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Abstract

Exemplar-based face sketch synthesis methods usu-
ally meet the challenging problem that input pho-
tos are captured in different lighting conditions
from training photos. The critical step causing
the failure is the search of similar patch candi-
dates for an input photo patch. Conventional il-
lumination invariant patch distances are adopted
rather than directly relying on pixel intensity differ-
ence, but they will fail when local contrast within
a patch changes. In this paper, we propose a fast
preprocessing method named Bidirectional Lumi-
nance Remapping (BLR), which interactively ad-
just the lighting of training and input photos. Our
method can be directly integrated into state-of-the-
art exemplar-based methods to improve their ro-
bustness with ignorable computational cost1.

1 Introduction
Exemplar-based face sketch synthesis has received much at-
tention in recent years ranging from digital entertainment
to law enforcement [Liu et al., 2007; Wang et al., 2012;
2014; Zhang et al., 2015b; Peng et al., 2016b; 2016a;
Wang et al., 2017]. Typically these methods usually con-
sist of two steps. In the first step, all photos (including a
given input photo and all training photos) are divided into lo-
cal patches, and a K-NN patch search is performed among
all training photos for each input photo patch. The sec-
ond step is to merge the corresponding sketch patches (ac-
cording to the photo patch search results) into an output
sketch image via global optimization [Wang and Tang, 2009;
Zhang et al., 2010; Zhou et al., 2012; Wang et al., 2013;
Zhang et al., 2015a] or local fusion [Song et al., 2014].
However, these methods usually fail when input photos are
captured differently from training photos which only contain
faces in normal lighting. The critical step causing the fail-
ure is the search of similar patch candidates for a given input
photo patch.

Most state-of-the-art methods (e.g., MRF [Wang and Tang,
2009], MWF [Zhou et al., 2012], and SSD [Song et al.,

1Complete experimental results are on the authors’ webpage.

(a) Photo (b) MRF (c) MWF (d) SSD

(e) Photo (f) MRF (g) MWF (h) SSD

(i) Artist (j) Ours+MRF (k) Ours+MWF (l) Ours+SSD

Figure 1: An example of varying lighting conditions. An input photo
in (a) is captured in the same condition with training photos. The
sketches generated by state-of-the-art MRF, MWF and SSD methods
are in (b)-(d). (e) is a synthesized input photo in a different lighting
and background condition. (f)-(h) are the results generated by these
methods. Our method can be integrated into existing methods to
improve the output quality as shown in (j)-(l).

2014]) adopt either L1 or L2 norm based on pixel lumi-
nance differences during photo patch search. They perform
well on ideal cases where both input and training photos
are captured in the same lighting condition. However, for
input photos which are captured in different lighting condi-
tions from training photos, these distance metrics often cause
incorrect matchings of photo patches and thus lead to er-
roneous sketch synthesis. Figure 1 shows an example. A
direct amending to these methods is to replace the metrics
of the pixel luminance difference with illumination invari-
ant ones based on gradient (like DoG [Zhang et al., 2010])
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or correlation (like NCC [Szeliski, 2010]). However, illu-
mination invariant patch distances will fail when local con-
trast within a patch changes. For example, if the background
is brighter than facial skin in input photos while the back-
ground is darker than facial skin in training photos, the photo
patches near face boundaries are difficult to locate training
correspondences (e.g., the left ear region in Figure 4(e)).
Meanwhile, illumination invariant methods [Han et al., 2010;
Xie et al., 2008] for face recognition are not suitable for face
sketch synthesis. They only focus on face region where hair
and background are not included.

To enable similar statistics of the face and non-face re-
gions between input and training photos, we propose a novel
method, namely Bidirectional Luminance Remapping (BLR),
to interactively adjust the lighting of both input and train-
ing photos. First, the BLR method adapt the lighting of
the input photo according to training photos, then it utilizes
the offline pre-computed alpha matte information of train-
ing photos to recompose them according to the adapted in-
put photo. The advantage of BLR is that it formulate online
foreground/background segmentation into offline alpha mat-
ting, which enables efficient and accurate patch search. It can
be integrated into existing face sketch synthesis methods with
ignorable computational cost.

2 Proposed Algorithm
In this section, we present the details of how BLR handles
lighting variations. Meanwhile, we describe the details for
how to integrate BLR into existing methods.

2.1 Bidirectional Luminance Remapping (BLR)
When an input photo with a different lighting from the train-
ing photos is given, a straightforward solution is to perform
a global linear luminance remapping (LR) on the input photo
to make it contain the same luminance statistics (e.g., mean
and variance) with those in training photos [Hertzmann et
al., 2001; Zhang et al., 2010]. However, the global map-
ping scheme is not applicable for many cases (e.g., when the
background has different intensities), and thus, the result is
erroneous shown in Figure 2(b).

We now present BLR to make the luminance statistics of
the face and non-face regions individually consistent between
input and training photos. Each photo consists of the face and
non-face regions and the remapping algorithm is performed
in two steps. First, we perform a global linear luminance
remapping on the input photo according to training photos.
Note that this global remapping is only based on the lumi-
nance in the face region. It is computed regardless of the non-
face region in the training photos, and the non-face region
of the input photo can be remapped to arbitrary luminance.
In the second step, we adjust the luminance of non-face re-
gion in each training photo (using offline pre-computed alpha
matte) to make the overall statistics of training photos consis-
tent with those of the input photo obtained in the first step. In
this way, the luminance statistics of the face and non-face re-
gions are adjusted similar between input and training photos.

Luminance Remapping on Input Photo. We perform lu-
minance remapping on the input photo to enable it contains

(a) Photo (b) LR+MRF (c) ULR+MRF (d) BLR+MRF

Figure 2: Improvement with BLR intergration. MRF sketch synthe-
sis method is used in this example. (a) is a challenging input photo
captured in dark lighting condition and textured background. (b) is
the result with luminance remapping. (c) is the result of the first step
of BLR. (d) is the result with BLR.

similar luminance statistics of the face region with those of
training photos. The face region is approximately obtained
using facial landmarks. We denote x as the input photo,
X = ai · x + bi as the adapted photo (where ai and bi are
two scalars), and y as all the training photos. We denote µx,
µX and µy as the mean of the face photo(s) x, X and y, re-
spectively. We denote σx, σX and σy as the corresponding
standard deviations of x, X and y, respectively. Our remap-
ping transforms the luminance statistics of the input photo as:

µX = ai · µx + bi; (1)
σ2

X = a2iσ
2
x ; (2)

The remapping parameters ai and bi are computed based on
the face region between input and training photos. We denote
Xf and yf as the face region in the adapted photo X and the
training photos y, respectively. We set µXf

= µyf and σXf
=

σyf to enable similar luminance statistics on the face region
between input and training photos. As a result, parameters ai
and bi are computed as follows:

ai =
σyf

σxf
, (3)

bi = µyf − ai · µxf . (4)

We use parameters ai and bi to adjust the input photo while
not altering training photos at present.

Luminance Remapping on Training Photos. After con-
ducting luminance remapping, we are confident that the lu-
minance statistics of the face region in adapted input photo X
are similar with those of the training photos. The remaining
problem resides in the boundary between the face and non-
face regions, which may lead to incorrect patch search and
thus the erroneous boundary occurs in the results shown in
Figure 2(f). We decompose each training photo into portrait
image, non-portrait image and alpha map using matting al-
gorithm [Levin et al., 2008] with manually labeled trimap.
The portrait image contains the whole human portrait region
while the non-portrait image contains the background region.
The non-portrait image is used to approximate the non-face
region and the matting operation is done offline. We keep the
portrait image fixed and a luminance remapping on the non-
portrait image is performed to enable the overall statistics of
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the training photos similar to those of the adapted input photo
obtained in the previous step.

We denote yp, yn and α as the portrait images, non-portrait
images and alpha maps in the training images. So training
images y can be written as

y = α · yp + (1− α) · yn. (5)

We denote Y as the adapted training images with luminance
remapped non-portrait region, then

Y = α · yp + (1− α)(at · yn + bt)

= α · yp + at · (1− α) · yn + bt · (1− α), (6)

where at and bt are parameters to adjust the non-portrait re-
gions. We denote P = α · yp, N = (1 − α) · yn, and
A = (1 − α). The adapted training images Y can be writ-
ten as:

Y = P + a · N + b · A (7)

and its mean can be computed as:

µY = µP + a · µN + b · µA. (8)

We denote Y as the mean operator on photos Y. So we com-
pute the variance of Y as:

σ2
Y = (Y − µY)2

= ((P − µP) + at · (N − µN) + bt · (A − µA))
2

= σ2
P + a2tσ

2
N + b2tσ

2
A + 2at · σP,N + 2bt · σP,A

+2atbt · σN,A, (9)

where σx,y corresponds to the covariance between x and y.
We set µX = µY and σX = σY to enable the luminance

statistics of adapted input photo similar with the adapted
training photos. The parameters at and bt can be computed
by solving the above two quadratic equations.

In practice, we notice that parameter b is normally small,
and thus we can approximate Equation 6 by

Y = α · yp + at · ((1− α) · yn) + bt
= P + at · N + bt. (10)

Then we have

µX = µY = µP + at · µN + bt (11)

σ2
X = σ2

Y = (Y − µY)2

= ((P − µP) + at · (N − µN))
2

= σ2
N · a2t + 2σP,N · at + σ2

P. (12)

Parameter at can then be computed by solving the quadratic
equation in Equation 12 and then used to solve for parameter
bt in Equation 11. There will be two possible solutions for the
linear transform. To attenuate noise, we choose the positive
at value that minimizes parameter bt:

at =
−σP,N +

√
σ2

P,N − σ2
Nσ

2
P + σ2

Nσ
2
X

σ2
N

, (13)

bt = µX − µP − at · µN. (14)

After obtaining parameters at and bt we perform remapping
on the non-portrait images. Then we recompose training pho-
tos using adapted non-portrait image, portrait image, and al-
pha mat. As a result, we enable similar luminance statistics of
face and non-face regions between input and training photos.
The photo patch search has been accurate for existing face
sketch synthesis methods to synthesize sketches.

2.2 Practical Issues
Side Lighting. In practice, side lighting may occur in in-
put photos. We use Contrast Limited Adaptive Histogram
Equalization (CLAHE) [Pizer et al., 1987] to reduce the ef-
fect but find that shadows may still exist around facial com-
ponents. Then we remap shadow region under the guidance
of its symmetric normal lighting region on the face. Specifi-
cally, we use landmarks to divide the whole face region into
two symmetric parts, i.e, shadow region, and normal lighting
region. For each patch in the shadow region, we perform a
1-NN search in the normal lighting region around the corre-
sponding symmetric position using normalized cross correla-
tion (NCC). Then we remap the luminance of pixels in the
shadow region using gamma correction. We denote Tp as a
patch centered at a pixel p in the shadow region and Tp′ as
the most similar patch centered at p′ in the normal lighting
region. The gamma correction can be written as:

Ip = I
µTp/µT

p′
p (15)

where Ip is the luminance of p. µTp
and µT ′

p
are the mean

luminance of patch Tp and T ′
p, respectively.

Pose Variance. In addition to lighting problem, the patch ap-
pearance distortion due to pose variations also degrades the
quality of selected patch. We precompute the average posi-
tion of each facial landmark from all training photos to gen-
erate a triangulated face template. Given an input photo, we
detect its landmarks and compute the local affine transform.
Through this transform, input photo is warped to a pose cor-
rected photo, and K-NN patch search is then performed be-
tween the pose corrected photo and training photos. After
sketch synthesis, we warp it back to the original pose.

Implementation Details. In our implementation, we pre-
compute the facial landmarks, portrait, and non-portrait im-
ages, alpha mattes for all training photos in advance. Given
an input photo, we first detect facial landmarks using the al-
gorithm in [Kazemi and Sullivan, 2014] and perform local
affine transform to warp the input photo into a pose corrected
one for further processing. The landmark detection and lo-
cal affine transform can be conducted in real-time. Second,
side lighting is handled as described previously. Then BLR is
applied to adapt both input and training photos. After BLR,
preprocessed input and training photos can be adopted by ex-
isting face sketch synthesis algorithms to synthesize sketch
images. Finally, the sketch image is mapped back using local
affine transform to yield the final sketch result.

3 Experiments
We conduct experiments using state-of-the-art face sketch
synthesis methods including MRF [Wang and Tang, 2009],
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Figure 3: Quantitative evaluation on synthetic CUHK dataset. We use σF and σB to adjust the foreground and background lightings of
input photos, correspondingly. Our integration improves the robustness of MRF, MWF and SSD regarding to different lightings. It performs
favorably against luminance remapping integration and original RMRF method.

RMRF [Zhang et al., 2010], MWF [Zhou et al., 2012] and
SSD [Song et al., 2014]. The focus is to demonstrate the
improvement after integrating BLR into existing methods.
The experiments are conducted on the benchmarks includ-
ing CUHK [Wang and Tang, 2009], AR [Aleix and Robert,
1998], and FERET datasets [Zhang et al., 2011]. The num-
ber of photo-sketch pairs for CUHK, AR and FERET are 188,
123 and 1165, respectively. The photos in these three datasets
are captured in frontal view and neutral expression. In CUHK
dataset the lighting condition is similar for all the photos. In
AR dataset the lighting condition is also similar among the
photos. However, the lighting condition of CUHK dataset
is different from that of AR dataset. For FERET the light-
ing varies in different photos within this dataset. In addition,
we also conduct experiments on the CUHK side lighting and
pose variation datasets, which belong to CUHK dataset.

3.1 Varying Lighting Conditions
Synthetic Experiments. We first carry out quantitative
and qualitative evaluations for synthetic lighting conditions.
The synthetic evaluations are conducted on modified CUHK
dataset. We split the CUHK dataset into 88 training photo-
sketch pairs and 100 input pairs and then generate synthetic
input photos in varying lightings as follows. We use mat-
ting algorithm [Levin et al., 2008] to divide each input photo
into foreground, background and alpha matte images. Then
we separately adjust the luminance of foreground and back-

ground using two scalars (i.e., σF and σB). The luminance
values of all foreground pixels are multiplied by σF and those
of background are multiplied by σB . Then we combine ad-
justed foreground and background images with alpha matte
to generate synthetic input photos.

We compare our method with baseline luminance remap-
ping (LR) [Hertzmann et al., 2001] preprocessing. Note that
RMRF is specially designed for improving the robustness of
MRF, we compare with RMRF when evaluating the improve-
ment on MRF. In addition, RMRF can be treated as an inde-
pendent method which can be integrated with our algorithm.
So we first evaluate the original performance of MRF, MWF,
SSD and RMRF. Then we compare the improvements of the
LR and our integration of these methods.

Quantitative evaluation of face sketch synthesis methods
can be conducted through face sketch recognition as sug-
gested in [Wang and Tang, 2009]. For each input photo, the
synthesized sketch should be matched to the corresponding
sketch drawn by the artist. If an algorithm achieves higher
sketch recognition rates, it suggests that this method is more
robust to synthesize sketches. Figure 3 shows the perfor-
mance of quantitative evaluation. The foreground of input
photos is adjusted by three values of σF , i.e., 0.5, 1.0, and
1.5. These values simulate the dark, normal, and bright fore-
ground of input photos, respectively. For each σF we adjust
σB from 0.5 to 1.5 incremented by 0.1, which simulates the
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(a) Photo (b) MRF (c) MWF (d) SSD

(e) RMRF (f) LR+MRF (g) LR+MWF (h) LR+SSD

(i)Ours+RMRF (j)Ours+MRF (k)Ours+MWF (l)Ours+SSD

Figure 4: An example of synthetic lighting experiments. (a) is the in-
put photo consists of dark foreground and bright background. (b)-(e)
are the results of existing methods. (f)-(h) are the results of improved
existing methods with luminance remapping integration. (i)-(l) are
the results of improved existing methods with our integration.

varying background lightings. The results show that MRF,
MWF, and SSD are not robust to synthesize sketches from
photos captured in different lightings. Due to its global nor-
malization scheme, LR preprocessing cannot robustly handle
all lighting conditions. Our algorithm can consistently im-
prove the performance of existing methods. Compared with
RMRF, our algorithm is more robust against extreme cases
(the first row of Figure 3). Moreover, our algorithm can be
integrated with RMRF to improve its robustness (the last row
of Figure 3).

Figure 4 shows one example of the visual comparison for
the synthetic evaluation. The input photo consists of dark
foreground and bright background. As the foreground differs
from training photos patch candidates can not be correctly
matched, which results in blurry and artifacts as shown in (b)-
(d). LR based on global luminance statistics fails to correct
the lightings and thus produces erroneous results as shown in
(f)-(h). In comparison, BLR adapts both input and training
photos to enable more accurate patch search in the face and
non-face regions. As a result, the accuracy of K-NN patch
searching is improved and the obtained sketch results achieve
ideal performance as shown in (i)-(l). Meanwhile, the local
contrast within photo patch is reduced through our integration
and thus the result in (i) is improved around face boundary.

Cross-Dataset Experiments. We notice that CUHK and AR
datasets are captured in different lightings. Thus we evaluate
the robustness of BLR using CUHK as training and AR as

(a) Photo (b) MRF (c) MWF (d) SSD

(e) RMRF (f) LR+MRF (g) LR+MWF (h) LR+SSD

(i)Ours+RMRF (j)Ours+MRF (k)Ours+MWF (l)Ours+SSD

Figure 5: An example of cross-dataset experiments (CUHK as train-
ing while AR as input). (a) is an input photo. (b)-(l) are with the
same meaning as Figure 4.

input and vice versa. Figure 5 shows the visual comparison
where BLR can consistently improve existing methods. Al-
though ethnic facial difference exists between two datasets,
BLR can still robustify sketch synthesis of existing methods.
Real Lighting Experiments. We conduct an evaluation of
BLR on FERET dataset. Different from the previous two
datasets FERET contains photos captured in real world vary-
ing lighting conditions. We randomly select 100 photo-sketch
pairs as training and use the remaining 1065 pairs as input.
Figure 6 shows one example of the visual evaluation. The
lighting is different in both foreground and background re-
gions, which leads to artifacts on the synthesized sketches of
existing methods. Through our integration, the statistics of
the face and non face regions are adjusted similarly among
input and training photos. It enables existing methods to ro-
bustify sketch synthesis.
Side Lighting Experiments. We conduct experiments on
CUHK side lighting dataset [Zhang et al., 2010] which con-
tains two different types of side lighting (dark left / dark right)
photos for each subject. As the input photo contains shad-
ows in the facial region shown in Figure 7, existing meth-
ods cannot find correctly matched photo patches around these
shadow regions. It leads to blur and artifacts shown in (b)-(d).
In comparison, Our method can locally adjust input photo to
make an improvement.

3.2 Varying Poses
We perform experiments on CUHK pose variation dataset
[Zhang et al., 2010] where subjects are in varying poses. Note
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(a) Photo (b) MRF (c) MWF (d) SSD

(e) RMRF (f) LR+MRF (g) LR+MWF (h) LR+SSD

(i)Ours+RMRF (j)Ours+MRF (k)Ours+MWF (l)Ours+SSD

Figure 6: An example of experiments on FERET dataset. (a) is an
input photo. (b)-(l) are with the same meaning as Figure 4.

Table 1: Runtime (seconds) for a CUHK input image.

MRF MWF RMRF SSD

Original 38.4 35.6 88.2 4.5

Original (ext.)† 94.5 93.8 252.3 13.4

Original + Ours 38.6 35.9 93.5 4.7
†With extended search range.

that some methods [Song et al., 2014; Zhou et al., 2012] tend
to increase search range for handling varying poses. Thus
we also compare BLR with existing methods using extended
search range. Figure 8 shows an example of the visual evalu-
ation result. Our algorithm favorably improves the robustness
of existing methods.

3.3 Computational Cost
Table 1 shows the runtime of existing methods to process a
CUHK input image (obtained from a 3.4GHz Intel i7 CPU).
It shows that the additional computation cost brought by BLR
is ignorable compared with the original time cost of existing
methods. Note that the reason why RMRF needs more addi-
tional computational cost is that we need to extract features
online of the recomposed training photos.

4 Concluding Remarks
We propose BLR, which interactively adjusts the lighting of
training and input photos. It moves online face image seg-
mentation to offline using human supervised alpha matting.
The experiments demonstrate that BLR improves the robust-
ness of existing methods with ignorable computational cost.

(a) Photo (b) MRF (c) MWF (d) SSD

(e) RMRF (f) LR+MRF (g) LR+MWF (h) LR+SSD

(i)Ours+RMRF (j)Ours+MRF (k)Ours+MWF (l)Ours+SSD

Figure 7: An example of side lighting experiments. (a) is an input
photo. (b)-(l) are with the same meaning as Figure 4.

(a) Photo (b) MRF (c) MWF (d) SSD

(e) RMRF-ext (f) MRF-ext (g) MWF-ext (h) SSD-ext

(i)Ours+RMRF (j)Ours+MRF (k)Ours+MWF (l)Ours+SSD

Figure 8: An example of varying pose experiments. (a) is an input
photo. (b)-(d) are the synthesized sketches. (e)-(h) are the results
synthesized with extended search range. (i)-(l) are the sketches syn-
thesized with our integration.
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