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Abstract
Chasing multiple mobile targets with multiple
agents is important in several applications, such
as computer games and police chasing scenarios.
Existing approaches can compute optimal policies.
However, they have a limited scalability, as they
implement expensive minimax searches. We in-
troduce a sub-optimal but scalable approach that
assigns individual agents to individual targets and
that can dynamically re-compute such assignments.
We provide a theoretical analysis, including upper
bounds on the number of time steps required to
solve an instance. In a detailed empirical evalu-
ation on grid maps, our algorithm scales up very
convincingly beyond the limits of previous meth-
ods. On small problems, where a comparison to a
minimax approach is possible, the results demon-
strate a good solution quality for our method.

1 Introduction
In moving target search (MTS), introduced in the AI literature
by Ishida and Korf [1991], a mobile agent chases a mobile
target on a map. As a target’s location changes constantly, an
agent needs to be able to adapt its strategy very fast, making
this a challenging real-time search problem.

We address the problem where multiple agents chase mul-
tiple mobile targets. We call this the multiple agents and
targets variant of MTS, or, shortly, the MAT problem. The
problem has multiple practical applications, such as pursuing
suspect vehicles with police cars, and controlling non-player
characters in video games. The task is to plan the moves of
the agents so that they catch the mobile targets.

Addressing MAT efficiently is challenging. Existing ap-
proaches rely on minimax searches1 either on the combined
state space of all agents and all targets [Vieira et al., 2008],
or on sub-spaces with one target and one team of agents each
[Vieira et al., 2009]. Performing minimax search in the MAT

∗Part of this work has been performed when the first author was
a visitor to IBM Research, Ireland.

1In this work, we call a minimax search a search in the com-
bined space of two or more units, where hunter agents minimize the
duration of a chase, and targets maximize it.

problem can provide optimal policies [Vieira et al., 2008].
However, minimax search introduces a major performance
bottleneck. Moldenhauer and Sturtevant [2009b] have shown
that, even in the simpler case of one agent and one target,
minimax search is computationally expensive, reaching mil-
lions of node expansions on small gridmaps with up to 1600
nodes, much smaller than modern game gridmaps used in our
experiments. The search effort grows sharply with the map
size and the number of agents.

We introduce a sub-optimal but scalable approach to the
MAT problem. Our method assigns individual agents to in-
dividual targets. The assignment can change dynamically.
The computation of each assignment considers the current
positions of agents and targets, and ignores future possi-
ble movements of the targets. This allows to avoid running
minimax searches, greatly reducing the computational costs.
Given an assignment, our method runs a series of indepen-
dent single-agent, single-target chases. In each independent
chase an agent uses optimal moves towards the current target
position. The moves are retrieved from a compressed path
database [Botea, 2011], following a state-of-the-art approach
in single-agent, single-target MTS [Botea et al., 2013].

We formally show that our algorithm terminates, with all
targets captured, and provide upper bounds for the time steps
required to complete a chase. We formally analyse the impact
of the re-assignment frequency on the solution quality. We
provide upper bounds for the suboptimality stemming from
the decision of not recomputing a new assignment at one or
several iterations in a row.

We perform a detailed empirical analysis on a collection
of gridmaps from Sturtevant’s repository [Sturtevant, 2012].
Our approach shows a strong scalability performance. It can
solve instances with up to 200 agents and 200 targets, on a
map with nearly 100,000 nodes, within the order of one sec-
ond, or even a fraction of a second. On the other hand, pre-
vious approaches do not scale beyond small instances with
a few agents and much smaller graphs. On small instances,
where a comparison to an optimal minimax policy is possible,
our system is shown to produce solutions of a good quality,
as their sub-optimality is no larger than 12.84 % on average.

2 Related Work
The “standard” MTS assumes a single agent, a single target,
and full knowledge about the environment and the target’s
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position. Recent successful approaches to standard MTS in-
clude incremental search, reusing part of the results computed
in a previous search round [Sun et al., 2012], using com-
pressed path databases [Botea et al., 2013], and searching in
subgoal graphs [Nussbaum and Yörükçü, 2015].

Moving target search has been investigated in partially
known and dynamic environments [Koenig et al., 2007; Sun
et al., 2010; Baier et al., 2014]. Other research has focused on
multiple agents chasing one target [Goldenberg et al., 2003;
Isaza et al., 2008]. Goldenberg et al. [2003] assume that the
target position is not fully known to the agents. Replaning
paths for multiple agents after each target movement could
be slow. In addressing this, Isaza et al. [2008] use cover sets,
regions that an agent can reach faster than the target. Cover
sets are used to coordinate multiple agents chasing one target.

Among the contributions focusing on multi-agent, multi-
target scenarios, Hahn and MacGillivray [2006] discuss the
problem from a theoretical angle, focusing on the existence
of a winning strategy for the agents (the “cops”). Vidal et
al. [2002] take a probabilistic approach in scenarios with het-
erogeneous agents, such as helicopters, that can only observe,
but not capture, and ground vehicles.

Vieira et al.’s work [2008; 2009] is the most closely related
to our research, and a summary is necessary to better motivate
our work. Vieira et al. [2008] describe a minimax strategy
for computing optimal agent policies. This approach runs a
minimax search in the combined state space of all agents and
all targets, which does not scale beyond small problems, with
small maps and a few agents.

Vieira et al. [2009] take a step towards improving scala-
bility, with a suboptimal decomposition approach. Assuming
that c(G) agents are sufficient to eventually capture a target,
there are r targets and p ≥ c(G) × r agents, this work enu-
merates teams of c(G) agents each. For each combination
of a target and a team of agents, a minimax search returns
a cost such as the max time to capture that target. Teams
of agents are statically assigned to targets in such a way that
the max capture time, across all team-target pairs considered
in the assignment, is minimized. As such, this boils down
to a linear bottleneck assignment problem. Vieira et al.’s
work [2009] requires enumerating potentially many teams of
agents. Then, for each combination of a team and a target,
an expensive minimax search is employed. Even in the base
case when c(G) = 1, where only trivial one-agent “teams”
are considered, p×r expensive minimax searches are needed.
Furthermore, these have to be performed upfront, potentially
causing large first-move lags, before agents start moving.

3 Problem Description
Agents and targets share an environment represented as a con-
nected graph. The time is discretized. A transition from one
time step to the next is called an iteration. At an iteration,
agents take an action each, after which targets take an action
each. Actions include moving to an adjacent node, or stay-
ing put. An agent can capture a target when they share the
same location. Due to space limitations, we focus on the case
when agents capture only their currently assigned target. An
instance is solved when all targets are captured.

Head-to-head collisions between two agents are easier to
address than in standard multi-agent path finding, as agents
are free to swap their targets in our problem. Swapping the
targets of the two agents results in swapping their travel di-
rection. The result is equivalent to allowing the agents to pass
by each other. In this work we assume that agents can pass by
each other. We further assume that multiple agents can share
a given location, a typical assumption in multi-agent mov-
ing target search [Goldenberg et al., 2003; Isaza et al., 2008;
Vieira et al., 2008; 2009]. More generally, any instance can
be solved while restricting the number of agents per location
(e.g., at most 1), thanks to the freedom of assigning any target
to any agent, but this is beyond the focus of this short paper.

The graph is static and unweighted. The positions of the
agents and targets are known. Agents move slightly faster
than targets, to ensure that a chase eventually finishes. For a
given target, this is implemented by requiring that, once in l
iterations, where l is a parameter (the stay-put parameter), the
only action available to the target at that iteration is staying
put. We set l = 10, as previously done in the literature (e.g.,
[Sun et al., 2012; Botea et al., 2013]).

4 Our Approach Overview

Algorithm 1 Generate Agent Moves
Input Agent positions pa, target positions pt, map (graph) g,
(possibly empty) assignment a
Output Agent moves

1: if new assignment desired at this iteration then
2: d← ComputeDistance(pa, pt, g)
3: a← ComputeAssignment(d)
4: m← GenerateMoves(a, pa, pt, g)
5: return m

Algorithm 1 outlines how agent moves are generated. This
is invoked at each iteration, until all targets are captured. We
compute d as an exact distance matrix, using compressed dis-
tance databases [Xie et al., 2015] as a distance oracle.

Method ComputeAssignment(d) assigns one target to each
agent. When a new assignment is computed, it becomes the
active assignment. We discuss our assignment strategies in
more detail in the next section. The frequency of comput-
ing a new active assignment (i.e., lines 1 to 3) is analysed
theoretically in Section 6 and evaluated empirically in the ex-
periments section.

As soon as an active assignment is available (step 4), we
reduce the problem to a collection of independent single-
agent, single-target moving target search instances (i.e., stan-
dard MTS instances). This is implemented in method
GenerateMoves, which returns a move for each agent. We
address each standard MTS instance with a state-of-the-art
approach from the literature [Botea et al., 2013]. As such, an
optimal move from the current location of an agent to the cur-
rent location of its assigned target is fetched fast, by querying
an oracle such as a compressed path database [Botea, 2011].
No effort is wasted in computing a longer path fragment than
just one move at a time.
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Figure 1: Illustrating assignments on a 4-connected gridmap.

Our approach is modular, decomposing the original prob-
lem into subproblems. This allows to address part of the sub-
problems involved with state-of-the-art approaches to those
subproblems from the literature. For example, we leverage
existing solutions to the assignment problem and to the sin-
gle agent, single target MTS problem.

Given m agents and n targets, in the rest of this paper we
focus on scenarios with m = n. However, our approach eas-
ily allows addressing more general scenarios. For instance,
when m < n, focus on m targets at a time. When a tar-
get is captured, another target is assigned to an agent. When
m > n, assign at least one agent per target. In experiments
we include a brief evaluation on cases with m 6= n.

5 Assigning Agents to Targets
Computing an active assignment considers the current posi-
tions of agents and targets, but not their potential future po-
sitions. This allows to reduce the task of assigning agents
to targets to classical assignment problems [Munkres, 1957;
Burkard et al., 2009], as shown later in this section. The ex-
act assignment problem formulation depends on the solution
quality criterion at hand. We consider three such criteria: the
sum of the distances between each agent and its target (sum-
mation cost), the max distance (makespan), and a combina-
tion with the makespan as the main component. Strategies
presented in this section are optimal with respect to the cur-
rent positions of targets but, as mentioned earlier, not neces-
sarily optimal with respect to future target positions. For this
reason, we call them statically optimal assignments.

Summation Cost Criterion. This criterion is relevant in
problems where reducing the total traveled distance matters
(e.g., to reduce fuel consumption). In this case, we obtain a
linear assignment problem. It consists of finding an assign-
ment that minimizes the sum of distances between each agent
and its assigned target at the current time. The problem is
solved exactly in an O(n3) time [Edmonds and Karp, 1972].
We say an assignment computed this way is statically opti-
mal with respect to summation cost. In Figure 1, the assign-
ment (A1, T1), (A2, T2) is statically optimal with respect to
the summation cost. Its cost is 1+ 7 = 8, whereas the cost of
the assignment (A1, T2), (A2, T1) is 5 + 5 = 10.

Theorem 1. With the summation cost in use, a chase termi-
nates (with all targets captured) in at most S0 × l iterations,
where S0 is the summation cost of the initial assignment and
l is the stay-put parameter.

Proof. Let S be the summation cost, initialized to S0. S
never increases from an iteration to the next, as each agent
chases its assigned target. S never increases when a re-
assignment is performed, as every new assignment minimizes
S. S strictly decreases when a target stays put. It follows that
S converges to 0 after at most S0 × l iterations.

Makespan Criterion. Reducing the makespan is impor-
tant when a chase should finish as soon as possible (e.g., when
police are chasing suspect cars). We obtain the known linear
bottleneck assignment problem, which consists of finding an
assignment that minimizes the maximum distance between
an agent and its assigned target. In Figure 1, the assign-
ment (A1, T2), (A2, T1) is statically optimal with respect to
the makespan. Its makespan is max(5, 5) = 5, whereas the
makespan of the other assignment is max(1, 7) = 7.

We solve the linear bottleneck assignment problem as a
modified bipartite match problem as follows. We find a min-
imal edge weight w with the property that after removing all
edges with larger weights than w there still exists at least one
one-to-one match. Our algorithm has the following steps:
1) Sort all edge weights in ascending order, and store them
in a list L; 2) Binary search L to find the minimal value w
such that, after removing all edges with larger weight than
w, there still exists at least one assignment; 3) Return such
an assignment. Step 2 dominates the time complexity. Test-
ing whether a perfect bipartite match exists is done with the
Kopcroft-Karp algorithm [Hopcroft and Karp, 1973], with a
time complexity of O(n2.5). After factoring in the binary
search part, the complexity becomes O(n2.5 log n). We say
that an assignment computed as shown above is statically op-
timal with respect to the makespan cost.

Let M0 be the makespan of the initial assignment.

Theorem 2. Assume re-assignments give priority to the old
assignment, when this remains optimal. With the makespan
in use, a chase terminates (with all targets captured).

Proof. Let M be the makespan, initialized to M0. M cannot
increase from one iteration to another, as each agent follows
its target. M cannot increase during a re-assignment, as the
re-assignment minimizes M .

We show that M decreases (by at least 1) after a finite
number of steps. Assume by contradiction that M never de-
creases. It follows that M does not decrease during a re-
assignment, which further implies that the current assignment
is preserved forever. However, after a finite number of steps,
all targets have stayed put at least once, and therefore the dis-
tance between each agent and its target decreases by at least
1. This implies that M decreases by at least 1, which is a
contradiction with our assumption.

Thus, M never increases and it decreases by at least 1 after
a finite number of iterations. Applying this recursively, it fol-
lows that M eventually converges to 0, which is equivalent to
saying that all targets have been captured.

Corollary 1. If all targets stay put at the same iterations, a
chase finishes in at most M0 × l iterations.

Proof. In the previous proof, M decreases for sure at an iter-
ation where all targets stay put. It follows that M converges
to 0 after at most M0 × l iterations.

Mixed-Cost Criterion. Minimizing the makespan alone
can sometimes lead to a large solution summation cost. This
can be alleviated with a mixed-cost criterion, where the
makespan is the main component, and ties are broken on the
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summation cost. The following assignment algorithm han-
dles such a case: 1) Find the minimum weight w such that,
after removing all edges with a larger weight than w, there
still exists one perfect match; 2) Find the minimum weight
bipartite match in the map after removing all edges with a
larger weight than w.

The time complexity for step 1 is O(n2.5 log n), as dis-
cussed in the case of the makespan cost. For step 2, the com-
plexity is the same as for the summation cost. Thus, step 2
dominates the complexity, and the overall complexity is the
same as for the summation cost.
Theorem 3. With the mixed cost in use, a chase terminates,
reaching a state where all targets are captured.

Proof. Given P1 = (M1, S1) and P2 = (M2, S2), we say
that P1 < P2 if M1 < M2 or (M1 = M2 and S1 < S2).
Let P = (M,S) be the initial mixed cost, with M being
the makespan and S the summation cost. P never increases
from an iteration to the next, as each agent chases its assigned
target. P never increases at a re-assignment, as every new as-
signment minimizes P . P strictly decreases every time when
a target stays put, as at least S decreases. Hence P converges
to (0, 0) after a finite number of iterations.

Corollary 1 applies to the mixed-cost case as well, provid-
ing an M0 × l upper bound to the number of iterations. We
omit the proof due to space limitations.

6 Static Assignment Error
If new assignments are computed at every iteration, the active
assignment will always be statically optimal. However, if an
assignment is kept active for a number of iterations, for com-
putational time savings, an error might accumulate as com-
pared to a statically optimal assignment. We analyse this for-
mally, deriving upper bounds for such errors.

Recall that the time is discretized into iterations. We as-
sume that t = 0 is the time at the beginning of the first iter-
ation. Given a time t, let dt(i, j) be the distance on the map
from agent i to target j.

In the rest of this section we focus on the static error for the
summation cost, and the static error for the makespan cost.
Definition 1. At a given time t, the summation static er-
ror of an assignment f is Es(f) =

∑
a∈A(d

t(a, f(a)) −
dt(a, f∗(a))), where f∗ is a statically optimal assignment for
the summation cost at time t.

Theorem 4. Within a given iteration, if ` out of |A| targets
move, the summation static error of the active assignment f
cannot increase by more than 2`.

We omit the proofs to Theorems 4 and 5 to save space.
Corollary 2. Consider a statically optimal assignment f at
a starting time 0. If f remains active in the next p iterations,
Es(f) ≤ 2p|A| after p iterations.

Figure 2 shows an example. At iteration k, the active
assignment (A1, T1), (A2, T2) is statically optimal with re-
spect to the summation cost. However, at iteration k + 1,
its summation cost is 4 + 4 = 8, whereas the the assign-
ment (A1, T2), (A2, T1) has a summation cost of 2 + 2 = 4.

Figure 2: Illustrating the static error on a 4-connected gridmap. Left:
iteration k. Right: iteration k + 1.

The static error of the initial assignment is 8 − 4 = 4. Ac-
cording to Theorem 4, the maximum error at one iteration is
2` = 2 × 2 = 4. Thus, our example shows a worst-case
scenario in terms of the static error for the summation cost.

Definition 2. At a given time t, the makespan static error
of an assignment f is Em(f) = maxa∈A dt(a, f(a)) −
maxa∈A dt(a, f∗(a)), where f∗ is a statically optimal as-
signment for the makespan cost at time t.

Theorem 5. The makespan static error of an active assign-
ment f cannot increase at one iteration by more than 2.

Corollary 3. With the makespan cost in use, consider a stat-
ically optimal assignment f at a starting time 0. If f re-
mains active in the next p iterations, the makespan static error
Em(f) after p iterations is bounded by 2p.

Consider again the example in Figure 2. At iteration k,
the active assignment (A1, T1), (A2, T2) is statically optimal
makespan-wise. However, at iteration k + 1, its makespan is
max(4, 4) = 4, whereas the assignment (A1, T2), (A2, T1)
has a makespan of max(2, 2) = 2. The static error of the
initial assignment is 4 − 2 = 2. According to Theorem 5,
the maximum error at one iteration is 2. Thus, our example
shows a worst-case static error for the makespan.

7 Experimental Results
We evaluate four agent strategies. The DIS strategy performs
assignments based on the summation cost. MKS and MIX
are based on the makespan cost and the mixed-cost criterion,
respectively. The fourth strategy, GDY, is a baseline, greedy
approach that iterates through the set of agents and assigns to
an agent the closest target not yet assigned.

We implemented three target strategies. TrailMax [Mold-
enhauer and Sturtevant, 2009a] aims at planning a path for
the target that will provably not intersect with a given agent’s
path for k time steps, where k is a parameter. We use k = 50.
The Escape strategy maximizes the minimum distance to any
agent. Naive is a baseline, random walking strategy.

Experiments use maps from Sturtevant’s [2012] repository:
AR0603SR, from Baldur’s Gate (BG), with 13,764 nodes;
AR0703SR (BG, 51,585 nodes); orz100d (Dragon Age: Ori-
gins – DAO, 99,626 nodes); orz900d (DAO, 96,603 nodes);
deadwaterdrop (Warcraft III – WC3, 76,028 nodes); and
darkforest (WC3, 99,758 nodes).

Besides the agent strategies, target strategies and maps de-
scribed earlier, we have implemented an optimal agent strat-
egy and an optimal target strategy, which we evaluate on 2
small maps where such optimal strategies are practical.

Following the approach of Sun et al. [2012], maps are con-
sidered to be 4-connected. Unless said otherwise, numbers
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Target strategy→ TrMax Esc. Naive TrMax Esc. Naive

Map Number of steps Number of iterations

AR0603SR 6.11% 0.63% 1.03% 3.84% 5.71% 5.77%
AR0700SR 11.69% 1.37% 2.02% 10.47% 2.64% 12.48%
darkforest 4.42% 2.03% 1.65% 4.09% 4.84% 7.54%

deadwaterdrop 5.34% 1.42% 0.70% 4.71% 1.89% 9.08%
orz100d 3.10% 0.55% 1.16% 5.61% 5.85% 6.29%
orz900d 1.51% 0.34% 0.50% 4.81% 4.33% 6.71%

Table 1: The impact of the re-assignment gap on the solution quality,
for the MIX agent strategy.

shown in figures and tables are averages over 100 instances
with initial agent and target locations picked at random.

Evaluating the Agent and the Target Strategies. Fig-
ure 3 compares the 4 agent strategies in combination with the
three target strategies. To save room, we show results for a
representative subset of data, with three maps and with as-
signments computed at every iteration.

The main conclusions, shown next, are consistent across
all maps. MIX combines strengths from both DIS and MKS,
and this helps MIX be the best strategy in terms of iterations
(Figure 3, bottom). In terms of number of steps, MIX and
DIS have a good performance, being close to each other and
significantly better than MKS and GDY (Figure 3, top).

We conclude that MIX is overall the best, which is why our
subsequent analysis focuses more on MIX. DIS has a good
performance as well, whereas MKS is weaker. In terms of
number of agent steps, MKS is even outperformed by GDY.

Figure 3 shows that, among the target strategies, TrailMax
performs the best, resulting in more iterations and agent steps
as compared to Escape (2nd place) and Naive (3rd place). To
our knowledge, TrailMax has not been tested in multi-agent
scenarios before. Our results confirm that TrailMax is a state-
of-the-art target strategy in multi-agent chases too.

Sensitivity to the Re-assignment Gap. By definition,
the re-assignment gap is the number g with the property
that a new assignment is re-computed at every g-th iter-
ation. E.g., when g = 1 an assignment is computed
at every iteration. We have varied g in the range R =
{1, 2, 4, 8, 16, 32, 64, 128,∞}. For ∞, no assignment is
computed except for the initial one.

Table 1 summarizes the results for MIX. The number-of-
steps values are computed as 100 × (M − m)/M, where
M = maxg∈R S(g), m = ming∈R S(g), and S(g) is the
number of steps with the re-assignment gap g in use. The
number-of-iterations numbers are computed similarly.

The results show that, when using MIX, the quality of so-
lutions is stable when varying g. The number-of-steps values
range from as little as 0.34% to 11.69%. The number-of-
iterations values range from 2.64% to 12.48%. A majority of
the numbers shown in the table are smaller than 5%.

In the next section we present an additional comparison of
a few gap values on a range of numbers of agents and targets.

Scalability to Large Instances. For a scalability analysis,
we vary the number of agents and the number of targets from
10 to 200 in increments of 10. We measure the CPU time
to compute agent moves, the number of steps in a solution
(summation cost) and the number of iterations (makespan).

We focus on MIX, the best agent strategy, and TrailMax, the
best target strategy and thus the most difficult opponent of
MIX. We considered three gaps g: 1, 10 and ∞. MIX with
gap 1 is up to 8.94 times slower than with gap 10. It has no
benefits in terms of number of iterations, and the benefits on
the number of steps are small, ranging from -1% to 7.92%.
Thus, gap 10 works well in comparison to gap 1, and we skip
gap 1 from this analysis, to save room and avoid clutter.

Figure 4 shows the performance on darkforest, the largest
map used. Other maps show a similar behavior. Instances
are solved very fast. For the largest instances (200x200), the
average solving time ranges from 0.08 seconds (map deadwa-
terdrop) to 0.13 seconds (maps orz100d and orz900d) when
g =∞; and from 0.57 seconds (map darkforest) to 1.08 sec-
onds (map orz900d) when g = 10.

On the other hand, previous work does not scale beyond
small instances. Even Vieira et al.’s work [2009], which is
suboptimal and somewhat more scalable than optimal central-
ized minimax, needs to perform n × n one-chase-one mini-
max searches before it starts performing any action. However,
even one single one-chase-one minimax search is impractical
on maps of a reasonable size, such as our benchmark maps.
Their reported tests have up to 9 units (6 agents, 3 targets)
on graphs with up to 16 nodes. Furthermore, Moldenhauer
and Sturtevant [2009b] showed that a state-of-the-art mini-
max search for the basic 1-chase-1 case requires in the order
of 1 million to over 10 million node expansions on a map as
small as 1600 nodes.

In contrast, our maps are much larger, with up to nearly
100,000 nodes, and we have many more agents. Yet, our
method solves such large problems within the order of 1 sec-
ond or less. These results show an substantial boost in speed
and scalability in comparison to previous work. To achieve
such a scalability, we give away solution optimality. See an
analysis of solution quality later in this section.

Figure 4 illustrates the trade-off between the computational
time (left) and the solution quality (number of steps at the
center and number of iterations at the right). Performing no
re-assignments is faster, and it has a very small impact on the
number of steps. The variation in the number of iterations
is also reasonably small, not exceeding 14.74% in Figure 4
(right). Thus, if speed is more important and a moderate in-
crease in the number of iterations is acceptable, use no re-
assignments. Otherwise, perform re-assignments, which still
allows to solve problems within the order of 1 second or less.

Comparison to a Minimax Solver. We have compared
MIX to an optimal minimax solver on small instances where
minimax search is feasible. The purpose of this experiment is
evaluating the quality of solutions computed with MIX. We
used 2 × 2 chases on two maps, one with 10 nodes, with a
topology inspired from Vieira et al. [2009], and one with 28
nodes (called the “ijcai” map), which to our knowledge is
created by Sturtevant. On each map, we solve 50 randomly-
generated instances. On such small maps, MIX results are
identical for g = 1, 10,∞.

In a minimax search, agents minimize the number of iter-
ations, and targets maximize it. A minimax search provides
the number of iterations when both agents and targets play
optimally. In addition, we use minimax search to build an
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Figure 3: Summary comparison on instances with 40 agents and 40 targets.
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Figure 4: Scalability to increasing numbers of agents and targets.

10-node map 28-node map

Optimal agent strategy 13.44 19.40
MIX agent strategy 15.42 21.44

Diff % 12.84% 9.51%

Table 2: Average number of iterations over 50 instances, when play-
ing against an optimal target strategy.

optimal target policy in response to MIX agent moves.
Table 2 shows that MIX produces good-quality solutions,

only about 2 iterations longer than optimal in average.
Beyond n × n Scenarios. To show that the system can

handle “uneven” cases with m 6= n, we considered cases with
n0 = 2m, where m is the number of agents, n0 is the initial
number of targets, and m varies from 10 to 100 in increments
of 10. At any given point in time, an agent is assigned to
exactly one target, unless the remaining number of targets n
is smaller than m. In the latter case, each remaining target
is assigned one agent. Initially, half of the targets (selected
at random) are assigned to agents and the other half remain
unassigned. When a target is captured, one unassigned tar-
get (selected at random), if any is left, changes its status into
assigned, and a re-assignment is performed. An instance fin-
ishes when all targets are captured. As shown in Table 3, the
system scales well in uneven scenarios as well.

Map CPU time Nr assignments

AR0603SR 0.91 74.22
AR0700SR 1.25 79.96

orz100d 1.24 75.51
orz900d 1.21 95.08

deadwaterdrop 0.58 66.88
darkforest 0.70 70.89

Table 3: Summary statistics for the largest (100x200) uneven in-
stances. Numbers are averages over 100 instances.

8 Conclusion and Future Work

We have introduced a fast and scalable approach to moving
target search with multiple agents and multiple targets. We
have presented a thorough empirical evaluation and a theoret-
ical analysis. Trading optimality for scalability, our system
shows a strong speed and scalability performance. While pre-
vious techniques are impractical even for moderate-size prob-
lems, our method solves large instances on real game maps
with hundreds of agents within the order of 1 second or less.
On small instances, where a comparison to minimax search is
possible, we find that our system produces solutions of a good
quality. In future work, we plan to address problems with
physical constraints such as velocity and size constraints.
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