
problem are:
• SWAP gates are located at every edge with τswap = 2.
• there are two kind of non-swap gates: P-S gates are 2-

qubit gates and MIX gates are 1-qubit gates.
• P-S gates are located at every edge of the grid, but their

duration τp−s can be 3 or 4 depending on their location
(respectively blue or red edges in Fig.1).
• MIX gates are located at every vertex with τmix=1.

• In the initialization stage, which is not considered as part
of the compilation problem, a quantum state is assigned
to each qubit.

4 Compilation of a Quantum Circuit as
Temporal Planning Problem

Planning is the problem of finding a conflict-free set of
actions and their respective execution times that connects
the initial-state I and the desired goal state G. We now
introduce some key background concepts for the problem of
compiling quantum circuits as a temporal planning problem.

Planners: A planner is software that takes as input a spec-
ification of domain and problem descriptions and returns a
valid plan if one exists. At the abstract level, the planner
needs to solve the QAOA compilation problem exemplified
in Fig. 2: it identifies the required P-S or MIX gates and
builds a conflict-free schedule for all those gates.

Planning Domain Description Language (PDDL) is the de
facto standard modeling languages used by many domain-
independent planners. We use PDDL 2.1, which allows the
modeling of temporal planning formulation in which every
action a has duration da, starting time sa, and end time
ea = sa + da. Action conditions cond(a) are required to be
satisfied either (i) instantaneously at sa or ea or (ii) required
to be true starting at sa and remain true until ea. Action
effects eff (a) may instantaneously occur at either sa or
ea. Actions can execute when their temporally-constrained
conditions are satisfied; and when executed will cause
state-change effects. The most common objective function
in temporal planning is to minimize the plan makespan,
i.e. the shortest total plan execution time. This objective
matches well with the objective of our targeted quantum
circuit compilation problem.

Modeling Quantum Gate Compilation in PDDL 2.1:
PDDL is a flexible language that offers multiple alternative
ways to model a planning problems. These modeling choices
can greatly affect the performance of existing PDDL plan-
ners. For instance, many planners pre-process the origi-
nal domain description before building plans; this is time-
consuming, and may produce large ‘ground’ models depend-
ing on how action templates were written. Also, not all plan-
ners can handle all PDDL language features effectively (or
even at all). We have iterated through different modeling
choices with the objective of constructing a PDDL model
that: (i) contains a small number of objects and predicates
for compact model size; (ii) uses action templates with few
parameters to reduce preprocessing effort; while (iii) ensur-
ing that the model can be handled by a wide range of existing
PDDL temporal planners.

At the high-level, we need to model: (i) conceptually
how actions representing P-S, SWAP, and MIX gates affect
qubits and qubit states (qstate); (ii) the actual qubits and
qstates involved with a particular compilation problem,
their initial locations and final goal requirements, (iii) the
underlying qubit-connecting graph structure. We follow

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4442

(:constants q1 q2 q3 q4 q5 q6 q7 q8 - qstate)

(:durative-action mix q1 at 1
:parameters ()
:duration (= ?duration 1)
:condition (and (at start (located at 1 q1))

(at start (GOAL PS1 q1 q5))
(at start (GOAL PS1 q1 q7))
(over all (not (mixed q1))))

:effect (and (at start (not (located at 1 q1)))
(at end (located at 1 q1))
(at end (mixed q1))))

Figure 3: PDDL model of an example MIX gate.

the conventional practice of modeling (i) in the domain
description while (ii) is captured in the problem description.
One common practice is to model (iii) within the problem
file. However, given that we target a rather sparse underlying
qubit-connecting graph structure (see Fig. 1), we decide
to capture it within the domain file to ease the burden of
the potentially time-consuming step of “grounding” and
pre-processing step for existing planners. Specifically:

Objects: We need to model three types of object: qubits,
qstates, and the location of the P-S and SWAP gates (i.e.,
edges connecting different qubits). Since qstates are associ-
ated to specific qubits (by means of the predicate located at,
see Fig. 3 for concrete example), they have been modeled
explicitly as planning objects, while the qubits and the gate
locations (i.e., edges) are modeled implicitly. It is clear from
the action definitions in Fig. 3 that qubit locations are embed-
ded explicitly within the action declaration. This approach
avoids declaring qubits as part of the action parameters,
significantly reducing the number of ground actions to be
generated. Our empirical evaluation shows that capturing
the graph structure explicitly in the domain file speeds up
the preprocessing time of all tested planners, sometime as
significantly as 40x.

Actions: Temporal planning actions are created to model: (i)
2-qubit SWAP gates, (ii) 2-qubit P-S gates, and (iii) 1-qubit
MIX gates. The most complex constraint to model is the
conditions to mix a qstate q given the requirement that all
P-S gates involving q in the previous phase separation step
have been executed. We explored several other choices to
model this requirement such as: (i) use a metric variable
PScount(q) to model how many P-S gates involving q
have been achieved at a given moment; or (ii) use ADL
quantification and conditional effect constructs supported in
PDDL. Ultimately, we decided to explicitly model all P-S
gates that need to be achieved as conditions of the MIX(q)
action. This is due to the fact that alternative options require
using more expressive features of PDDL2.1 which are not
supported by many effective temporal planners1. Fig. 3

1Only one of six planners in the Temporal track of the latest IPC
(2014) supports numeric variables and also only one of six supports
quantified conditions. Preliminary tests with our PDDL model using
metric variables using several metric-temporal planners shows that

shows an example of the mix gate modeled in PDDL2.

Alternative model: Given that non-temporal planners can
perform much better than temporal planners on problems of
the same size, we have also created the non-temporal ver-
sion of the domain by discretizing action durations into con-
secutive “time-steps” ti, introducing additional predicates
next(ti, ti+1) enforcing a link between consecutive time-
steps. However, initial evaluation of this approach with the
M/Mp SAT-based planner [Rintanen, 2012] (which optimize
parallel planning steps) indicated that the performance of
non-temporal planners on this discretized (larger) model is
much worse than the performance of existing temporal plan-
ners on the original model.

5 Empirical Evaluation
We have modeled the QAOA circuit compilation problem
as described in the previous sections and tested them using
various off-the-shelf PDDL 2.1 Level 4 temporal planners.
The results were collected on a RedHat Linux 2.4Ghz
machine with 8GB RAM.

Problem generation: three grid sizes with N = 8, 21 and
40 qubits (dashed boxes in Fig. 1) were used. This design
in Fig. 1 is representative of devices to come in the next 2
years; a gate-model 8-qubit chip with the grid we used will
be available shortly from Rigetti. For each grid size, we
generated two problem classes: (i) p = 1 (only one PS-mixing
step) and (ii) p = 2 (two PS-mixing steps). To generate the
graphs G for which a MaxCut needs to be found, for each
grid size, we randomly generate 100 Erdös-Rényi graphs G
[Erdös and Rényi, 1960]. Half (50 problems) are generated
by choosing N of N(N −1)/2 edges over respectively 7, 18,
36 qstates randomly located on the circuit of size 8, 21, and
40 qubits (referred to herafter as ‘Utilization’ u=90%). The
other half are generated by choosing N edges over 8, 21, and
40 qstates, respectively (referred to herafter as ‘Utilization’
u=100%). In total, we report tests on 600 random planning
problems with size ranging from 1024 - 232,000 ground
actions and 192 - 8,080 predicates.

Planner setup: Since larger N and/or p lead to more com-
plex settings with more predicates, ground actions, and thus
require planners to find longer plans, the allocated cutoff
time for different setting are as follow: (i) 10 minutes for
N = 8, (ii) 30 minutes for P = 1, N = 21; (iii) 60 min-
utes for other cases. We select planners that performed well
in the temporal planning track of previous IPCs, while at the
same time representing a diverse set of planning technolo-
gies: (i) LPG: which is based on local search with restarts
over action graphs [Gerevini et al., 2003]; (ii) Temporal
FastDownward (TFD): a heuristic forward state-space (FSS)

they perform much worse than on non-metric version.
2The full set of PDDL model for all our tested problems is

available at: https://ti.arc.nasa.gov/m/groups/
asr/planning-and-scheduling/VentCirComp17_
data.zip.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4443

P1 P2
N8 N21 N40 N8 N21

Util 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0
SGPlan 50 50 50 50 50 50 50 50 - -
TFD 50 50 50 50 - - 50 50 50 50
LPG 50 50 50 50 10 14 50 50 - 6

Table 1: Summary of the solving capability of selected planners.
Numbers indicate how many random problems out of 50 have been
solved.

p=1, N8 p=1, N21 p=2, N8
Utilization 0.9 1.0 0.9 1.0 0.9 1.0
SGPlan 0.74 0.76 0.68 0.68 0.76 0.80
TFD 0.96 0.98 0.96 0.95 1.0 0.99
LPG 0.82 0.83 0.83 0.81 0.53 0.51

Table 2: Plan quality comparison between different planners using
IPC formula (higher value indicates better plan quality).

search planner with post-processing to reduce makespan [Ey-
erich et al., 2009]; and (iii) SPGlan: partition the plan-
ning problem into subproblems that can be solved separately,
while resolving the inconsistencies between partial plans us-
ing extended saddle-point condition [Wah and Chen, 2004;
Chen and Wah, 2006].

We ran SGPlan (Ver 5.22) and TFD (Ver IPC2014) with
their default parameters while for LPG (Ver TD 1.0) we
ran all three available options: -speeed, -quality, and find n
plans (with n = 10). Since LPG (n = 10) option always
dominates both LPG-quality and LPG-speed by solving more
problems with better overall quality for all setting, we will
exclude results for LPG-quality and LPG-speed from our
evaluation discussion. For the rest of this section, LPG result
is represented by LPG (n = 10).

Evaluation Result Summary: Table 1 shows the overall per-
formance on the ability to find a plan of different planners.
SGPlan stops after finding one valid plan while TFD and LPG
exhaust the allocated time limit and try to find gradually im-
proving quality plans. Since no planner was able to find a
single solution for N = 40 and p = 2, we omit the result for
this case from Table 1. Overall, SGPlan and TFD were able to
solve the highest number of problems, followed by LPG. SG-
Plan can find a solution very quickly, compared to the time it
takes other two planners to find the first solution. It is the only
planner that can scale up to N = 40 for p = 1 (finding plans
with 150-220 actions). Unfortunately, SGPlan stopped with
an internal error for N = 21 and p = 2. TFD generally spent
a lot of time on preprocessing for p = 1, N = 21 (around 15
minutes) and p = 2, N = 21 (around 30 minutes) but when
it’s done with the pre-processing phase it can find a solution
very quickly and also can improve the solution quality very
quickly. TFD spent all of the 60 minutes time limit on pre-
processing for N = 40 problems. LPG can generally find the
first solution quicker than TFD (still much slower than SG-
Plan) but does not improve the solution quality as quickly as
TFD over the allocated timelimit.
Plan quality comparison: we use the formula employed by
the IPCs to grade planners in the temporal planning track

0 20 40 60 80 100 120 1400

50

100

150

200

MAKESPAN (TFD)

M
A
K
ES

PA
N
(S
G
Pl
an
)

0 20 40 60 80 100 120 140
MAKESPAN (TFD)

0 20 40 60 80 100 120 140
MAKESPAN (SGPlan)

M
A
K
ES

PA
N
(L
PG

k1
0)

0 20 40 60 80 100 120 1400

50

100

150

200

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

M
A
K
ES

PA
N
(S
G
Pl
an
)

M
A
K
ES

PA
N
(L
PG

k1
0)

M
A
K
ES

PA
N
(L
PG

k1
0)

M
A
K
ES

PA
N
(L
PG

k1
0)

MAKESPAN (TFD) MAKESPAN (TFD) MAKESPAN (SGPlan)

Figure 4: Instance-by-instance comparison of SGPlan, TFD and
LPG. Top panel shows results for N=8: red dots indicate instances
with u=90% while blue dots are for u=100%. Lower makespan data
points refer to p=1 while higher makespans refer to p=2 (see Ta-
ble 1). Bottom panel shows results for N = 21: Green indicates
u=90% and yellow u=100%.

since IPC6 [Helmert et al., 2008]: for each planning in-
stance i, if the best-known makespan is produced by a plan
Pi, then for a given planner X that returns a plan P i

X for
i, the score of P i

X is calculated as: makespan(Pi) divided
by makespan(P i

X). A comparative value closer to 1.0 indi-
cates that planner X produces better quality plan for instance
i. We use this formula and average the score for our three
tested planners over the instance ensembles that are com-
pletely solved by the time cutoff. Table 2 compares different
planners with regard to plan quality. For N = 8 and p = 1,
TFD found the best or close to the best quality plans. LPG is
about 15% worse while SGPlan, which unlike TFD and LPG
only find a single solution, produces lower quality plans. The
comparison results for N = 21 and p = 1 is similar. For
N = 8 and p = 2, TFD again nearly always produces the best
quality plan. However, for this more complex case, SGPlan
produces overall better quality plans compared to LPG, even
though LPG returns multiple plans for each instance.

Fig. 4 shows in further detail the head-to-head makespan
comparison between different pairs of planners, specifically
pairwise comparisons between TFD, SGPLan, and LPG:
TFD always dominates SGPlan, TFD dominates LPG major-
ity of the times, and SGPlan dominates LPG on bigger prob-
lems, but is slightly worse on smaller problems.
Planning time comparison: Both TFD and LPG use “any-
time” search algorithms and use all of their allocated time to
try finding gradually better quality plans. In contrast, SGPlan
returns a single solution and thus generally take a very short

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4444

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32 33 34 35

n1n2n3n4n5n6n7n8

1
3

4

5

6

7
+

+
+
+

+
+

+ +

+ +

Figure 5: Compilation of p = 2 QAOA performed by TFD for the
MaxCut problem depicted in Fig. 2 on the N = 8 grid in Fig. 1;
with time-step on the x-axis and qubit locations on the y-axis. Each
row indicates what gate operates on each qubit at a given time-step
during the plan. Colored blocks represents p-s gates (of duration 3 or
4 depending on whether they are RED or BLUE). White blocks are
swap gates. Gates synchronized in pair, since they involve 2-qubit.
Black blocks with numbers are mix gates acting on the correspond-
ing state. Gates marked with a + indicate superfluous gates that
could be detected and eliminated in post-processing.

amount of time with the median solving time for SGPlan in
p=1|N8, p=1|N21, P=1|N40 and P=2|N8 are 0.02, 1, 25,
and 0.05 seconds.

Other planners: we also conducted tests on: VHPOP,
HSP*, CPT, and POPF. While LPG, SGPlan, and TFD were
selected for their ability to solve large planning problems, we
hoped that HSP*, CPT, and VHPOP would return optimal
plans to provide a baseline for plan quality estimation.
Unfortunately, HSP*, CPT, VHPOP (and also POPF) failed
to find a single plan even for our smallest problems.

Discussion: Our preliminary empirical evaluation shows that
the test planners provide a range of tradeoffs between scala-
bility and plan quality. At one end, SGPlan can scale up to
large problems and solve them in a short amount of time, pro-
viding reasonably good quality plans (compared to the best
known solutions). At the other end, TFD utilizes all of the
allocated time to find the best quality solutions but, in gen-
eral, is the slowest by far to obtain valid solution. LPG bal-
ances between the two: it can either find one solution quickly
like SGPlan or can utilize the whole cutoff time to find bet-
ter quality solutions. Since planning is exponentially hard
with regard to problem size, being able to partition it into sub-
problems of smaller sizes definitely helps SGPlan find a valid
solution quickly. However, there are several reasons that TFD
and LPG can find overall better quality solutions: (i) their
anytime algorithms allow them to gradually find better qual-
ity plans, using the previously found plans as a baseline for
pruning unpromising search directions; (ii) SGP’s partition-
ing algorithm is based on logical relationship between state
variables and actions and ignores all temporal aspects. Thus,
combining plans for sub-problems using logical global con-
straints can lead to plans of lower quality for time-sensitive
objective function such as minimizing the plan makespan.

What’s missing from our analysis is the assessment on how
good the quality of the best plans found compared to optimal
solutions. At the moment, there is no published work on find-
ing optimal solution for this problem and, as outlined above,
our current effort to get existing optimal-makespan planners
to find solutions has not been successful. This is one im-
portant future research direction. Based on an “eye-test” and

manual analysis, the best plans returned are usually of good
quality but not without defects. Fig. 5 shows a visualization,
in a ‘Gantt chart’ format, of a plan found by TFD for the
problem instance depicted in Fig. 2. In this plan, qstate q1
initially located at n1, is undergoing the following sequence
of actions:

P-S3(q1, q4)→ P-S3(q1, q3)→ P-S4(q1, q5)→ MIX(q1)

→ WAIT(4)→ P-S4(q1, q5)→ WAIT(2)

→ P-S3(q1, q3)→ WAIT(3)→ P-S3(q1, q4)

This plan has a short makespan, but contains some unneces-
sary gates. Examples are the repeated swaps at time 11 and
30, and the mixing of the un-utilized logical states q2 and
q8 at times 1,5. These spurious gates/actions do not affect
the makespan, and they can be identified and eliminated by
known plan post-processing techniques [Do and Kambham-
pati, 2003]. We also believe a tighter PDDL model will help
eliminate extra gates.

6 Future Work
This work paves the way for potentially impactful future work
on the use of artificial intelligence methods for quantum com-
puting. In future work, we plan to further tune the perfor-
mance of the planners, including choosing an initial assign-
ment of qstates to qubits favorable for compilation. In order
to scale reliably to larger QAOA circuit sizes, we will de-
velop decomposition approaches in which p > 1 could be
divided into multiple p = 1 problems to be solved indepen-
dently and matched in a post-processing phase. We will also
compare with other approaches to this compilation problem
such as sorting networks [Beals et al., 2013; Brierly, 2015;
Bremner et al., 2016], and we will look at parameters values
for the durations that match existing hardware, in collabora-
tion with experimental groups. A virtue of the planning ap-
proach is that the framework is very flexible with respect to
features of the hardware graph, including irregular structures.
In the PDDL modeling, we can include additional features
that are characteristic of quantum computer architectures,
such as the crosstalk effects of 2-qubit gates and the ability
to quantum teleport quantum states across the chip [Copsey
et al., 2003]. We will also consider other families of quan-
tum circuits and more sophisticated measures against which
to optimize the compilation beyond simply the duration of
the cirucit. This temporal planning approach should be of
great interest to the community developing low-level quan-
tum compilers for generic architectures [Steiger et al., 2016b;
Häner et al., 2016] and to designers of machine-instructions
languages for quantum computing [Smith et al., 2016b;
Bishop, 2017].

Acknowledgements
Authors acknowledge useful discussions with Will Zeng,
Robert Smith, and Bryan O’Gorman. The authors appreci-
ate support from the NASA Advanced Exploration Systems
program and NASA Ames Research Center (Sponsor Award
No. NNX12AK33A).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4445

References
[Barends et al., 2016] R. Barends, A. Shabani, L. Lamata, J. Kelly,

A. Mezzacapo, U. Las Heras, R. Babbush, A. G. Fowler,
B. Campbell, Y. Chen, et al. Digitized adiabatic quantum com-
puting with a superconducting circuit. Nature, 534(7606):222–
226, 2016.

[Beals et al., 2013] R. Beals, S. Brierley, O. Gray, A. W. Harrow,
S. Kutin, N. Linden, D. Shepherd, and M. Stather. Efficient dis-
tributed quantum computing. Proceedings of the Royal Society
A., 469(2153):767 – 790, 2013.

[Bhattacharjee and Chattopadhyay, 2017] Debjyoti Bhattachar-
jee and Anupam Chattopadhyay. Depth-optimal quantum
circuit placement for arbitrary topologies. arXiv preprint
arXiv:1703.08540, 2017.

[Bishop, 2017] Lev S Bishop. Qasm 2.0: A quantum circuit inter-
mediate representation. Bulletin of the American Physical Soci-
ety, 62, 2017.

[Boxio, 2016] S. Boxio. Characterizing quantum supremacy in
near-term devices. In arXiv preprint arXiv:1608.0026, 2016.

[Bremner et al., 2016] M. J. Bremner, A. Montanaro, and D. J.
Shepherd. Achieving quantum supremacy with sparse and
noisy commuting quantum computations. In arXiv preprint
arXiv:1610.01808, 2016.

[Brierly, 2015] S. Brierly. Efficient implementation of quantum
circuits with limited qubit interactions.”. In arXiv preprint
arXiv:1507.04263, 2015.

[Chen and Wah, 2006] Y. Chen and B. Wah. Temporal planning
using subgoal partitioning and resolution in sg-plan. Journal of
Artificial Intelligence Research, 26:323 – 369, 2006.

[Copsey et al., 2003] Dean Copsey, Mark Oskin, Francois Impens,
Tzvetan Metodiev, Andrew Cross, Frederic T Chong, Isaac L
Chuang, and John Kubiatowicz. Toward a scalable, silicon-based
quantum computing architecture. IEEE Journal of selected topics
in quantum electronics, 9(6):1552–1569, 2003.

[Devitt, 2016] Simon J. Devitt. Performing quantum computing ex-
periments in the cloud. Physical Review A, 94(3):222–226, 2016.

[Do and Kambhampati, 2003] M. B. Do and S. Kambhampati. Im-
proving the temporal flexibility of position constrained metric
temporal plans. In Proceedings of the 13th International Confer-
ence on Artificial Intelligence Planning and Scheduling (ICAPS),
2003.

[Erdös and Rényi, 1960] P. Erdös and A. Rényi. On the evolution
of random graphs. Publications of the Mathematical Institute of
the Hungarian Academy of Sciences, 5:569–573, 1960.

[Eyerich et al., 2009] P. Eyerich, R. Mattmüller, and G. Röger. Us-
ing the context-enhanced additive heuristic for temporal and nu-
meric planning. In Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling, pages 318 – 325,
2009.

[Farhi et al., 2014] E. Farhi, J. Goldstone, and S. Gutmann. A
quantum approximate optimization algorithm. In arXiv preprint
arXiv:1411.4028, 2014.

[Fu et al., 2005] C. Fu, K. Wilken, and D. Goodwin. A faster op-
timal register allocator. The Journal of Instruction-Level Paral-
lelism, 7:1 – 31, 2005.

[Gerevini et al., 2003] A. Gerevini, L. Saetti, and I. Serina. Plan-
ning through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research, 20:239 – 290, 2003.

[Häner et al., 2016] Thomas Häner, Damian S Steiger, Krysta
Svore, and Matthias Troyer. A software methodology for compil-
ing quantum programs. arXiv preprint arXiv:1604.01401, 2016.

[Helmert et al., 2008] M. Helmert, M. Do, and I. Refanidis.
The 2008 international planning competition: Determinis-
tic track. http://icaps-conference.org/ipc2008/
deterministic/, 2008. 2008-02-19.

[IBM, 2017] IBM. The ibm quantum experience. http://www.
research.ibm.com/quantum/, 2017. 2017-02-19.

[Kole et al., 2017] Abhoy Kole, Kamalika Datta, and Indranil Sen-
gupta. A new heuristic for n-dimensional nearest neighbor real-
ization of a quantum circuit. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2017.

[Ramasesh et al., 2017] Vinay Ramasesh, Kevin O’Brien, Allison
Dove, John Mark Kreikebaum, James Colless, and Irfan Siddiqi.
Design and characterization of a multi-qubit circuit for quantum
simulations. In March Meeting 2017. American Physical Society,
2017.

[Rieffel and Polak, 2011] E. G. Rieffel and W. H. Polak. Quantum
computing: A gentle introduction. MIT Press, 2011.

[Rintanen, 2012] J. Rintanen. Planning as satisfiability: Heuristics.
Artificial Intelligence, 193:45 – 86, 2012.

[Sete et al., 2016] E. A. Sete, W. J. Zeng, and C. T. Rigetti. A func-
tional architecture for scalable quantum computing. In , IEEE In-
ternational Conference on Rebooting Computing (ICRC), 2016.

[Smith et al., 2016a] R. S. Smith, M. J. Curtis, and W. J. Zeng. A
practical quantum instruction set architecture. In arXiv preprint
arXiv:1608.03355, 2016.

[Smith et al., 2016b] Robert S Smith, Michael J Curtis, and
William J Zeng. A practical quantum instruction set architecture.
arXiv preprint arXiv:1608.03355, 2016.

[Steiger et al., 2016a] D. S. Steiger, T. Häner, and M. Troyer. Pro-
jectq: An open source software framework for quantum comput-
ing. In arXiv preprint arXiv:1612.08091, 2016.

[Steiger et al., 2016b] Damian S Steiger, Thomas Häner, and
Matthias Troyer. Projectq: An open source software framework
for quantum computing. arXiv preprint arXiv:1612.08091, 2016.

[Venturelli et al., 2017] D. Venturelli, M. Do, E. Rieffel, and
J. Frank. Compiling quantum circuits to realistic hard-
ware architectures using temporal planners. In arXiv
preprint (https://ti.arc.nasa.gov/m/groups/
asr/planning-and-scheduling/VentCirComp17_
ArXiv.pdf), 2017.

[Versluis et al., 2016] R Versluis, S Poletto, N Khammassi,
N Haider, DJ Michalak, A Bruno, K Bertels, and L DiCarlo. Scal-
able quantum circuit and control for a superconducting surface
code. arXiv preprint arXiv:1612.08208, 2016.

[Wah and Chen, 2004] B. Wah and Y. Chen. Subgoal partition-
ing and global search for solving temporal planning problems
in mixed space. International Journal on Artificial Intelligence
Tools, 13(4):767 – 790, 2004.

[Wecker and Svore, 2014] D. Wecker and K. M. Svore. Liqui|>:
A software design architecture and domain-specific language for
quantum computing. In arXiv preprint arXiv:1402.4467, 2014.

[Wille et al., 2014] Robert Wille, Aaron Lye, and Rolf Drechsler.
Exact reordering of circuit lines for nearest neighbor quantum
architectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 33(12):1818–1831, 2014.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4446

