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Abstract
Seeking reliable correspondences between two fea-
ture sets is a fundamental and important task in
computer vision. This paper attempts to remove
mismatches from given putative image feature cor-
respondences. To achieve the goal, an efficient
approach, termed as locality preserving matching
(LPM), is designed, the principle of which is to
maintain the local neighborhood structures of those
potential true matches. We formulate the problem
into a mathematical model, and derive a closed-
form solution with linearithmic time and linear s-
pace complexities. More specifically, our method
can accomplish the mismatch removal from thou-
sands of putative correspondences in only a few
milliseconds. Experiments on various real image
pairs for general feature matching, as well as for
visual homing and image retrieval demonstrate the
generality of our method for handling differen-
t types of image deformations, and it is more than
two orders of magnitude faster than state-of-the-art
methods in the same range of or better accuracy.

1 Introduction
This study focuses on the problem of establishing reliable
point correspondences between two images of the same
scene. Many of the computer vision tasks such as 3D re-
construction, content-based image retrieval, visual homing,
object detection and recognition start by assuming that the
point correspondences have been successfully recovered [Ma
et al., 2013; Bai et al., 2017]. In this paper, we treat the tar-
get task as a matching problem between two sets of discrete
points, where each point is an image feature extracted by a
feature detector and has a local image descriptor, e.g. the s-
cale invariant feature transform (SIFT) [Lowe, 2004].

The matching problem possesses a combinatorial nature,
making the matching space of all the possible matches huge.
Even without considering the outliers, a simple problem of
matching N points to another N points would lead to a total
ofN ! permutations [Wang et al., 2014]. To address this issue,
a popular strategy is to construct a group of putative corre-
spondences by imposing a similarity constraint to reduce the
set of possible matches. It requires that points can only match

points with similar descriptors. Thus the matching task boils
down to determine the correctness of each match in the puta-
tive set. This paper intends to conquer the mismatch removal
from some given putative point correspondences.

During the past few decades, a variety of robust estima-
tors have been developed to address the mismatch removal
problem. Nevertheless, it is still a challenging task to cus-
tomize a practical algorithm when dealing with many real-
world problems. Firstly, the use of only local descriptor in-
formation will inevitably lead to a number of false matches
in the putative set, and this problem is typically even worse if
the image pairs suffer from low-quality, occlusion, repeated
structures, etc. Secondly, the transformation models between
two images are various, making it difficult to design a general
algorithm. However, such a general algorithm is frequently
required in many computer vision tasks such as deformable
object recognition where the transformation models are often
unknown in advance. Thirdly, the high computational load, e-
specially of complex non-rigid transformation models, limits
its applicability in real-time tasks.

To address the above three challenges, in this paper we pro-
pose a simple yet surprisingly effective feature matching ap-
proach, which is able to accurately remove the outliers from
a putative correspondence set in only a few milliseconds. We
observe that for an image pair of the same scene or object,
the absolute distance between two feature points may change
significantly under viewpoint change or non-rigid deforma-
tion, but the spatial neighborhood relationship among fea-
ture points representing the topological structures of an im-
age scene are generally well preserved due to physical con-
straints. Based on this fact, we introduce a mathematical
model that constrains the unknown inlier correspondences to
have similar local neighborhood structures. This formulation
is general, and it can handle both rigid and non-rigid deforma-
tions related between two images. We further derive a sim-
ple closed-form solution, which has linearithmic time com-
plexity and linear space complexity with respect to the scale
of the given putative set. Experiments on various image da-
ta demonstrate that the proposed method can produce more
accurate matching results with much less computation time
(e.g., more than two orders of magnitude faster) compared
with other state-of-the-art methods.

Our contribution in this paper is two-fold. On the one hand,
we propose a simple yet effective approach for robust fea-
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ture matching. Unlike most existing methods which require
a special parametric or non-parametric model to character-
ize the global image transformation, our method merely aim-
s to preserve local neighborhood structures of feature points
and hence, it is more general. On the other hand, we derive
a closed-form solution with linearithmic complexity which
can solve a typical matching problem with over 1, 000 puta-
tive correspondences in only a few milliseconds, therefore, it
is beneficial for many real-time applications and can quickly
provide a good initialization for more complicated problem-
specific matching algorithms. We validate this solution on
real-word tasks such as image retrieval and visual homing,
and obtain better results than other state-of-the-arts in terms
of both accuracy and efficiency.

2 Related Work
Numerous mismatch removal methods have been proposed
over the last decades, which can be roughly divided into
four categories, say statistical regression methods, resam-
pling methods, non-parametric interpolation methods, and
graph matching methods.

Statistics literature shows that the methods that minimize
the L1 norm are more robust and can resist a larger pro-
portion of outliers compared with quadratic L2 norms [Hu-
ber, 1981]. Liu et al. [Liu et al., 2015] proposed a re-
gression method based on adaptive boosting learning for 3D
rigid matching. Maier et al. [Maier et al., 2016] introduced
a guided matching scheme based on statistical optical flow.
The most popular resampling method is RANSAC, which
has several variants such as MLESAC [Torr and Zisserman,
2000] and PROSAC [Chum and Matas, 2005]. These meth-
ods adopt a hypothesize-and-verify approach and attempt to
obtain the smallest possible outlier-free subset to estimate a
provided parametric model by resampling. The statistical re-
gression and resampling methods rely on a predefined para-
metric model, which become less efficient when the under-
lying image transformation is non-rigid; they also tend to
severely degrade if the outlier ratio becomes large [Li and Hu,
2010]. Several non-parametric interpolation methods [Ma et
al., 2014; Li and Hu, 2010; Wang et al., 2017] have recently
been introduced to address these issues. These methods com-
monly interpolate a non-parametric function by applying the
prior condition, in which the motion field associated with the
feature correspondence is slow-and-smooth. However, they
typically have cubic complexities and the computational cost-
s are huge for large putative set, which limits their uses in
real-time applications such as object tracking, visual odom-
etry, SLAM, etc. Graph matching is another technique to
solve the matching problem; several representative studies in-
clude spectral matching [Leordeanu and Hebert, 2005], dual
decomposition [Torresani et al., 2008], mode-seeking [Wang
et al., 2014], and graph shift (GS) [Liu and Yan, 2010]. In
addition, Lee et al. [Lee et al., 2015] proposed to use lo-
cal neighborhoods for feature description to alleviate false
matches. Graph matching provides considerable flexibility
to the object model and delivers robust matching and recog-
nition. Nevertheless, it suffers from similar drawbacks of its
non-polynomial-hard nature.

In addition to the mismatch removal, some efforts on gen-
erating better putative correspondences have also been car-
ried. Guo and Cao [Guo and Cao, 2012] proposed a trian-
gle constraint, which can produce better putative correspon-
dences in terms of quantity and accuracy compared with the
distance ratio in [Lowe, 2004]. Hu et al. [Hu et al., 2015]
proposed the local selection of a suitable descriptor for each
feature point instead of employing a global descriptor during
putative correspondence construction. A cascade scheme has
been suggested to prevent the loss of true matches, which can
significantly enhance the correspondence number [Wang et
al., 2014; Cho and Lee, 2012].

3 Method
This section describes our method for establishing accurate
correspondences between two feature sets extracted respec-
tively from two images of the same or similar scenes. To this
end, we first construct a set of putative matches by consider-
ing all possible matches between two feature sets and filtering
out matches whose feature descriptor vectors are sufficient-
ly different. We then use a geometric constraint to remove
the false matches contained in the putative set, which further
filters out those matches with different spatial neighborhood
structures among feature points. Fortunately, there are several
well-designed feature descriptors (e.g., SIFT [Lowe, 2004])
which can efficiently establish putative correspondence be-
tween feature sets. Therefore, in the following, we will focus
on the mismatch removal problem and introduce a simple yet
efficient strategy by preserving local neighborhood structure.

3.1 Problem Formulation
Suppose we have obtained a set of N putative feature cor-
respondences S = {(xi,yi)}Ni=1 extracted from two given
images, where xi and yi are 2D column vectors denoting the
spatial positions of feature points (our approach is not limit-
ed by the dimension of the input data, which can be directly
applied to 3D matching problems). Our goal is to remove the
outliers contained in S to establish accurate correspondences.

If the spatial relationship between the image pair is a sim-
ple rigid transformation, then the distance between any fea-
ture correspondence will be preserved. In other words, denot-
ing I the unknown inlier set, its optimal solution is

I∗ = argmin
I
C(I;S, λ), (1)

with the cost function C defined as:

C(I;S, λ) =
∑
i∈I

∑
j∈I

(
d(xi,xj)−d(yi,yj)

)2
+λ(N−|I|),

(2)
where d is a certain distance metric such as Euclidean dis-
tance, and | · | denotes the cardinality of a set. In this cost
function, the first term penalizes any match which does not
preserve the distance of a point pair, the second term discour-
age the outliers, and the parameter λ > 0 controls the tradeoff
between these two terms. Ideally, the optimal solution should
achieve zero penalty, i.e., the first term of C should be zero.

However, if the image pair undergoes a relatively complex
non-rigid transformation, the above distance relationship, in
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general, will not hold, especially for matches that are far from
each other. Fortunately, the local neighborhood structure a-
mong feature points may not change freely due to the physical
constraints in the small region around a point, which means
that the distribution of neighboring point pairs after transfor-
mation should be preserved [Zheng and Doermann, 2006].
Therefore, by preserving only local neighborhood structures,
the cost function in Eq. (2) becomes:

C(I;S, λ) =
∑
i∈I

( ∑
j|xj∈Nxi

(
d(xi,xj)− d(yi,yj)

)2
+

∑
j|yj∈Nyi

(
d(xi,xj)− d(yi,yj)

)2)
+ λ(N − |I|), (3)

where Nx denotes the neighborhood of point x. There is no
obvious neighborhood definition for a point set. In our evalu-
ation, we adopt a simple strategy that searches the K (K = 4
in default) nearest neighbors for each point in the correspond-
ing feature set under the Euclidean distance.

We associate the putative set S with anN×1 binary vector
p, where pi ∈ {0, 1} denotes the match correctness of the i-th
correspondence (xi,yi). Specifically, pi = 1 indicates inlier
and pi = 0 points to outlier. Note that the absolute distance of
a point pair is not preserved well under non-rigid deformation
such as scale changes. To address this issue, we quantize the
distance to two levels as:

d(xi,xj) =

{
0 xj ∈ Nxi

1 xj /∈ Nxi

, (4)

and the same as d(yi,yj). In this case, the cost function in
Eq. (3) is converted to:

C(p;S, λ) =

N∑
i=1

pi

( ∑
j|xj∈Nxi

d(yi,yj)

+
∑

j|yj∈Nyi

d(xi,xj)

)
+ λ

(
N −

N∑
i=1

pi

)
. (5)

With the distance definition in Eq. (4), the objective func-
tion in Eq. (5) is translation, rotation, and scale invariant. The
problem of removing outliers and establishing accurate fea-
ture correspondences could be solved by searching an optimal
solution p that minimizes the cost function (5).

3.2 Solution
To optimize the objective function (5), we reorganize its form
by merging the terms related to pi and obtain:

C(p;S, λ) =
N∑
i=1

pi(ci − λ) + λN, (6)

where

ci =
∑

j|xj∈Nxi

d(yi,yj) +
∑

j|yj∈Nyi

d(xi,xj) (7)

is a cost that measures if the i-th correspondence (xi,yi)
meets the geometric constraint of preserving local neighbor-
hood structure. Clearly, a correct match will bring zero cost or
a small cost while a false match will increase the cost largely.

For a given putative set, the neighborhood relationship be-
tween the feature points is fixed, and hence all the cost values
{ci}Ni=1 can be calculated in advance. That is to say, the only
unknown variable in Eq. (6) is pi, and its solution is obvious:
any correspondence with a cost smaller than λ will lead to a
negative term and decrease the objective function, while any
correspondence with a cost larger than λ will result in an pos-
itive term and increase the objective function. Therefore, the
optimal solution of p that minimizes Eq. (6) is determined by
the following simple criterion:

pi =

{
1 ci ≤ λ
0 ci > λ

, i = 1, · · · , N. (8)

And hence, the optimal inlier set I∗ is determined by:

I∗ = {i | pi = 1, i = 1, · · · , N}. (9)

From Eq. (8), we see that parameter λ also plays a role of
threshold that judges the match correctness of a putative cor-
respondence. Note that the setting of pi can be arbitrary when
ci = λ. Besides, the value of ci is always an integer, and
hence we do not need to tune λ among non-integer values.

3.3 Neighborhood Construction
The neighborhoodNx of each point x in Eq. (3) is construct-
ed based on the whole feature set which also involves outliers.
This strategy in general works well due to the following rea-
sons. On the one hand, for an outlier (xi,yi), its local neigh-
borhood structures cannot be preserved between two images,
leading to a large cost ci, and hence it will be easily identified
as an outlier. On the other hand, for an inlier (xj ,yj), even
if its neighborhood Nxj

or Nyj
contains some outliers, the

major components are typically inliers which conform to the
geometric constraint, and hence its cost cj will not be large.

To verify how good it works, we collect in total 30 image
pairs involving natural images, remote sensing images, med-
ical images, as well as infrared images. The precision and re-
call are used to evaluate the matching performance, where the
precision is defined as the ratio of the identified correct match
number and the preserved match number, and the recall is de-
fined as the ratio of the identified correct match number and
the correct match number contained in the putative set. The
initial inlier percentages of the SIFT matching on the test data
are summarized in Fig. 1a, where in average only 68.53% pu-
tative correspondences are inliers. Figures 1b and 1c demon-
strate the precision and recall curves with respect to different
λ. We see that with a proper value of λ (e.g., 6), our method
can preserve about 95.26% of the true correspondences, and
the precision can also reach up to 90.79%.

Nevertheless, it will be more desirable if the neighborhood
Nx can be constructed based on only the inlier set I. In this
case, the calculation of the cost cj for an inlier will be more
accurate and is not influenced by the outlier, therefore, the
margin between inlier and outlier will be distinctly enlarged.
This is helpful for accurate classification of the putative cor-
respondences, especially when the putative set S contains a
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Figure 1: The influence of neighborhood construction to the matching performance. (a)-(c): Initial inlier ratio, precision and recall w.r.t. the
cumulative distribution by using the whole feature set to construct neighborhood. A point on the curve with coordinate (x, y) denotes that
there are 100∗x percents of image pairs which have inlier ratios, precisions or recalls no more than y. (d) Distribution of the cost ci in Eq. (7)
by using the whole feature set to construct neighborhood. (e) Distribution of the cost ci in Eq. (7) by using I0 to construct neighborhood.

large number of outliers. However, the true inlier set I can-
not be known in advance and it is to be solved in our problem.
To solve this dilemma, here we seek an approximation I0 of
it. As shown in Fig. 1, our method is able to generate a cor-
respondence set which can remove most of the outliers and
simultaneously keep most of the inliers just by using S for
neighborhood construction. Clearly, this set is a good approx-
imation of the true inlier set, i.e., I0 = argminI C(I;S, λ)
with the neighborhood constructed based on the whole set S.

Subsequently, we use I0 to construct neighborhood for
each correspondence in S, and solve the optimal I∗ as:

I∗ = argmin
I
C(I; I0, S, λ). (10)

By using I0 instead of S for neighborhood construction, the
average precision-recall pair on the 30 test pairs can be large-
ly increased from (90.79%, 95.26%) to (96.17%, 97.21%).
The distributions of the cost ci by using the whole feature
set and using I0 to construct neighborhood are reported in
Figs. 1d and 1e, respectively. We see that the margin between
inlier and outlier has been distinctly enlarged.

In fact, we could use a progressive strategy to construc-
t the neighborhood, i.e., iteratively using the correspondence
set generated in the previous iteration for neighborhood con-
struction until convergence, and the average precision-recall
pair is then further increased to (96.33%, 98.06%). Note
that such progressive strategy can only slightly improve the
matching performance, which means that I0 is good enough
to approximate the true inlier set for neighborhood construc-
tion. Therefore, we just use Eq. (10) to determine the optimal
inlier set for simplicity.

Parameter settings. There are two parameters in our
method: K and λ. The former determines the number of
nearest neighbors for neighborhood construction, while the
latter controls the threshold for judging the correctness of a
putative correspondence. Clearly, large value of K or small
value of λ will increase the precision and simultaneously de-
crease the recall, and vice versa. In our evaluate, we set the
default values as K = 4, and λ = 6.

Since our matching strategy is to preserve local neigh-
borhood structures, we name our method locality preserving
matching (LPM). We summarize our LPM in Alg. 1.

3.4 Computational Complexity
To search the K nearest neighbors for each feature point in
S, the time complexity is close to O((K + N) logN) by

Algorithm 1: The LPM Algorithm

Input: putative set S = {(xi,yi)}Ni=1, parameters K, λ
Output: inlier set I∗

1 Construct neighborhood {Nxi
,Nyi

}Ni=1 based on S;
2 Calculate cost {ci}Ni=1 using Eq. (7);
3 Determine I0 using Eqs. (8) and (9);
4 Construct neighborhood {Nxi

,Nyi
}Ni=1 based on I0;

5 Calculate cost {ci}Ni=1 using Eq. (7);
6 Determine I∗ using Eqs. (8), (9) and (10).

using K-D tree [Bentley, 1975]. Thus the time complexi-
ty of Lines 1 and 4 in Alg. 1 is about O((K + N) logN).
According to Eq. (7), calculating the cost {ci}Ni=1 in Lines
2 and 5 only involves some addition operation, and its time
complexity is O(KN). Moreover, determining p and I us-
ing Eqs. (8) and (9) in Lines 3 and 6 cost O(N) complexi-
ty. Therefore, the total time complexity of our LPM is about
O(KN + (K + N) logN). The space complexity of our
LPM is O(KN) due to the memory requirements for storing
the neighborhoods Nx and Ny. Generally, K � N , thus
the time and space complexities of our method can be simply
written as O(N logN) and O(N), respectively. That is to
say, our LPM has linearithmic time complexity and linear s-
pace complexity with respect to the scale of the given putative
set. This is significant for large-scale problems or real-time
applications.

4 Experimental Results
In order to evaluate the performance of our LPM, we first con-
duct experiments on feature matching for various real image
pairs, and then apply it to two real-world tasks such as vi-
sual homing and image retrieval. The open source VLFEAT
toolbox [Vedaldi and Fulkerson, 2010] is employed to deter-
mine the putative correspondence of SIFT [Lowe, 2004] and
to search the K nearest neighbors using K-D tree. The exper-
iments are performed on a desktop with 3.0 GHz Intel Core
CPU, 8 GB memory, and C++ code. Besides, all the codes
were realized without special optimization such as parallel
computing or streaming SIMD extensions (SSE).

4.1 Results on Feature Matching
In this section, we focus on establishing feature correspon-
dences for real images. To this end, we first test the perfor-
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Figure 2: Feature matching results of our LPM on Land (top left),
Fox (top right), Book (bottom left), T-shirt (bottom middle) and
Church (bottom right). The ratio of outliers in the 5 image pairs
are 40.81%, 85.93%, 76.14%, 43.81%, and 57.26%. The head and
tail of each arrow in the motion field correspond to the positions of
feature points in two images (blue = true positive, black = true nega-
tive, green = false negative, red = false positive). For visibility, in the
image pairs, at most 100 randomly selected matches are presented,
and the true negatives are not shown. Best viewed in color.

Table 1: Results of RANSAC, ICF, GS, MR-RPM, and our LPM on
the five image pairs in Fig. 2. For each result in the bracket, the left
is the precision and the right is the recall.

RANSAC ICF GS MR-RPM LPM
Land (100.0, 100.0) (98.23, 100.0) (100.0, 90.09) (97.37, 100.0) (100.0, 100.0)
Fox (100.0, 87.93) (85.93, 100.0) (100.0, 89.66) (100.0, 89.66) (98.31, 100.0)
Book (100.0, 44.19) (82.62, 91.20) (100.0, 82.22) (99.79, 82.57) (98.23, 97.89)
T-shirt (97.44, 38.34) (43.81, 100.0) (91.49, 86.87) (98.99, 98.99) (96.07, 98.99)
Church (94.52, 100.0) (91.67, 63.77) (91.78, 97.10) (98.33, 85.51) (95.89, 98.59)

mance of our method on five representative image pairs un-
dergoing different types of image transformations, as shown
in Fig. 2. The “Land” pair is an aerial photograph pair involv-
ing only linear (e.g., rigid or affine) transformation, which is
typically arisen in image stitching. The “Fox” and “Book”
pairs undergoes piecewise linear transformation, which is
typically arisen in image/vedio retrieval. The “T-shirt” pair
involves a deformable object with non-rigid motion, which is
typically arisen in medical image registration. The “Church”
pair is a wide baseline image pair, which is typically arisen
in structure-from-motion. For each group of results, the left
image pair schematically shows the matching result, and the
right motion field provides the decision correctness of each
correspondence in the putative set. The ground-truth is es-
tablished by manual checking, and we made the benchmark
before performing experiments to ensure objectivity. From
the results, we see that our LPM can always produce satisfy-
ing results and very few putative matches are misjudged.

We also provide quantitative comparison on these five im-
age pairs with four state-of-the-art matching methods such
as RANSAC [Fischler and Bolles, 1981], ICF [Li and Hu,
2010], GS [Liu and Yan, 2010], and MR-RPM [Ma et al.,
2017]. The performance is characterized by precision and re-
call, as shown in Table 1. From the results, we see that for
rigid matching such as in the Land pair, all methods perfor-
m quite well. RANSAC cannot work well when the image
transformation does not satisfy a parametric model, such as
in the Fox, Book and T-shirt pairs. ICF and MR-RPM use a
slow-and-smooth prior, which will probably fail if the motion
field involves large depth discontinuity or motion inconsis-
tency, such as in the Fox, Book and Church pairs. GS usually
has high precision and low recall due to it cannot automati-
cally estimate the factor for affinity matrix and it is not affine-
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Figure 3: Precisions (left), recalls (middle) and Runtimes (right) of
RANSAC, ICF, GS, MR-RPM and LPM on an image dataset.

invariant. In comparison, our LPM does not suffer from all
these problems, which demonstrates its generality and its a-
bility to handle various matching problems.

To test the computational efficiency of our LPM, we next
conduct experiments on a publicly available feature matching
dataset [Mikolajczyk et al., 2005], which contains 40 image
pairs either of planar scenes or captured by camera in a fixed
position during acquisition. Therefore, these images always
obey homography. The ground truth homographies are sup-
plied by the dataset. The average number of putative SIFT
correspondences is about 1347.2 on the dataset. The preci-
sion, recall and runtime statistics of the five algorithms are
reported in Fig. 3. From the results, we see that our LPM
does not have obvious advantage in terms of matching accu-
racy compared with other methods, especially the MR-RPM.
This is because the image transformations here are all lin-
ear homography, which is relatively simple and easy to han-
dle. However, our LPM is surprisingly effective, which is
more than two orders of magnitude faster than state-of-the-
arts. More specifically, our average runtime is merely 9.14
ms, making it ideal for real-time applications.

4.2 Results on Visual Homing
Visual homing is the ability of an mobile robot to navigate
to a goal position using visual information. The robustness
of visual homing methods is dominated by the feature match-
ing results, where recent visual homing methods typically use
some heuristic methods to remove mismatches. To validate
the effectiveness of our LPM on this problem, we test sev-
eral state-of-the-art visual homing methods, where their fea-
ture matching scenarios are replaced with our LPM. These
comparison methods include homing in scale-space (HiSS),
bearing-only visual servoing (BOVS), scale-only visual ser-
voing (SOVS), scale and bearing visual servoing (SBVS),
and simplified scale-based visual servoing (SSVS), where the
first comes from [Churchill and Vardy, 2013] and the rest four
come from [Liu et al., 2013].

We conduct experiments on the A1originalH and CHal-
l1H which are two scenes from a widely used panoramic
image database for visual homing1. The two scenes con-
tain 170 and 200 images, respectively, which are omnidi-
rectional and unwrapped images of size 561 × 81 in an in-
door environment, plus ground truth for positions where the
images are collected. As in [Churchill and Vardy, 2013;
Liu et al., 2013], we use total average angular error (TAAE),
minimal error (Min), maximal error (Max) and standard vari-
ation of error (StdVar) to evaluate the homing performance.
For all the metrics, smaller values indicate better results.

1http://www.ti.uni-bielefeld.de/html/research/avardy/index.html
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Figure 4: Left: The matching result of a typical image pair from
the A1originalH scene. Blue and black lines indicate the preserved
and removed putative matches. Right: Runtime statistics of LPM
for visual homing over 14, 365 trials.

Table 2: Visual homing error statistics of different algorithms on the
A1originalH dataset. Bold indicates better result (unit: degree).

TAAE Min Max StdVar
HISS 14.67 8.05 36.40 5.42
HISS+Ours 14.28 7.85 36.23 5.19
BOVS 27.41 10.24 70.69 11.91
BOVS+Ours 14.50 4.05 44.37 9.33
SOVS 18.75 10.34 37.81 5.81
SOVS+Ours 16.76 9.04 33.70 4.71
SBVS 15.90 8.57 34.43 5.86
SBVS+Ours 13.52 7.03 31.23 5.00
SSVS 12.59 6.50 28.36 4.17
SSVS+Ours 11.44 6.53 25.89 3.89

We schematically show our matching result for a typical
image pair on the left of Fig. 4. Clearly, all the inliers and
outliers in the putative set are correctly distinguished. To test
the efficiency of our LPM for visual homing, we repeat the
experiment 14, 365 times on different image pairs from the
A1originalH scene and report the runtime statistics on the
right of Fig. 4, where the median runtime is merely about
0.335 ms. The homing vector errors of all methods on the
two scenes are shown in Tables 2 and 3. We can see that
our LPM is able to consistently improve the state-of-the-art
visual homing methods, due to that our LPM produces more
accurate matching results.

4.3 Results on Image Retrieval
We also test our LPM for near-duplicate image retrieval and
compare it with RANSAC, ICF, GS, and MR-RPM on the
California-ND dataset [Jinda-Apiraksa et al., 2013]. We s-
elect all of the classes that have 10 or more images, and for
each class we randomly select 10 images for evaluation which
results in 7, 140 image pairs in total. The sizes of the test im-
ages are all 1024× 768. We run the matching algorithms and
utilize the number of preserved matches as the similarity be-
tween image pairs, and then return a ranked list for a provided
image according to its similarities with every other image in
the dataset. The performance is also characterized by preci-
sion and recall. We denote the required image number to be
retrieved for a provided image as RN . The precision is valid
for RN ≤ 10 and the recall is valid for RN ≥ 10, because
each class contains 10 images.

The statistic retrieval results of the four methods in the
dataset are presented on the left two figures of Fig. 5. Our
LPM evidently outperforms all other methods and obtain-
s the best precision and recall, followed by RANSAC and
MR-RPM. Specifically, the average retrieved correct image
numbers of RANSAC, ICF, GS, MR-RPM and our LPM for
RN = 10 are approximately 7.45, 5.18, 7.13, 7.13 and 8.69,
respectively. The runtime statistics of our LPM on all the

Table 3: Visual homing error statistics of different algorithms on the
CHall1H dataset. Bold indicates better result (unit: degree).

TAAE Min Max StdVar
HISS 11.69 8.05 18.84 1.81
HISS+Ours 10.89 7.46 17.50 1.65
BOVS 45.25 22.56 81.80 11.00
BOVS+Ours 14.20 4.77 49.71 8.23
SOVS 28.29 19.04 42.52 4.68
SOVS+Ours 24.21 15.01 38.83 4.63
SBVS 23.94 15.50 36.07 4.04
SBVS+Ours 18.04 10.98 35.56 4.29
SSVS 15.94 10.79 28.84 3.32
SSVS+Ours 11.50 7.79 20.63 2.08
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Figure 5: Precisions (left) and recalls (middle) of RANSAC, ICF,
GS, MR-RPM and LPM with respect to RN , i.e., the required num-
ber of images to be retrieved for a given image. Right: Runtime
statistics of LPM over 7, 140 trials.

7, 140 image pairs is provided on the right of Fig. 5, where
the median runtime is about 0.579 ms.

We also measure the retrieval performance of the so-called
bulls-eye score [Bai et al., 2010], which is defined as the ra-
tio of the total number of correct images among the 20 most
similar images to the highest possible number (i.e., 10). The
best possible rate is 100%. The bulls-eye scores of RANSAC,
ICF, GS, MR-RPM and our LPM are approximately 81.25%,
59.50%, 80.00%, 80.25% and 92.42%, respectively. Our
method again evidently showcases the best performance.

5 Discussion and Conclusion
In this paper, we proposed a novel mismatch removal method
for robust feature matching. It works based on a general char-
acteristic that the neighborhood structures of feature corre-
spondences between two images of the same scene should
be similar. We formulate this idea into a mathematic mod-
el and derive a closed-form solution with linearithmic time
complexity. The qualitative and quantitative results on fea-
ture matching as well as other real-world tasks demonstrate
that our method can handle a variety of matching problems.
More importantly, it can identify outliers from over 1, 000 pu-
tative matches in only a few milliseconds, which is more than
two orders of magnitude faster than state-of-the-art methods.

Since our method is very fast, it can be used to provide
a quick initialization for more complicated problem-specific
matching algorithms. For instance, it can provide a quick
initialization for RANSAC to estimate the epipolar geometry
between wide baseline image pairs.
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