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Abstract
We address semantic video object segmentation
via a novel cross-granularity hierarchical graphical
model to integrate tracklet and object proposal rea-
soning with superpixel labeling. Tracklet charac-
terizes varying spatial-temporal relations of video
object which, however, quite often suffers from
sporadic local outliers. In order to acquire high-
quality tracklets, we propose a transductive infer-
ence model which is capable of calibrating short-
range noisy object tracklets with respect to long-
range dependencies and high-level context cues. In
the center of this work lies a new paradigm of se-
mantic video object segmentation beyond modeling
appearance and motion of objects locally, where
the semantic label is inferred by jointly exploit-
ing multi-scale contextual information and spatial-
temporal relations of video object. We evaluate our
method on two popular semantic video object seg-
mentation benchmarks and demonstrate that it ad-
vances the state-of-the-art by achieving superior ac-
curacy performance than other leading methods.

1 Introduction
Semantic video object segmentation aims at grouping pixels
in video frames into spatio-temporal regions belonging to a
unique semantic class label. Notable progress has been made
toward this problem by incorporating middle- and high-level
visual information, such as object detection [Zhang et al.,
2015; Wang et al., 2016; Drayer and Brox, 2016], to build
an explicit semantic notion of video objects. Such an integra-
tion with object recognition and segmentation not only facil-
itates a holistic object model, but also provide a middle-level
geometric representations for delineating semantic objects.

Existing detection-segmentation based approaches usually
fail to capture long-range and high-level contexts due to the
lack of joint modeling and inference of contexts and segmen-
tation. Those methods either directly employ detected ob-
ject proposals, i.e. local context, from independent frames
associated in temporal domain as constraints to enforce la-
belling consistence [Zhang et al., 2015; Drayer and Brox,
2016] or build holistic object models using adapted image-
based raw detections [Wang et al., 2016]. However, object
detections followed by temporal association may contain er-
rors due to inconsistent object appearance across frames and
occlusions. Using independent object proposals as constraint

(a) Ground-truth (b) Ours

(c) FCN [Long et al., 2015] (d) DTS [Drayer and Brox,
2016]

Figure 1: Semantic segmentation examples from the pro-
posed approach and the state-of-the-art image and video se-
mantic segmentation methods.

for labelling without incorporating various context cues leads
to mis-segmentations. To discover and utilize both local and
global contexts, we propose a novel cross-granularity graph-
ical model for jointly modeling and inference of different
granularities, i.e. tracklets, frame-wise object proposals and
superpixels.

Tracklet characterizes the spatial-temporal evolution of
various object features and are commonly tied to higher-level
contexts such as object interactions and behaviours [Choi and
Savarese, 2012]. High-quality tracklets play a crucial role in
building our cross-granularity graphical model by introduc-
ing global contexts to semantic labeling. To this end, given
a video sequence, we first build a graph which consists of
object proposal tracklets each of which captures short-range
spatio-temporal contexts. We then propose a novel graph-
based transductive inference model which operates on the
constructed object graph of tracklets. Our transductive in-
ference model enables the calibration of the noisy object pro-
posals by exploring the long-range spatio-temporal contexts.
The rationale is that graph-based transductive inference cap-
tures the synergy of objects belonging to the same category in
deep feature space and thus propagates the confidence along
the graph with respect to long-range spatio-temporal depen-
dencies and high-level semantics.

We then construct a hierarchical graphical model which
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consists of calibrated tracklets, object proposals and super-
pixels, where each of the nodes captures spatio-temporal con-
texts and semantics from coarse to fine granularities. The
tracklet level nodes encode long-range contexts and higher-
level semantic synergies, which resolve local motion and ap-
pearance ambiguities. The object proposal nodes enforce
short-range dependencies and local geometric representa-
tion, while the superpixel nodes play the role as perceptually
meaningful atomic regions to guarantee efficient and accurate
segmentation despite that they are much less informative. The
information flow across nodes of various granularities enables
effective inference which accounts for both bottom-up and
top-down semantic cues.

The contribution of this paper is two-fold. First, our paper
is the first attempt to jointly model and infer complex dynam-
ics and multi-scale contextual cues via a cross-granularity hi-
erarchical graph for semantic video object segmentation. Sec-
ond, we develop a novel transductive inference model which
is capable of calibrating the noisy semantic confidence of
short-range object tracklets with respect to long-range and
high-level contexts. Experiments on two popular benchmarks
verify superior performance of the proposed method to the
state-of-the-arts.

2 Related Work
This work falls in the field of unsupervised or weakly su-
pervised video object segmentation, where the current lit-
erature can be generally grouped into motion segmentation,
generic object segmentation and semantic object segmenta-
tion in videos.

Methods from the first category normally cluster pixels us-
ing appearance and optical flow based motion information
across all frames [Wang et al., 2009; Sundberg et al., 2011;
Ayvaci and Soatto, 2012] or take a bottom-up approach based
on spatio-temporal appearance and motion constraints [Pa-
pazoglou and Ferrari, 2013; Giordano et al., 2015], which
work to some extent if the objects show some independent
motion in the video. However, motion segmentation methods
typically fail on static objects or almost all motion is due to
camera motion, or objects move as a unit.

The second category consists of methods generally utiliz-
ing two middle-level representations, i.e., object proposals
and salient region detection, to form an explicit notion of
generic objects. Methods [Lee et al., 2011; Zhao and Fu,
2015; Wang and Wang, 2016; Xiao and Lee, 2016] have
been proposed to explore recurring object-like regions from
still images by measuring generic object appearance [En-
dres and Hoiem, 2010]. Saliency measure has been used
to detect generic objects in methods [Banica et al., 2013;
Wang et al., 2015]. These approaches typically aim to seg-
ment the primary object or all foreground objects regardless
of semantic labels.

Methods from the third category, which is the closest to
our approach, segment the video object with assigned se-
mantic labels. These methods either train weakly super-
vised classifiers from collections of positive and negative
videos [Hartmann et al., 2012; Tang et al., 2013; Liu et
al., 2014] or employ off-the-shelf object detection models
[Taylor et al., 2013; Zhang et al., 2015; Wang et al., 2016;
Drayer and Brox, 2016]. [Hartmann et al., 2012] formu-
lated the problem of semantic video object segmentation as
learning weakly supervised classifiers for a set of independent
spatio-temporal segments. A discriminative model based on

distance matrix is proposed by [Tang et al., 2013] who lever-
age labelled positive videos and a large collection of nega-
tive examples. [Liu et al., 2014] proposed nearest neighbour-
based label transfer algorithm which encourages smoothness
between regions that are spatio-temporally adjacent and sim-
ilar in appearance. In another line of work, [Taylor et al.,
2013] develop an approach to incorporate scene topology and
semantics from trained Textonboost classifier. [Zhang et al.,
2015] adopt pre-trained Deformable Part Model based ob-
ject detector to generate a set of raw detections which are
used to enforce spatio-temporal labeling consistence. [Wang
et al., 2016] employ a pre-trained image recognition model
and build semi-supervised graphical model for domain adap-
tation to generate smooth semantic confidence map. Drayer
and Brox [Drayer and Brox, 2016] enhance the motion seg-
mentation approach [Papazoglou and Ferrari, 2013] with de-
tected and tracked object regions to improve segmentation ac-
curacy on videos with no motion, dominant camera motion,
and objects that move as a unit.

Our approach differs from [Taylor et al., 2013; Zhang et
al., 2015; Wang et al., 2016; Drayer and Brox, 2016] mainly
in two aspects. First, our approach performs object tracklets
level inference incorporating long-range dependencies to al-
leviate sporadic local outliers instead of using temporally as-
sociated raw detections with only short-range cues as labeling
constraints. Second, we construct a cross-granularity hierar-
chical graphical model consisting of calibrated tracklets, ob-
ject proposals and superpixels to account for contextual cues
at multiple scales, whilst the existing approaches use single-
layer graph with local contexts for inference.

3 Transductive Inference of Tracklets
We first introduce our graph-based transductive inference
model which takes as input the noisy object tracklets with
short-range contexts, and enables the calibration of the con-
fidence of tracklets by exploring the long-range contextual
information. The calibrated object tracklets augments the hi-
erarchical graphical model with high quality object proposals
and tracklets i.e., longer-term spatio-temporal object relations
and contexts, which are critical for the segmentation model in
Sec. 4.

3.1 Object Tracklet Generation
Given one video sequence with unknown object category, our
goal is to firstly generate sets of spatio-temporally associated
regions corresponding to the recurrence of the same objects
in consecutive frames, i.e., object tracklets. One of the ma-
jor challenges to generate tracklets is to associate thousands
of object proposals from different objects while maintaining
spatio-temporal consistence against complex motion, occlu-
sion relationships and appearance variation. To this end, we
combine the still-image object detection and generic object
tracking together to exploit the discriminative capability of
object detector and the ability of handling complex motion
from object tracker.

We generate object proposals using [Endres and Hoiem,
2010] which produces bottom-up grouped object-like re-
gions. As the majority object proposals are negative samples
and may not correspond to any objects belonging to the tar-
get PASCAL VOC 20 classes, we use fast R-CNN [Girshick,
2015] to remove easy negative object proposals whose detec-
tion score of the 20 classes are below a certain low threshold
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(0.1). The retained object proposals constitute a pool of ob-
ject candidates Ω, which are assigned with a semantic label
with respect to the highest scoring class from R-CNN. We
define a subset of high-confidence object candidates Ω+ ⊆ Ω
with detection score exceeding a higher threshold (0.5). We
generate a negative proposal set Ω− by randomly sampling
negative instances in each frame whose Intersection-over-
Union (IoU) with any proposal from Ω+ are less than 0.3.

For each object class, we generate tracklets by tracking
high-confidence proposals from Ω+ in the video sequence
using SR-DCF tracker [Danelljan et al., 2015]. In each iter-
ation, the unassigned proposal in Ω+ with the highest detec-
tion confidence initializes trackings to both ends of the video
sequence simultaneously, and any object proposals from Ω
whose boxes have a sufficient IoU with the tracker box are
considered as candidates to constitute a tracklet. In frames
where multiple overlapping candidates are detected, the one
with the highest detection confidence is finally chosen to
be added to the tracklet. Forward and backward tracklets
are subsequently concatenated to form one complete track-
let. This process is performed iteratively until all proposals
from Ω+ are assigned to at least one tracklet. Finally, we ex-
tract a set of noisy tracklets denoted as T which comprises
both high- and low-confidence detections. Note that, we do
not assume perfect tracking against large motions or heavy
occlusions, as short-range spatio-temporal coherence within
only a few frames is expected from object tracklets at this
stage.

3.2 Transductive Inference Model for Tracklets
The generated object tracklets contain sporadic spurious de-
tections whereas they preserve high-confidence short-range
contextual information. We propose a transductive inference
model to calibrate the semantics of tracklets with respect to
the long-range contexts and global tracklet relationships. We
define a weighted space-time graph Gt = (Vt, Et) on posi-
tive and negative object proposals from T and Ω− respec-
tively. An undirected acyclic subgraph is naturally formed
by temporally connecting all the object proposals from the
same tracklet; the induced subgraphs are subsequently con-
nected via the k-nearest neighbors among all the constituent
nodes of each pair of tracklets from T ; the graph is comple-
mented by adding nodes from Ω−, connecting to k-nearest
other negative nodes or tracklets where the nearest nodes of
each tracklet subgraph is connected. This graph accounts for
both the short- and longer-range object relationships, with
negative examples being sparsely connected to calibrate the
sporadic spurious positive object detections. The sparsity of
the graph is preserved to facilitate effective and efficient in-
formation flowing within structural properties during infer-
ence. An exemplar graph is illustrated in Fig. 2.

We solve transductive inference by minimizing an energy
function E(Z) with respect to all nodes confidence Z (Z ∈
[−1, 1]):

min
Z
E(Z) = min

Z
µ

N∑
i=1

||zi − yi||2 (1)

+
N∑

i,j=1

Aij ||zid
− 1

2
i − zjd

− 1
2

j ||
2,

where µ is a parameter, and zi are the desirable confidence
of node i which are regulated by prior confidence yi. The

Figure 2: An example of tracklet graph, where rectangles
indicate tracklets, circles represent object proposals and tri-
angles stand for the negative boxes. Solid circles are high-
confidence proposals whilst dashed circles are weakly de-
tected proposals.

first term in (1) encourages the inferred confidence to agree
with the prior knowledge, whilst the second term promotes
the coherence of inferred confidence among adjacent nodes
lying in a close vicinity in the feature space. Let the node
degree matrix D = diag([d1, . . . , dN ]) be defined as di =∑N
j=1Aij , where N = |V|.
Denoting S = D−1/2AD−1/2, this energy function can be

minimized iteratively [Zhou et al., 2004] as

Zk+1 = αSZk + (1− α)Y

until convergence, where α controls the relative amount of
information from its neighboring nodes and its prior knowl-
edge. In each iteration, each node adapts its confidence by
receiving the information propagated from its neighboring
nodes while preserving its initial confidence. The confidence
is adapted symmetrically since S is symmetric. The symmet-
rically normalized affinity matrix A of Gt enables the conver-
gence of the following iteration.

Each node in the graph is characterized by the L2-
normalized VGG-16 Net [Simonyan and Zisserman, 2014]
fc6 features Fi of its box, and the affinity matrix A of Gt is
computed as the inner-product between the feature vectors of
neighboring nodes, i.e., Ai,j =< Fi, Fj >.

We alternatively solve the optimization problem as a linear
system of equations which is more efficient. Differentiating
E(Z) with respect to Z we have

∇E(Z)|Z=Z∗ = Z∗ − SZ∗ + µ(Z∗ −Y) = 0, (2)

which can be transformed as

Z∗ − 1

1 + µ
SZ∗ − µ

1 + µ
Y = 0 (3)

Denoting γ = µ
1+µ , we have (I − (1 − γ)S)Z∗ = γY. The

optimal solution for Z can be obtained using the precondi-
tioned (Incomplete Cholesky factorisation) conjugate gradi-
ent method with very fast convergence.

The initial confidence Y is initialized based on the detec-
tion confidences of R-CNN. Specifically, Y of positive nodes
whose detection confidences are higher than a threshold η
(η = 0.1) is assigned with the detection confidence. The pos-
itive nodes with detection confidences below η are deemed as
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Figure 3: Exemplar tracklets comprising object proposals and
underlying superpixel maps.

unlabeled, and their values Y are initially assigned as 0. Y
of all negative nodes are initially assigned as −1.

The inference process normally involves two separable
confidence propagation from labeled (positive or negative)
nodes to unlabeled nodes respectively, with initial labels Y
in (1) substituted as Y+ and Y− respectively:

Y+ =

{
Y if Y > 0
0 otherwise

(4)

and

Y− =

{
−Y if Y < 0
0 otherwise.

(5)

We propose to combine both propagation processes to pro-
duce more efficient and coherent labelling, harnessing the
complementary properties of positive and negative nodes. We
perform the optimization for two propagation processes si-
multaneously as follows:

Z∗ = γ(I − (1− γ)S)−1(Y+ −Y−). (6)

Combined inference process enables more efficient and
stable optimization while yielding equivalent results to the
individual label inferences. The confidences of all object
proposals O are thus calibrated by incorporating local and
global tracklet relationship; object proposals with inferred
confidence Z < 0 are deemed as false positives and are con-
sequently removed from the constituting tracklets.

4 Hierarchical Graphical Model for
Segmentation

Given the calibrated tracklets, we formulate the semantic ob-
ject segmentation as a superpixel labeling problem. We pro-
pose a novel hierarchical graphical model to combine bottom-
up motion and appearance cues with top-down recognition,
long-term object relations and spatio-temporal contexts under
one framework, to assign each node with labels x ∈ {0,K}.

We define a hierarchical graph Gs = (Vs, Es) for construct-
ing the segmentation model. Firstly the tracklets are mod-
eled as top layer graph nodes, connecting with each other.
The second layer is comprised of object proposals which are
modeled as undirected acyclic sub-graph within each tracklet.
Object proposal nodes are connected to the associated track-
let and their constituent superpixels. The bottom layer con-
sists of superpixels connected to represent the local spatial

Figure 4: CRF of hierarchical graph for various pairwise po-
tentials.

and temporal relationships. Exemplar tracklets which com-
prises object proposals and the underlying superpixel maps
are shown in Fig. 3

This hierarchical graph can be formulated as a Conditional
Random Field (CRF) for nodes with label x ∈ {0,K} where
an energy function can be defined as:

x∗ = argmin
x

EU (x) + EP (x). (7)

where EU and EP denote the unary and pairwise potentials
respectively. An illustration of various pairwise potentials of
the hierarchical graphical model is shown in Fig. 3. We adopt
alpha expansion [Boykov et al., 2001] to minimise (7) and the
resulting label assignment gives the semantic object segmen-
tation of the present categories.

4.1 Unary Potentials
We define unary potentials for nodes to measure the compat-
ibility of the observed feature and their labels,

EU (x) = ψs(x) + ψo(x) + ψt(x) (8)

where ψs, ψo and ψt correspond to the sets of superpixels,
object proposals and tracklets respectively.

The unary potentials of superpixel nodes combine both the
deep feature and color-based appearance models:

ψs(x) =
∑
i∈S

Φd(xi) + Φc(xi).

where Φd(·) is the deep feature model term and Φc(·) is the
color-based appearance model term. We learn a SVM model
based on hierarchical CNN features [Ma et al., 2015] and
GMM model based on CIE Lab colors, by sampling from the
calibrated tracklets.

The unary potentials of object proposals ψo are computed
by averaging the unary potentials of their constituent super-
pixels; similarly, the unary potentials of tracklet nodes ψt are
computed by averaging over their constituent object propos-
als.

4.2 Pairwise Potentials
We define the pairwise potentials resembling Potts model to
encourage both local and global contexts of labelling while
preserving discontinuity in the data,

EP (x) =φs,s(x) + φs,o(x)+ (9)
φo,o(x) + φo,t(x) + φt,t(x)
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where the paired subscripts from {s, o, t} indicate the pair-
wise potentials between different types of nodes.

The spatial and temporal pairwise potentials of superpixels
φs,s = {φss,s, φts,s} are defined as follows. The spatial pair-
wise potential φss,s which penalizes different labels assigned
to spatially adjacent superpixels is defined as,

φss,s =
∑
i,j∈S

δ(xi, xj)
e−d

c(i,j)

ds(i, j)

where δ(·) is the Kronecker delta, the functions ds(i, j) and
dc(i, j) computes the spatial and color distance respectively
between spatially neighboring superpixel nodes i and j as
dc(i, j) =

||ci−cj ||2
2<||ci−cj ||2> , where ||ci − cj ||2 is the squared

Euclidean distance between two adjacent superpixel nodes in
CIE Lab colorspace.

The temporal pairwise potential is defined over edges
where superpixels are temporally connected by at least one
optical flow motion vector on consecutive frames. The tem-
poral pairwise potential is defined as

φts,s =
∑
i,j∈S

δ(xi, xj)
e−d

c(i,j)

dt(i, j)
,

where dt(i, j) computes the temporal distance between i and
j which is measured by the the ratio of pixels within the two
superpixel nodes that are connected by motion vectors over
the union of two superpixels.

The pairwise potential between superpixel and associated
object proposal is defined to encourage the superpixels which
constitute the same object proposal to be assigned with the
same label while still allowing some of them to have different
labels,

φs,o =
∑

i∈S,j∈O
δ(xi, xj)

e−σj (1− |pi − pj |)Np
i

Np
j

(10)

where pi denotes the likelihood of node i to be labeled as xi
based on trained hierarchical CNN feature and GMM color
model, σj is the standard deviation of superpixel unary po-
tentials constituent object proposal node j, Np

i and Np
j are

the cardinalities of node i and j respectively in terms of pixel
counts. This potential computes the penalty of assigning dif-
ferent labels to superpixel node i and object proposal node
j. This penalty is lower if either node i is small relative to
j, or node i and j appear different, or object proposal node j
contains large uncertainties.

Pairwise potential between object proposals φo,o is follow-
ing the inner-product of paired CNN features defined in Sec.
3.2, to exploit higher level semantics in deep feature space

φo,o =
∑
i,j∈O

δ(xi, xj)e
−(1−<Fi,Fj>) (11)

Potential function φo,t follows a similar definition as in
(10),

φo,t =
∑

i∈O,j∈T
δ(xi, xj)

e−σj (1− |pi − pj |)
No
j

(12)

whereNo
j stands for the cardinality of tracklet node j in terms

of object proposal count. This function encourages the ob-
ject proposal in each tracklet to be labeled the same, except

Table 1: Intersection-over-union overlap accuracies on
YouTube-Objects Dataset

LDW DSW SSW DAW DTS SLM Ours

Plane 0.517 0.178 0.758 0.760 0.744 0.749 0.757
Bird 0.175 0.198 0.608 0.747 0.721 0.754 0.766
Boat 0.344 0.225 0.437 0.588 0.585 0.623 0.666
Car 0.347 0.383 0.711 0.659 0.600 0.676 0.758
Cat 0.223 0.236 0.465 0.557 0.457 0.548 0.624
Cow 0.179 0.268 0.546 0.675 0.612 0.679 0.720
Dog 0.135 0.237 0.555 0.574 0.552 0.582 0.671
Horse 0.267 0.140 0.549 0.575 0.566 0.503 0.526
Mbike 0.412 0.125 0.424 0.569 0.421 0.516 0.547
Train 0.250 0.404 0.358 0.430 0.367 0.358 0.392

Avg. 0.285 0.239 0.541 0.613 0.562 0.599 0.643

they are of divergent confidence or tracklet node j consists
of proposals with significant variance of uncertainties. φt,t is
computed similar to φo,o, where the tracklet node feature is
computed by averaging all the CNN feature vectors of con-
stituent object proposals.

5 Experiments
In order to evaluate the performance of semantic video object
segmentation, many motion segmentation or figure-ground
segmentation datasets are not suitable due to either the am-
biguous object annotation in ground-truth (one label for all
foreground moving objects or no annotation for static ob-
jects) or the insufficient number of videos/frames per object
class. We evaluate on two large-scale video object segmen-
tation datasets, YouTube-Objects [Prest et al., 2012], egoMo-
tion [Shankar Nagaraja et al., 2015], which are totally over
30,000 frames. The categories of these two datasets are sub-
sets of the pretrained 20 classes of PASCAL VOC 2012 in
R-CNN.

The YouTube-Objects dataset has become the dataset on
which state-of-the-art methods report their results. YouTube-
Objects consists of videos from 10 object classes with pixel-
level ground truth for totally more than 20, 000 frames. These
videos are very challenging and completely unconstrained,
with objects of similar colour to the background, fast mo-
tion, non-rigid deformations, and fast camera motion. The
egoMotion dataset consists of 11882 frames from 4 object
classes (cars, cats, chairs, dogs), where the main challenge is
the dominant camera motion. We measure the segmentation
performance using the standard the average IoU overlap as
accuracy metric, IoU = S∩GT

S∪GT .

5.1 YouTube-Objects
We compare our approach with 5 state-of-the-art semantic
video object segmentation approaches on this dataset, i.e.,
[Prest et al., 2012] (LDW), [Tang et al., 2013] (DSW),
[Zhang et al., 2015] (SSW), [Wang et al., 2016] (DAW) and
[Drayer and Brox, 2016] (DTS).

As shown in Table 1, our approach surpasses the compet-
ing methods in 6 out of 10 classes, with gains up to 3% in
average over the best competing method DAW. It is worth
noting that DAW can not separate interacting objects with
similar colors (e.g., motorbike and rider in Fig. 5) due to
the lack of long-range object interactions and behaviors in-
formation, whereas our decreased performance in Mbike is
caused by the inaccurate ground-truth which labels interact-
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Figure 5: Qualitative results for YouTube-Objects Dataset.

ing (motorbike and rider) objects as one object. Other under-
performances in Plane, Horse and Train compared with DAW
are mainly owing to the noisy boundaries of object proposals,
where DAW uses multiple overlapping proposals to compen-
sate for the mis-segmentations of proposals.

Our approach beats DTS and SSW in all categories with
large margins of 8.1% and 10.2% respectively by exploiting
higher level contextual information and high-quality track-
lets. Our method doubles or triples the accuracy of DSW
and LDW in most categories, with an exception in Train cat-
egory where DSW slightly surpasses our approach. This is
probably owing to that DSW uses a large number of simi-
lar training videos which may capture objects in rare view.
We also compare with a baseline scheme of our proposed ap-
proach by replacing the hierarchical model with a single-layer
graphical model (SLM) consisting of only superpixels and the
rest remains the same. Comparing with the baseline, a gain
of 4.4% is benefited by adopting the proposed hierarchical
model. It is remarkable that baseline scheme SLM outper-
forms DTS which incorporates tracklets locally in a single
layer model, indicating the effectiveness of our transductive
inference model in generating high-quality tracklets.

Fig. 5 shows some qualitative results of the proposed algo-
rithm on YouTube-Objects dataset, where it detects and de-
lineates the stationary objects (horse), rapid moving objects
(boat), rigid (car, train) or non-rigid objects (cat, dog), mul-
tiple objects (cow), as well as interacting objects exhibiting
similar color or motion (cat, horse, motorbike).

5.2 egoMotion
We compare with four automatic object segmentation meth-
ods [Papazoglou and Ferrari, 2013] (FOS), [Ochs et al., 2014]
(MLT), [Keuper et al., 2015] (MTS), [Drayer and Brox, 2016]
(DTS), and the state-of-the-art CNN based semantic image
segmentation method [Long et al., 2015] (FCN). As shown
in Table 2 , our method surpasses the competing methods on
2 out of 4 classes, with a large average precision improve-
ment of 5.1% over the best competing method DTS. DTS,
which heavily relies on local motion cues, outperforms our
approach on rigid object class Chair but exhibits poorer per-
formance on Car and non-rigid object classes Cat (see Fig. 1)
and Dog where our approach exploits long-range contexts and
object relations to better deal with dynamic object appearance
variations and agile motion. Per-frame segmentation using
FCN shows similar behavior as DTS, and also fails to seg-
ment object with unusual viewpoint as shown in Fig. 1. Fig.
6 shows the qualitative results of the proposed algorithm on
egoMotion dataset, which confirms its superior robustness in

Table 2: Intersection-over-union overlap accuracies on ego-
Motion Dataset

MLT MTS FOS FCN DTS Ours

Car 0.336 0.379 0.476 0.861 0.780 0.786
Cat 0.135 0.453 0.566 0.166 0.657 0.843
Chair 0.162 0.198 0.595 0.390 0.735 0.708
Dog 0.417 0.534 0.642 0.471 0.752 0.792
Average 0.263 0.391 0.570 0.472 0.731 0.782

Figure 6: Qualitative results for egoMotion Dataset.

handling rigid (Car, Chair) or non-rigid objects (Cat, Dog).

6 Conclusion
We have proposed a novel tracklet-object-aware hierarchi-
cal model for semantic video object segmentation, which
jointly models and segments object incorporating both local
and global context features and longer-term object interac-
tions and behaviors. To deal with a large number of noisy
object hypotheses, we further proposed a transductive infer-
ence model which is capable of calibrating short-range noisy
object tracklets with respect to long-range object relations
and high-level context cues. We have demonstrated that our
approach advanced the state-of-the-art performance on two
large scale video datasets.
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