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Abstract

Visual odometry is an important research prob-
lem for computer vision and robotics. In general,
the feature-based visual odometry methods heavily
rely on the accurate correspondences between lo-
cal salient points, while the direct approaches could
make full use of whole image and perform dense
3D reconstruction simultaneously. However, the di-
rect visual odometry usually suffers from the draw-
back of getting stuck at local optimum especially
with large displacement, which may lead to the in-
ferior results. To tackle this critical problem, we
propose a novel scheme for stereo odometry in this
paper, which is able to improve the convergence
with more accurate pose. The key of our approach
is a dual Jacobian optimization that is fused into
a multi-scale pyramid scheme. Moreover, we intro-
duce a gradient-based feature representation, which
enjoys the merit of being robust to illumination
changes. Furthermore, a joint direct odometry ap-
proach is proposed to incorporate the information
from the last frame and previous keyframes. We
have conducted the experimental evaluation on the
challenging KITTI odometry benchmark, whose
promising results show that the proposed algorithm
is very effective for stereo visual odometry.

1 Introduction

With the prevalence of development on driverless cars
and unmanned aerial vehicles (UAV)s, visual odometry
becomes an interesting problem in computer vision and
robotics. In contrast to simultaneous localization and map-
ping (SLAM) [Klein and Murray, 2007], visual odometry
aims at estimating the camera poses without resorting to loop-
closure and global bundle adjustment.

Generally, stereo visual odometry is able to directly esti-
mate the global scale using the baseline between two camera
centers, while monocular visual odometry has to rely on some
priors, e.g., the camera height from ground plane [Song et al.,
2016] or IMU measurement [Corke er al., 2007]. In this pa-
per, we focus our attention on the problem of stereo visual
odometry, which is widely used in various applications.
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Instead of using whole image [Comport et al., 2010;
Newcombe er al., 2011], semi-dense visual odometry ap-
proaches [Engel et al., 2014; Forster et al., 2014] have re-
cently shown the encouraging results using CPU implemen-
tation by sampling the points with large gradient magnitudes
or corners, which are able to reduce the computational cost
effectively. However, direct approaches usually suffer from
the problem of tending to stuck at a local optimum especially
with large displacement, which may lead to inferior results.

In KITTI odometry benchmark [Geiger et al., 2012],
nearly all the current top performers [Cvisic and Petrovic,
2015; Mur-Artal et al., 2015] are based on the local fea-
ture matching besides those based on LiDAR sensor [Zhang
et al., 2014]. Although having achieved the promising per-
formance, the feature-based visual odometry method cannot
make full use of the information from whole image. More-
over, it may fail in the homogenous regions, i.e., highway
scenario, which are lack of reliable salient feature points. Fur-
thermore, the feature-based approach cannot directly yield
dense 3D reconstruction while the direct visual odome-
try [Comport er al., 2010; Engel er al., 2014] is able to si-
multaneously recover the dense or semi-dense depth map.

In this paper, we address these current limitations by
proposing a novel direct stereo visual odometry approach.
Specifically, we suggest a dual Jacobian scheme for the multi-
scale pyramid optimization. We find that the conventional Ja-
cobian has wide convergence basin, however, the precision of
camera pose estimation is unsatisfied. By replacing the ratio
between the recovered 3D scene coordinates with image co-
ordinates and focal length, an alternative Jacobian can obtain
more accurate results near the optimal solution. Thus, we em-
ploy the conventional Jacobian at the coarse scale while the
alternative Jacobian is used in the finest level. Moreover, we
introduce the gradient-based feature representation to account
for illumination changes. To incorporate more information
from previous frames, we propose a joint direct stereo visual
odometry method to boost the camera tracking performance.

In summary, the main contributions of this paper are: (1)
a novel dual Jacobian optimization scheme to avoid the local
optimum and improve the accuracy; (2) the gradient-based
feature representation for direct visual odometry that enjoys
the merit of being robust to illumination changes; (3) a joint
direct odometry approach to incorporate the information from
multiple frames; (4) experiments on the challenging KITTI
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odometry benchmark, comparing against the state-of-the-art
approaches and obtaining the promising results.

2 Related Work

During the past fifteen years, considerable research effort has
already been devoted to visual odometry and SLAM in com-
puter vision and robotics. Most of previous visual odometry
methods can be typically divided into three categories. The
first group is based on the expensive LiDAR sensor [Zhang
et al., 2014], which registers scans between the different
time stamps. The second one relies on local feature match-
ing [Badino et al., 2013; Mur-Artal ef al., 2015] across video
frames. The last group directly minimizes the photometric
error [Comport et al., 2010; Engel et al., 2014] between the
current frame and reference keyframe.

The feature-based visual odometry approaches [Badino et
al., 2013; Mur-Artal et al., 2015] are currently very popular.
The key is to first estimate the camera poses along with 3D
coordinates from the salient point correspondences through a
robust estimator like RANSAC [Fischler and Bolles, 19811,
where the local feature extraction algorithm plays a very im-
portant role. Then, bundle adjustment [Triggs et al., 1999]
is employed to simultaneously refine 3D scene structure and
camera poses. Badino et al. [Badino et al., 2013] extensively
evaluate the different combinations of local feature detectors
and descriptors. The features from multiple frames are in-
tegrated together to achieve the good results. Mur-Artal et
al. [Mur-Artal er al., 2015] propose a full SLAM approach
based on binary feature, including bundle adjustment, loop-
closure detection and relocalization.

Most of direct visual odometry methods are generally
based on the Lucas-Kanade framework [Lucas and Kanade,
1981; Baker and Matthews, 2004], which is one of the
most widely used techniques in computer vision. These ap-
proaches directly find the optimal geometric transformation
by minimizing the photometric error between the input im-
age and the warped reference frame. Comport et al. [Com-
port et al., 2010] propose a quadrifocal approach to stereo
visual odometry. Newcombe et al. [Newcombe et al., 2011]
present a realtime dense tracking and mapping algorithm for a
handheld monocular camera. Engel et al. [Engel e al., 2014,
2015] propose a semi-dense visual odometry method with
the probabilistic depth map estimation and update scheme.
Forster et al. [Forster ef al., 2014] present a semi-dense vi-
sual odometry approach based on corners, where the camera
motions and scene structures are refined like the conventional
bundle adjustment. The major limitation of these methods is
that they tend to become stuck at a local optimum and hence
require a good initialization.

Unlike existing direct visual odometry method, our pro-
posed approach can effectively handle various challenging
conditions, including large displacements as well as lighting
variations in outdoor environment. Moreover, we demon-
strate that the direct stereo visual odometry approach is
able to achieve the state-of-the-art results comparing to the
feature-based methods.

3 Joint Direct Stereo Visual Odometry

In this section, we present the proposed approach to direct
stereo visual odometry. Firstly, we formulate the problem
into a nonlinear least square minimization (Section 3.1). Sec-
ondly, we present a dual Jacobian optimization scheme to
deal with the challenge of large displacement (Section 3.2).
Thirdly, we suggest a gradient feature representation to deal
with lighting changes (Section 3.3). Finally, we propose a
joint optimization approach to incorporating the information
from multiple frames (Section 3.4).

3.1 Direct Stereo Visual Odometry

As in [Ma et al., 2004], the projection function 7 : R = Q
for a conventional pinhole-camera of the rectified stereo pair
projects 3D point X = («;, y;, 2;) in the scene onto 2D point
x; = (u;,v;) in image space 2 C R

fu%+cu
xi = m(Xi) = < folipe, )

where (fu, f) is the focal length, and (¢, ¢,) is the prin-
cipal point. On the other hand, the inverse projection func-
tion 71 recovers the 3D scene point from image coordi-
nate x; and its depth measurement d;. In this paper, d; is
estimated from stereo matching, i.e., block matching using
Sum of Absolute Difference (SAD) or Semi-Global Match-
ing (SGM) [Hirschmiiller, 2008]. Then, 7~ *(x;, d;) can be
written as follows:

Zg
7 (xq,d;) = ( Yi > . 2)
zi

Problem Formulation

Let T denote a rigid transformation represented in Lie group
SE(3). Generally, visual odometry aims at estimating the
camera pose T = (R,t) € SE(3) from the image observa-
tions, where R € SO(3) denotes a camera orientation ma-
trix, and t € R? is the position vector. The unknown twisted
coordinates § = (w, )T € se(3) are defined by the lie alge-
bra se(3), which corresponds to the tangent space of SFE(3)
at the identity. w is the angular velocity, and v is the linear
velocity. Moreover, the camera pose T () is computed by the
exponential map of 6:

T(0) = exp ([ L D (3)

where [w] denotes the skew symmetric matrix of the angular
vector w.

Let T, denote the pose of reference frame. To estimate
the current camera pose T, direct visual odometry [Comport
et al., 2010] minimizes the photometric errors between the
reference keyframe I,. and the current frame /.:

)

2
min 3 (Ir(xl-) — L(n(To(0)T Y (xi, di)))) . @)
¢ x,€Q
Obviously, the above problem is a nonlinear least square
minimization. It can be solved via an iterative Gauss-Newton
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algorithm @ = —(J7J)~*JTr, where J is Jacobian matrix
that will be discussed later. r denotes the residual vector.

According to Lie algebra, the current pose estimation T, is
updated by a homogeneous update until convergence [Com-
port et al., 2010]: T, « T.T(0).

Robust Estimator

In order to effectively handle outliers, a robust estimator p(¢)
is applied to the photometric error. Thus, the energy function
can be derived as follows:

B = in x%p(mi) — L(r(Te(0) T 7 (xi,d,))) )

To deal with the large outliers, we choose the Tukey’s bi-
weight [Black and Rangarajan, 1996] loss function p(¢) :

21 (1= (t)2)3
p(t):{ R I L,
[t| > &

o
3 for

where « is a tuning constant that is set to 4.6851 correspond-
ing to the 95% asymptotic efficiency on the standard nor-
mal distribution. To take into account of the scale variations
on residuals, all photometric errors are formed into a vector,
which is further scaled by the inverse of its median value.

This problem is a weighted nonlinear least square mini-
mization. Let W denote a diagonal matrix, in which the diag-
onal element is p’(¢) for each residual term. p’(¢) represents
the first order derivative of Tukey’s biweight loss function.
Thus, we can obtain the following update equation for robust
direct visual odometry:

0=—(J"WJ)tJtWr. (6)

3.2 Optimization with Dual Jacobian

From the above formulation, the i-th row of Jacobian J;(#)
is equal to the derivative of residual r; with respect to the
camera pose parameters 6. According to the chain-rule, we
can derive the following equation:

_Ory  Or; 0x%; 0X;
00 0x; 0X; 00

Conventional Jacobian .J

In general, we can directly compute the derivative of residual
r; with respect to image coordinate x; through image gradi-
ent:

Ji(0) (N

81‘1‘

o, VI(x;), 8)
where VI =[ Iz Iy ]T denotes the gradient of image I.

Under Lucas-Kanade framework, there are several compo-

sitional update strategies. Inverse composition [Baker and
Matthews, 2004] is able to take advantage of constant Hes-
sian by reversing the role of template and input image. More-
over, efficient second order minimization (ESM) [Benhimane
and Malis, 2004] shows promising convergence properties.
Therefore, we employ ESM scheme in the following:

8r,;
8xi

= VLogm(x;) = %(Vlc(xi) FVL(xi). )

4560

According to the perspective projection function defined in
Eqgn. 1, we can compute the derivative of image coordinates
x; with respect to the world point X; as below:

oxi | L0 —fuf
=| = A 10
aXi [ 0 i% _fvg*; ( )

Since the camera pose T'(6) is obtained by the exponential
map in Eqn. 3, the derivatives can be calculated as follows:

0X; |

where I denotes a 3 x 3 identity matrix.

Substitute Eqn. 9-11 into Eqn. 7, the conventional visual
odometry approaches compute the derivates with respect to
odometry parameter 6 as follows:

Ji(e) = vjesm(xi) : (12)
. . 2, 2 .
. 2,2 .
0 L by g gmp Ln

i 25

Alternative Jacobian .J

For direct stereo visual odometry, the depth measurements
from dense disparity map are usually quite noisy. Although
the large outliers could be removed by the robust estimator,
the performance is greatly degraded with the inaccurate ob-
servations. Thus, the feature-based methods dominate the
odometry task with the large displacement and rapid motion,
i.e., KITTI benchmark [Geiger et al., 2012].

To tackle this critical issue, we present an alternative
derivative as the complement for the visual odometry. Specif-
ically, the following equality can be derived from the projec-
tion function in Eqn. 1:

{y: (13)

where u; = u; — ¢y, and ¥; = v; — ¢,. Thus, we can obtain
an alternative formulation of Jacobian J;(#) by substituting
Eqn. 13 into Eqn. 12,

3

Dl
e

<

e

Jz(e) = vjesm(xi) : (14)
fu U ;U; fova? -~
= 0 = R Tn Th

Remark In contrast to the conventional Jacobian J in
Eqn. 12, J is computed from the ratio between the image co-
ordinates and focal length rather than 3D scene coordinates.
By taking advantage of the accurate offline camera calibra-
tion, J is supposed to be more accurate than J if the initial
pose is near to the optimal solution T ().

Optimization Scheme with Dual Jacobian
To deal with the large displacements, we employ three im-
portant measures.

Firstly, an effective pose predictor is employed to initial-
ize the nonlinear iterative minimization. In contrast to dead-
reckoning or a constant acceleration model used in the pre-
vious approach [Persson et al., 2015], we take advantage of
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Kalman filter [Kalman, 1960] with six motion state variables
to predict the current pose from the last observations, where
measurement matrix is set to identity. Process noise is set to
108 for velocity and one for acceleration.

Secondly, an image pyramid is usually built to improve the
convergence basin for direct visual odometry [Comport et al.,
2010]. Moreover, the estimated pose in the coarse level is
employed to initialize the next level in order to avoid some
local minima. The convergence criteria is either |#] < 0.001
or the maximum number of iterations (25 x (I+1)) is reached.

Finally, we employ the conventional Jacobian J at the
coarse scale while the alternative Jacobian J is used at the
finest level. We name this scheme as dual Jacobian method.

3.3 Illumination Variations

To deal with the complex illumination changes, the conven-

tional approaches [Comport et al., 2010; Engel et al., 2014]
usually employ a global gain a and bias b transform function
g(I(x)) = a - I(x) + b to account for the uniform lighting
variations.

Instead of directly using raw pixel intensities, we introduce
the gradient-based feature representation into visual odome-
try, which enjoys the merit of being robust to illumination
variations. This is essential to the outdoor scenario, i.e., au-
tonomous vehicles. Unlike descriptor fields [Crivellaro and
Lepetit, 20141, we directly minimize the gradient difference
between the current frame and reference frame as below:

min Y- p(wr(x,») - VIC(W(T(H)W_l(Xi7di)))>. (15)
x; EQ

Besides we calculate the second order image gradient for
both directions to compute Jacobian, the optimization for the
above nonlinear least square is same as the one with raw in-
tensities. Additionally, the gradient-based method does not
require two extra affine lighting variables to deal with the il-
lumination changes.

3.4 Joint Direct Stereo Visual Odometry

In most of previous direct visual odometry approaches [Com-
port et al., 2010; Engel et al., 2014], a single reference frame
is typically employed during optimization. To boost the
chances of homing in on the solution, we incorporate mul-
tiple frames into the energy function, which jointly estimate
the current camera pose. Thus, we can obtain the following
energy function:

c

kelCx;,€Q

where K denotes a set of selected keyframes.

Obviously, the computational cost increases along with the
total number of keyframes |K|. In our empirical study, we
find that it is very effective to only use the previous frame and
a single selected keyframe. Thus, we can derive the energy
function for joint direct visual odometry as below:

min - p(VI,(x) = VL(x(Te(0)T; 7 (xi,d1))))

i xieﬂp

+ 30 o(VIx) = VE(r(To(0) T 7 (0, di)),

xX; EQp
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H’%‘in Z Z p(ka(Xi)*VIc(W(Tc(Q)nglﬂil(Xia dl))))a

where I,, and T, denote the previous frame and its pose re-
spectively.

For the keyframe I, we build a circular queue of previous
k frames. Therefore, the frame at the rear of queue is chosen
as the keyframe. In our empirical study, this simple strategy
is effective in the case of ego-motion like KITTI benchmark.

4 Experiment

In this section, we give details of our experimental implemen-
tation and discuss the results of visual odometry.

4.1 Experimental Testbed

To examine the empirical efficacy of the proposed stereo
visual odometry approach, we conduct the experiments for
comprehensive performance evaluations on KITTI odometry
benchmark [Geiger et al., 2012]. KITTI dataset is composed
of the captured videos and laser scans along with the very ac-
curate GPS/INS for ground truth. The rectified stereo images
are with the size around 1230 x 370, which are recorded at
the frequency of 10Hz. Thus, the displacement of cameras
between the consequent frames are quite large. There are 11
sequences (00-10) with ground truth poses for training, and
11 sequences (11-21) for testing.

The average relative translation error t,..; (%) and rota-
tion error 7,.; (deg/100m) are employed as the performance
metrics, which are usually used to evaluate the odometry
method [Sturm et al., 2012]. To further illustrate the effi-
cacy of our proposed approach, we also include the absolute
translation error t,5, (m) in [Sturm et al., 2012] that is used
to evaluate the SLAM algorithms with loop-closures.

To facilitate the multi-scale optimization, we build a 4-
level image pyramid. Since stereo matching is very time con-
suming, we compute the disparity map at the i size of the
original resolution. Moreover, the disparity map is calculated
by 5 x 5 block matching with SAD. For the finest resolution,
the disparity values are obtained by nearest neighbor inter-
polation. Furthermore, only the pixels with larger gradient
magnitude (||VI]|? > 18) are selected for computation.

For the proposed joint direct stereo visual odometry ap-
proach, we retain a circular queue of the previous 12 frames.
In contrast to full SLAM, we do not cache lots of keyframes
for loop-closure. Therefore, our approach requires less mem-
ory, which can be adapted to the resource limited devices.
All of our experiments were carried out on a PC with Intel
Core i7-3770 3.8GHz processor and 8GB RAM using single
thread.

4.2 Evaluation on Different Settings

We now evaluate the performance of stereo odometry using
different settings, including Jacobian for Gauss-Newton, fea-
ture representation, and joint direct odometry scheme. We
conduct the quantitative experiments on training set of KITTI
odometry benchmark with grayscale image. For simplicity,
‘DVO’ denotes the method using pixel intensity with conven-
tional Jacobian, which is equivalent to D6DVO [Comport er
al., 2010] in KITTI benchmark. ‘Pixel’ represents the dual
Jacobian approach with intensity and ‘Gradient’ is the dual
Jacobian approach with two gradient channels. Our proposed
joint direct visual odometry method is denoted as ‘Joint’.
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Figure 1: Performance evaluation on the training set of KITTI odometry dataset with various settings.
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Figure 2: Camera path for the stereo visual odometry with
different Jacobians on ‘sequence 00’ of KITTI dataset.

Jacobian We evaluate the performance of different Jaco-
bians, including the conventional method in Eqn. 12, alterna-
tive solution in Eqn. 14, and the proposed dual Jacobian opti-
mization scheme. In our experiments, the alternative Jacobian
approach fails for 4 out of 11 sequences in KITTI training
set. Both conventional method and the dual Jacobian scheme
succeed all the sequences except large translation errors oc-
cur at ‘sequence 01’ with highway environment. Therefore,
Fig. 1 shows the comparison results for 10 sequences except
‘sequence 01°. It can be seen the dual Jacobian scheme out-
performs the conventional DVO method at a very large mar-
gin on the accuracy of both translation and rotation. More-
over, we show the qualitative comparison in Fig. 2. It can be
clearly seen that the alternative Jacobian method can obtain
quite accurate trajectory, however, it is easy to stuck at local
optimum. On the other hand, the conventional DVO method
is very robust but less accurate. Thus, the proposed approach
employs the conventional method at the coarse scale to ini-
tialize the alternative Jacobian at the finest level.

Feature We compare the results with different feature rep-
resentations. In Fig. 1, it can be observed that the gradient
feature greatly improves the visual odometry performance for
almost all the sequences, which demonstrates its effectiveness
on handling complex outdoor illuminations. Additionally, we
evaluate other features like descriptor fields [Crivellaro and
Lepetit, 2014] of 4-channel and fusing the gradient feature
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Table 1: Comparison of performance on KITTI Odometry
training dataset.

Data GDVO LSD-VO LSD-SLAM
# trel Trel tabs trel Trel trel Trel tabs
00 0.71 0.53 49 1.09 0.42 0.63 0.26 1.0
01 1.00 0.65 52 2.13 0.37 2.36 0.36 9.0
02 0.70 0.41 6.1 1.09 0.37 0.79 0.23 2.6

1121 | 086 | 031 | - | 140 | 036 | 121 | 035 | -

with raw intensity of 3-channel. However, there is no notice-
able improvement found on KITTI odometry benchmark.

Joint optimization As shown in Fig. 1, the proposed joint
visual odometry significantly reduces the translation error in
9 out of 10 sequences. Specifically, the translation error for
‘sequence 10’ is slightly larger than the method using previ-
ous frame only. For the rotation error, the joint approach out-
performs the single frame method in 7 out of 10 sequences.
Moreover, our proposed approach succeeds in ‘sequence 01’
with low pose prediction errors, which is difficult highway
scene with fast motion and few reliable features.

Table 2: Comparison of state-of-the-art methods on KITTI
odometry benchmark.

Rank Method Category trel Trel
1 V-LOAM [Zhang and Singh, 2015] Laser 0.68 | 0.16

4 GDVO (Proposed) Direct 0.86 0.31

6 SOFT [Cvisic and Petrovic, 2015] Feature 0.88 | 0.22
13 DEMO [Zhang et al., 2014] Laser 1.14 | 049
14 ORB-SLAM2 [Mur-Artal et al., 2015] Feature 1.15 0.27
18 S-LSD-SLAM [Engel et al., 2015] Direct 1.20 0.33
33 D6DVO [Comport et al., 2010] Direct 2.04 | 0.51

4.3 KITTI Odometry Benchmark

We compare the proposed method with the state-of-the-art
methods on KITTI odometry Benchmark. Table 2 shows the
performance evaluation for each sequence in the training set.
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Figure 3: Camera path for our proposed method on KITTI odometry dataset.

Figure 4: 3D reconstruction results on KITTI odometry dataset.

To make it clear, we denote the proposed joint direct stereo
odometry approach as ‘GDVO’. Stereo LSD-SLAM [Engel
et al., 2015] is the state-of-the-art direct SLAM method while
LSD-VO represents LSD-SLAM without loop-closure. It can
be clearly seen that GDVO achieves better translation estima-
tion results comparing to both LSD-VO and LSD-SLAM. By
taking advantage of both the static and temporal stereo, LSD-
VO achieves lower rotation estimation on the training set,
which can be further reduced by loop-closure. It is interest-
ing to find that our proposed approach outperforms LSD-VO
and LSD-SLAM at a large margin on the testing set, which is
even better than the laser-based method [Zhang et al., 2014].
In addition to the relative pose errors, we calculate the ab-
solute translation error to compare against LSD-SLAM. Our
proposed approach achieves the lower prediction error and
outperforms LSD-SLLAM on 6 out of 11 sequences.

Currently, our proposed GDVO method ranks 2"¢ among
vision only algorithms on KITTI odometry benchmark',
which indicates that direct approach is also promising for
stereo visual odometry. As shown in Table 2, our method sig-
nificantly improves the conventional direct stereo odometry
technique [Comport et al., 2010].

Computational Efficiency For our implementation, the
whole system include rendering and loading images runs
around 12 fps using single thread on CPU. Both block match-
ing stereo and Gauss-Newton optimization are speeded up
by SSE instructions. Specifically, our proposed method re-
quires about 75ms to process one stereo frame. It takes Sms
to build the image pyramid and compute gradients for each
level. Moreover, it requires 15ms to compute the disparity
map and calculate the 3D coordinates. Joint optimization

1http: //www.cvlibs.net/datasets/kitti/eval_
odometry.php, accessed at Feb. 14th, 2017.
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takes around 55ms for each stereo pair.

3D Scene Reconstruction We can take advantage of our
proposed stereo odometry approach for 3D scene reconstruc-
tion. We remove the large outliers by checking the 3D consis-
tency using the re-projected disparity error between the suc-
cessive frames. Fig. 4 illustrates the reconstruction result for
Sequence ‘08’ of KITTI dataset.

5 Conclusion and Future Work

This paper proposed a novel direct stereo visual odometry ap-
proach, which is capable of dealing with large displacement
and challenging environments. The proposed method takes
advantage of dual Jacobian scheme converging to more ac-
curate results. Moreover, a gradient-based feature represen-
tation is employed to account for the illumination variations.
Furthermore, we present a joint direct stereo visual odometry
to incorporate the information from previous frames, which
greatly improves the performance. We have conducted exten-
sive evaluations on KITTI odometry benchmark. The encour-
aging experimental results showed that our proposed method
is on par with the current state-of-the-art feature-based meth-
ods while offering dense reconstruction without extra cost.

Despite the promising results, some limitations and future
work need to be addressed. At present, we only take consid-
eration of the static stereo. Besides, we have yet to investigate
bundle adjustment, loop-closure and IMU measurements. In
future work, we will address these issues by incorporating the
temporal stereo and pose graph optimization for a full SLAM
implementation.
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