
Adaptive Elicitation of Preferences under Uncertainty
in Sequential Decision Making Problems

Nawal Benabbou and Patrice Perny
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

CNRS, UMR 7606, LIP6, F-75005, Paris, France
4 Place Jussieu, 75005 Paris, France

nawal.benabbou@lip6.fr, patrice.perny@lip6.fr

Abstract

This paper aims to introduce an adaptive prefer-
ence elicitation method for interactive decision sup-
port in sequential decision problems. The Deci-
sion Maker’s preferences are assumed to be rep-
resentable by an additive utility, initially unknown
or imperfectly known. We first study the determi-
nation of possibly optimal policies when admissi-
ble utilities are imprecisely defined by some lin-
ear constraints derived from observed preferences.
Then, we introduce a new approach interleaving
elicitation of utilities and backward induction to in-
crementally determine a near-optimal policy. We
propose an interactive algorithm with performance
guarantees and describe numerical tests demon-
strating the practical efficiency of our approach.

1 Introduction
Automated preference elicitation and preference-based
search are two important lines of research in AI for computa-
tional decision support, see e.g., [Boutilier, 2013]. Methods
for automated preference elicitation are generally grounded
on decision theory and consist in learning the parameters of
a decision model to best fit the preferences of the Decision
Maker (DM), e.g., [Chajewska et al., 2001; Boutilier et al.,
2006; Fürnkranz and Hüllermeier, 2010; Perny et al., 2016].
The resulting models are then involved in preference-based
search algorithms, to explore all possible solutions and de-
termine an optimal choice, see e.g., [Dasgupta et al., 1995;
Perny and Spanjaard, 2002; Boutilier et al., 2004; Brafman
et al., 2010]. Thus, preference elicitation is often seen as a
preliminary stage to preference-based search.

Yet, there is an alternative view which is being actively
developed in AI, that consists in interleaving elicitation and
search. The aim is to focus the elicitation burden on the use-
ful part of preference information to solve a specific instance
of a decision problem, rather than trying to obtain a full pic-
ture of the DM’s preferences. This approach relies on an
adaptive generation of preference queries in order to progres-
sively reduce the indetermination attached to the parameters
of the decision model until an optimal or near optimal solu-
tion can be identified. This incremental approach has proved

successful for decision making on explicit sets in various con-
texts, e.g., for the elicitation of utility functions, see [White
et al., 1984; Ha and Haddawy, 1997; Chajewska et al., 2000;
Wang and Boutilier, 2003; Braziunas and Boutilier, 2007;
Hines and Larson, 2010].

However, the extension of adaptive preference elicitation to
combinatorial domains is generally not straightforward. The
determination of informative preference queries and the pro-
gressive elimination of solutions are indeed harder to imple-
ment when the alternatives are very numerous and implic-
itly defined. Yet, some recent contributions propose incre-
mental elicitation procedures for some specific combinatorial
optimization problems considered in AI such as constraint
satisfaction [Gelain et al., 2010], matching [Drummond and
Boutilier, 2013], planning [Regan and Boutilier, 2009; Weng
and Zanuttini, 2013], and state space search [Benabbou and
Perny, 2015a]. We propose here a new incremental approach
for sequential decision problems under risk.

These problems appear in various contexts such as strate-
gic resources allocation, investment management, optimiza-
tion of medical treatment policies, or navigation problems.
In such contexts, DMs have to identify their preferred policy
among a combinatorial set of possibilities, in a setting where
the consequences of their acts depend on exogenous events.
In such situations, decision support tools may facilitate the
elicitation of their preferences and control the selection of ac-
tions in different possible states by taking into account antic-
ipated future situations, possibly as a result of their own acts.

We consider a sequential decision problem under uncer-
tainty represented by a decision tree T , i.e., an acyclic and
connected graph including three types of nodes: a set DT of
decision nodes (represented by squares), a set CT of chance
nodes (represented by circles) and a set XT of outcome nodes
(leaves). Each decision node represents a decision variable
and the branches starting from that node correspond to the
possible decisions (the domain of the variable). The branches
starting from a chance node correspond to different possi-
ble events and are labelled by their probabilities. The leaves
represent the possible outcomes (e.g., profits, time). An ex-
ample of decision tree is given in Figure 1. The root of the
tree is a decision node representing the initial decision to be
made. The rank of the other decision nodes in the tree indi-
cate the order in which decisions are made (from the left to
the right). In the tree, the selection of an action at node Di

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4566

D1

C1

C2

D2

D3
up

down D4

D5

0.85

0.15

0.5

0.5

C3

C4

13
6

12
6

0.25

0.75
0.5

0.5

up

down

C5

C6

13
19

13
16

0.1

0.9
0.95

0.05

up

down

C7

C8

up

down 19
3

5
16

0.95

0.05
0.55

0.45

C9

C10

up

down
9
18

9
2

0.35

0.65
0.85

0.15

Figure 1: An example of a decision tree.

is characterized by an edge (Di, A) where A is a child of Di.
Note that this selection makes irrelevant all decision nodes
outside from the tree rooted at A. For example, in the tree
pictured in Figure 1, the decision up in D1 makes irrelevant
nodes D4 and D5. In the tree, policies are characterized by
the sequential selection of an action at every (relevant) de-
cision node. Every policy can therefore be represented by
a set of edges in the tree. For example, in Figure 1, policy
π selecting up in nodes D1, D2 and D3 is represented by
the following edges: {(D1, C1), (D2, C3), (D3, C5)}. Ev-
ery policy induces a probability distribution on the leaves of
the tree. This distribution can be represented by a lottery
` = (x1, p1; . . . ;xm, pm) yielding outcome xk with proba-
bility pk, where pk, k = 1, . . . ,m, are strictly positive and
add up to one. For example, policy π corresponds to the lot-
tery ` = (6, .6375; 13, .2275; 19, .135). In the tree depicted in
Figure 1, there exist 8 policies leading to 8 distinct lotteries.

We adopt here the Bayesian theory of rational behavior
under risk [Von Neumann and Morgenstern, 1947; Ham-
mond, 1988]. The DM is assumed to be an expected utility
maximizer and is consistent with the postulates of von Neu-
man and Morgenstern (vNM) theory. The DM’s preferences
over lotteries are therefore represented by the expected utility
model defined by f(`, u) =

∑m
k=1 pku(xk) for any lottery

` = (x1, p1; . . . ;xm, pm), where u is the vNM utility func-
tion of the DM. A lottery ` is preferred to a lottery `′ if and
only if f(`, u) ≥ f(`′, u). The set of policies inherits from
the preferences defined over lotteries. Hence a policy is opti-
mal in a tree T if the associated lottery maximizes function f
over the set LT of all lotteries attached to the policies in T .

In this context, we want to elicit preferences in order to de-
termine the preferred policy without resorting to explicit enu-
merations and comparisons. As a preliminary to elicitation,
in the first part of the paper, we address the computation of
possibly optimal lotteries under incomplete preference infor-
mation (Section 2). This topic has been recently addressed in
various contexts related to AI, including multi-agent decision
making [Konczak and Lang, 2005; Xia and Conitzer, 2008;
Roijers et al., 2014; Aziz et al., 2015], valued constraint sat-
isfaction [Gelain et al., 2010; Marinescu et al., 2013] and
multiobjective optimization [Benabbou and Perny, 2015b].

We address here a similar issue in the context of sequential
decision making under risk. This work departs from previ-
ous studies in decision trees that consider partial preferences
induced by imprecise probabilities, see e.g., [Kikuti et al.,
2011]. Here probabilities are known and the incompleteness
of preferences is only due to the imprecision of utilities. The
second part of the paper is dedicated to preference elicitation
(Section 3). We assume that the vNM utility u of the DM is
initially unknown and we introduce a new approach interleav-
ing the elicitation of u and the exploration of possibly optimal
policies to determine an optimal policy in a decision tree. Fi-
nally, we introduce a representation of imprecise utilities us-
ing spline functions and we provide numerical tests showing
the practical efficiency of the proposed approach (Section 4).

2 Computing Possibly Optimal Lotteries
We consider a situation where the DM’s preferences are in-
complete. The DM may have expressed some preference
statements over various pairs of lotteries, but they are not suf-
ficient to construct a precise vNM utility. These initial pref-
erence statements only induce some constraints on the space
of utilities restricting the set U of admissible utility functions.
Based on this partial information, we are interested in explor-
ing the elements of POU (LT), the set of possibly optimal
lotteries in LT , i.e. lotteries that are f -optimal for at least one
utility function in U . Formally, for any set L of lotteries:

POU (L) =
⋃
u∈U

arg max
`∈L

f(`, u) (1)

This set can be constructed using the U -dominance relation
�U defined as follows:
Definition 1. For any set L of lotteries and for any lottery `0:
L �U `0 ⇔ ∀u ∈ U, ∃` ∈ L, f(`, u) > f(`0, u).
For any set L of lotteries, we indeed have:
Proposition 1. `0 ∈ POU (L)⇔ ∀L′ ⊆ L, not(L′ �U `0).
This result directly follows from Definition 1. It shows that
POU (L) is exactly the set of non U -dominated lotteries in L.
Note that, for any set L′ ⊆ L and for any lottery `0 ∈ L, if
L′ �U `0 then L �U `0; therefore, POU (L) = {` ∈ L :
not(L �U `)}. As a consequnce, to conclude on whether a
given lottery `0 ∈ L is in POU (L) or not, it is sufficient to
check if L �U `0 holds (there is no need to enumerate and
make the test for all subsets L′ ⊆ L). Moreover, we have:
Proposition 2. For any set L of lotteries and for any lottery
`0: L �U `0 ⇔ min

u∈U
max
`∈L
{f(`, u)− f(`0, u)} > 0.

This result which directly follows from Definition 1 allows
one to check in polynomial time whether L �U `0 is satis-
fied or not by solving a linear program, provided that U can
be represented by a convex polyhedron (we will explain in
Section 4 why this assumption is reasonable).

In order to compute POU (LT), we now introduce a back-
ward induction algorithm rolling back the tree from the leaves
to the root. We assume that the root of the tree is a decision
node and that the set DT of decision nodes in T is topologi-
cally sorted: if there exists a path from nodeDi to nodeDj in
the tree, then we necessarily have i < j. Starting from the last

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4567

decision node in the topological order, one iteratively com-
putes the set of non U -dominated lotteries attached to sub-
policies rooted at decision nodes, until reaching the root. This
idea is implemented in Algorithm 1. In this algorithm, each
node Di keeps a set Li of lotteries attached to subpolicies
rooted at that node (which is stored in the lotteries attribute).
This set is computed by examining every child A of node Di.
If A is a decision node, then all lotteries that are stored in
A are inserted in Li. If A is a leaf of the tree, then the lot-
tery (A, 1) yielding outcome A with probability 1 is inserted
in Li. Otherwise, A is a chance node and all combinations
of the lotteries stored in the descendants of A are inserted
in Li. These combinations are computed by recursive calls
to Combination from the initial call Combination(A), where
p(A,Ak) denotes the probability on edge (A,Ak) (see Algo-
rithm 2). Finally, only the non U -dominated elements of Li
are stored in the lotteries attribute (see line 8). The following
results will be used to prove the correctness of our algorithm:

Proposition 3 (Independence). For any lottery `0 and any set
L of lotteries, if L �U `0 then, for any lottery `′ and any λ ∈
(0, 1), we have: {λ`+(1−λ)`′ : ` ∈ L} �U λ`0+(1−λ)`′.

This result directly derives from the fact that the DM is an
EU-maximizer and that vNM independence holds in EU the-
ory. Moreover, let Li be the set of lotteries attached to the
policies rooted at node Di for i ∈ {1, . . . , |DT |}. We have:

Proposition 4. Let (Di, Dj) ∈ D2
T be any pair of nodes such

that Dj is a descendant of Di in T . Let `i be the lottery as-
sociated with a policy π rooted at Di and let `j be the lottery
associated with the subpolicy of π rooted at Dj . If `j is U -
dominated in Lj then `i is U -dominated in Li.

Proof. Since `j is U -dominated in Lj , there exists a set L ⊆
Lj such that L �U `j . We want to prove that L′ �U `i holds
for some set L′ ⊆ Li. Since Dj is a descendant of Di in
the tree, there exists a unique path (A1, . . . , An) from node
Di to node Dj , with A1 = Di and An = Dj . If Ak ∈ DT
for all k ∈ {1, . . . , n}, then we necessarily have `i = `j and
L ⊆ Li. In that case, L �U `i follows from the hypothesis.
Otherwise, `i is necessarily of the form `i = λ`j + (1−λ)`′,
where λ =

∏
k:Ak∈CT p(Ak, Ak+1) and p(Ak, Ak+1) is the

probability labelling the edge (Ak, Ak+1). Since L �U `j
by hypothesis, we obtain L′ �U `i by Proposition 3, where
L′ = {λ`+ (1− λ)`′ : ` ∈ L} ⊆ Li.

Algorithm 1: Backward Induction.
Input: T : a decision tree; U : admissible utilities

1 for i = |DT |, . . . , 1 do
2 Li ← ∅;
3 for each edge (Di, A) in T do
4 if A ∈ DT then Li ← Li ∪A.lotteries;
5 else if A ∈ CT then Li←Li ∪Combination(A);
6 else Li ← Li ∪ {(A, 1)};
7 end
8 Di.lotteries← {` ∈ Li : not(Li �U `)};
9 end

10 return D1.lotteries

Algorithm 2: Combination.
Input: A: a chance node

1 Let A1, . . . An denote the n children of node A;
2 for each edge (A,Ak) in T do
3 if Ak ∈ DT then L′k ← Ak.lotteries;
4 else if Ak ∈ CT then L′k ← Combination(Ak);
5 else L′k ← {(Ak, 1)};
6 end
7 L← ∅;
8 for each (`1, . . . , `n) ∈ L′1 × . . .× L′n do
9 L← L ∪ {

∑n
k=1 p(A,Ak)`k}

10 end
11 return L

Relation �U also satisfies the following property:
Proposition 5 (Transitivity). For all lotteries `0, `1 and for
all sets L,L′ of lotteries, if L �U `1 and {`1} ∪ L′ �U `0
then L ∪ L′ �U `0.
This follows directly from the transitivity of the preferences
induced by the EU model. Moreover, we obviously have:
Proposition 6. For any set L of lotteries and any `0 ∈ L, we
have: `0 6∈ POU (L) ⇒ POU (L) �U `0.
The last two results are now used to prove the following one:
Proposition 7. For any two sets L,L′ of lotteries, we have:
POU (L) ⊆ L′ ⊆ L ⇒ POU (L′) ⊆ POU (L).

Proof. Let `′ ∈ POU (L′). We want to prove that `′ ∈
POU (L). Since `′ ∈ POU (L′), we have not(L′′ �U `′) for
all L′′ ⊆ L′ (by (1)). Moreover, we have POU (L) ⊆ L′ by
hypothesis; therefore, not(L′′ �U `′) for all L′′ ⊆ POU (L).
Now, we prove by contradiction that we have not(L′′ �U `′)
for all L′′ ⊆ L. Let us assume that there exists some L′′0 ⊆ L
such that L′′0 �U `′. Since we proved that not(L′′ �U `′)
for all L′′ ⊆ POU (L), we have L′′0 6⊆ POU (L). Hence there
exists some `0 ∈ L′′0 such that `0 ∈ L and `0 6∈ POU (L).
Then, using Proposition 6, we have POU (L) �U `0. More-
over, since L′′0 �U `′, we derive POU (L) ∪ L′′0\{`0} �U `′

by transitivity (see Proposition 5). Let L′′1 = POU (L) ∪
L′′0\{`0}. Note that we have POU (L) ⊆ L′′1 by defini-
tion. If there exists `1 ∈ L′′1 such that `1 6∈ POU (L),
then we can iterate the reasoning to derive L′′2 �U `′ where
L′′2 = POU (L) ∪ L′′1\{`1}. Note that L′′2 = L′′1\{`1} since
POU (L) ⊆ L′′1 and `1 6∈ POU (L). Thus, we can further
iterate to construct an embedded sequence L′′1 ⊃ . . . ⊃ L′′n =
POU (L) such that L′′k �U `′ for all k ∈ {1, . . . , n}. There-
fore, we have POU (L) �U `′. Moreover, POU (L) ⊆ L′ by
hypothesis, which implies `′ 6∈ POU (L′) by Proposition 1.
This yields a contradiction since `′ ∈ POU (L′) by definition.
Hence, there exists no L′′0 ⊆ L such that L′′0 �U `′. More-
over, `′ ∈ L′ ⊆ L by hypothesis. Hence `′ ∈ POU (L).

Proposition 8. Algorithm 1 returns the set POU (LT).

Proof. Let LA denote the output of Algorithm 1. We have to
prove that POU (LT) ⊆ LA and LA ⊆ POU (LT).
• POU (LT) ⊆ LA: using Proposition 4, we know

that only subpolicies leading to U -dominated policies are

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4568

deleted (in line 8). Since POU (LT) is exactly the set of
non U -dominated elements in LT (due to Proposition 1),
POU (LT) ⊆ LA holds.
• LA ⊆ POU (LT): this inclusion is implied by Propo-

sition 7 (with L = LT and L′ = LA). More precisely, we
have POU (LT) ⊆ LA ⊆ LT which implies POU (LA) ⊆
POU (LT). Since POU (LA) = LA (due to line 8), we con-
clude that LA ⊆ POU (LT).

Example 1. Coming back to Figure 1 and assuming that no
preference information is available, relation �U eliminates
up inD5 (edge (D5, C9)), down inD3 (edge (D3, C6)), down
in D2 (edge (D2, C4)) and nothing in D4. This leads to
three policies in D1: π1 = {(D1, C1), (D2, C3), (D3, C5)},
π2 = {(D1, C2), (D4, C7), (D5, C10)} and π3 = {(D1, C2),
(D4, C8), (D5, C10)}. Relation �U eliminates no policy in
D1. Hence POU (LT) = {`2, `3, `4}, where `i denotes the
lottery associated to policy πi.

Algorithm 1 relies on the nice properties of �U that make
possible to construct efficiently the optimal policies using dy-
namic programming. However, there exist instances of bi-
nary decision trees of depth d for which all policies are pos-
sibly optimal and correspond to disctinct lotteries. In such
cases, the set of possibly optimal lotteries includes Θ(22

d

)
elements that obviously cannot be enumerated in polynomial
time. This suggests inserting preference queries during the
search so as to progressively reduce the number of possibly
optimal lotteries until being able to determine a near-optimal
lottery. The next section investigates this line.

3 Elicitation in Decision Trees
We propose to refine Algorithm 1 by interleaving preference
elicitation and backward induction. The idea is to perform
an implicit and progressive reduction of POU (LT) by using
new preferences statements to focus the search on the relevant
lotteries. Collecting preference information during the search
is made possible by the following straightforward result:
Proposition 9. For any U,U ′ such that U ′ ⊆ U , for any set
L of lotteries and for any lottery `0: L �U `0 ⇒ L �U ′ `0.
This proposition shows that new preference statements ob-
tained during the search do not invalidate the pruning oper-
ations (based on relation �U) made so far while increasing
pruning opportunities for the rest of the search.

In order to collect preference information, we use an adap-
tive elicitation approach based on regret minimization (as
proposed in [Wang and Boutilier, 2003]) relying on the com-
putations of pairwise max regrets (PMR), max regrets (MR)
and minimax regrets (MMR) defined as follows:
• PMR(`, `′, U) = maxu∈U{f(`′, u)− f(`, u)}
•MR(`,LT , U) = max`′∈LT

PMR(`, `′, U)
•MMR(LT , U) = min`∈LT

MR(`,LT , U)
The optimal lotteries for the minimax regret criterion are the
elements of arg min`∈LT

MR(`,LT , U). By definition, the
utility loss incurred by the choice of any of these lotteries is
bounded above by the minimax regret value MMR(LT , U).
This suggests progressively collecting preference statements
from the DM until MMR(LT , U) drops below a given toler-
ance threshold δ ≥ 0. Ideally, we would like to ask preference

queries until MMR(LT , U) = 0, which corresponds to the
identification of an optimal lottery. However, to reduce the
elicitation burden, it is more efficient to use a threshold δ > 0
representing the maximum admissible gap to optimality.

To determine a lottery ` ∈ LT with aMR below δ, we pro-
pose an interactive backward induction algorithm that gener-
ates preference queries to discriminate between the lotteries
attached to the decision nodes (see Algorithm 3). We ask
preference queries until MMR(Li, U) ≤ δ/η where η de-
notes the maximum number of decision nodes included in a
path from the root to a leaf of the tree. This ensures that
the MR value of the returned lottery is bounded above by δ
(because any path from the root to a leaf includes at most η
decision nodes). Contrary to Algorithm 1, only one lottery
is stored in each decision node Di. This lottery is arbitrarily
chosen among those minimizing MR(`, Li, U) over the set
Li of lotteries attached to node Di (see lines 15-16).

In order to reduce MMR(Li, U) at a given decision node
Di, one may be tempted to ask the DM to compare two lot-
teries in Li and state which one she prefers (as in the Current
Solution Strategy presented in [Boutilier et al., 2006]). How-
ever, lotteries associated with subpolicies in a decision tree
are complex objects with multiple possible outcomes, which
makes direct comparison cognitively difficult. We propose in-
stead to ask the DM to compare lotteries of type `x = (x, 1)
to lotteries of type `λ = (x>, λ;x⊥, 1 − λ), where x> and
x⊥ are respectively the best and worst possible outcomes.
Note that we can impose u(x⊥) = 0 and u(x>) = 1 since
vNM utilities are unique up to positive affine transformations.
Hence f(`λ, u) = λu(x>) + (1 − λ)u(x⊥) = λ for all λ ∈
[0, 1]. Moreover, we have f(`x, u) = u(x) for all x ∈ XT .
Therefore, if the DM prefers `x to `λ, then we derive the con-
straint u(x) ≥ λ; otherwise, we have u(x) ≤ λ. This shows
that we must choose λ = (maxu∈U u(x) + minu∈U u(x))/2
to reduce the uncertainty attached to u(x) as much as pos-
sible in the worst-case scenario of answer. At each itera-
tion step, we choose an outcome x ∈

⋃
`∈Li

S(`) maxi-
mizing maxu∈U u(x) − minu∈U u(x), where S(`) denotes
the set of possible outcomes {x1, . . . , xm} of lottery ` =
(x1, p1; . . . ;xm, pm). This choice enables to obtain interest-
ing performance guarantees as shown below.
Proposition 10. For any set U of admissible utility functions
and any set L of lotteries, if maxu∈U u(x)−minu∈U u(x)≤
δ/(2η) for all x∈

⋃
`∈L S(`), then MMR(L,U)≤δ/η.

Proof. Let u∗ denote the actual vNM utility function of
the DM. Let ` = (x1, p1; . . . ;xn; pn) be an element of
arg max`′∈L f(`′, u∗). We want to show thatMR(`, L, U)≤
δ/η. For all `′ = (x′1, p

′
1; . . . ;x′m; p′m) ∈ L, we have:

PMR(`, `′, U) + f(`, u∗)− f(`′, u∗)

= max
u∈U
{
m∑
k=1

(u(x′k)−u∗(x′k))p′k −
n∑
k=1

(u(xk)−u∗(xk))pk}

≤
m∑
k=1

δ

2η
p′k −

n∑
k=1

− δ

2η
pk =

δ

2η
(
m∑
k=1

p′k +
n∑
k=1

pk) =
δ

η

Thus, PMR(`, `′, U) + f(`, u∗)− f(`′, u∗) ≤ δ/η. Since
f(`, u∗) − f(`′, u∗) ≥ 0 by definition of `, we obtain
PMR(`, `′, U)≤δ/η and so MR(`, L, U)≤δ/η.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4569

Algorithm 3: Interactive Backward Induction.
Input: T : a tree; U : admissible utilities: δ: a threshold

1 for i = |DT |, . . . , 1 do
2 Li ← ∅;
3 for each edge (Di, A) in T do
4 if A ∈ DT then Li ← Li ∪A.lotteries;
5 else if A ∈ CT then Li←Li ∪Combination(A);
6 else Li ← Li ∪ {(A, 1)};
7 end
8 Li ← {` ∈ L : not(L �U `)};
9 while MMR(Li, U) > δ/η do

10 Select x ∈ arg max
x′∈

⋃
`∈Li

S(`)

{max
u∈U

u(x)−min
u∈U

u(x)};

11 λ← (maxu∈U u(x) + minu∈U u(x))/2;
12 Ask the DM to compare `x and `λ;
13 Update U according to the answer;
14 end
15 Select one lottery ` in arg min`′∈Li MR(`′, Li, U);
16 Di.lotteries← {`};
17 end
18 return D1.lotteries

Proposition 11. Algorithm 3 has a time complexity of
O(poly(nT , 1/δ)) and uses only O(poly(nT , 1/δ)) queries,
where nT is the number of nodes in tree T .

Proof. On the number of queries: Initially, maxu∈U u(x) −
minu∈U u(x)≤ u(x>)−u(x⊥) = 1 for all outcomes x ∈ XT
since u ∈ U is an increasing function. At each iteration step,
the question asked in line 12 allows us to divide by two the
range of possible values for u(x) for some x ∈

⋃
`∈Li

S(`)

such that maxu∈U u(x) − minu∈U u(x) > δ/(2η). Hence,
for each outcome x in the tree, we need at most dlog2(2η/δ)e
queries to reduce the range from 1 to δ/(2η). We know that
this is sufficient to obtain MMR(Li, U) ≤ δ/η at every de-
cision node Di due to Proposition 10. Then, since we have
|XT | ≤ nT outcomes and η ≤ nT , the overall number of
queries is bounded above by nT dlog2(2nT /δ)e.

On the time complexity: we assume thatU -dominance tests
and PMR computations can be performed in polynomial time
(w.r.t. nT) using linear programming (this point will be justi-
fied in the next section). At each decision nodeDi, Algorithm
3 computes the set Li composed of all the lotteries attached to
themi children ofDi (see lines 2-7); the U -dominated lotter-
ies are then removed from Li (see line 8). Since only one lot-
tery is stored in the lotteries attribute of each decision node,
set Li necessarily includes at most mi elements. Hence, in
the worst-case scenario, the computation of MMR(Li, U)
requires to solve mi(mi − 1) PMR-optimization problems.
Since mi ≤ nT and PMR-optimizations are performed
in polynomial time (w.r.t. nT), we know that all values
MMR(Li, U) are computed in polynomial time (w.r.t. nT).
Moreover, at each decision nodeDi, the valueMMR(Li, U)
is computed exactly qi + 1 times, where qi is the number of
queries generated at step i. Since we just proved that our al-
gorithm uses onlyO(poly(nT , 1/δ)) queries in all, then it has
a time complexity of O(poly(nT , 1/δ)).

Example 2. We illustrate Algorithm 3 on the tree of Figure
1 (with δ = 0.001). We assume that no preference informa-
tion is initially available. In node D5, no preference query
is needed since relation �U eliminates up. This is not the
case in D4 where �U does not discriminate between up and
down whose associated lotteries are ` = (5, 0.55; 16, 0.45)
and `′ = (3, 0.05; 19, 0.95). Since MMR({`, `′}, U) >
δ/2, the DM is asked to compare lottery (5, 1) to lottery
(x⊥, 0.5;x>, 0.5) where x⊥ = 0 and x> = 20. If the DM
prefers the latter, then U is updated by inserting the con-
straint u(5) ≤ 0.5. Now, MMR({`, `′}, U) ≤ δ/2 and up
is eliminated. Nodes D3 and D2 are treated similarly as D5

but down is eliminated instead of up. As a result, in D1, we
only obtain policies π1 and π3 (as defined in Example 1). Lot-
tery `1 is now U -dominated in D1 and therefore lottery `3 is
returned. The problem has been solved with a single query.

4 Implementation
To implement Algorithm 3 efficiently, we first discuss the rep-
resentation of imprecise utility functions by convex polyhe-
dra. Then, we will report some numerical results.

Representation of imprecise utilities. The first idea that
probably comes to mind is to define a variable ux represent-
ing the value u(x) for every outcome x ∈ XT . With this rep-
resentation, any preference statement comparing two lotter-
ies translates into a linear inequality in variables ux, x ∈ XT .
Hence the set U is a convex polyhedron. However, this rep-
resentation has two drawbacks. First, beside the constraints
imposed by the observed preferences, a number (still poly-
nomial) of additional constraints is needed to enforce mono-
tonicity of utilities (i.e. ux > uy whenever x > y). More-
over, the number of parameters to be learned grows with |XT |.

A more compact representation can be obtained if we de-
fine u as a spline function. Spline functions are piecewise
polynomials whose elements connect with a high degree of
smoothness. They are widely used in data interpolation due to
their ability to approximate complex shapes [Ramsay, 1988].
Interestingly enough, spline functions can be generated by
linear combinations of basis spline functions. This allows to
reduce the elicitation of a spline function to the determination
of its weights in the spline basis. In order to model utility
functions which are non-decreasing functions of outcomes,
one particularly appealing basis of spline functions is the ba-
sis of I-spline functions denoted Ii(x; k, t), i = 1, . . . ,m,
where k is the order of the spline function (controlling the de-
gree and the scope of polynomial pieces), t is a subdivision of
their definition interval andm = |t|−k is the size of the spline
basis. These functions are non-decreasing with respect to x.
In this paper, we use I-spline functions of order 3 with a uni-
form subdivision of the unit interval (assuming that outcomes
have been normalized to belong to the unit interval). This is a
standard choice to keep a good controllability and flexibility
because we keep low the degree of polynomials pieces while
guaranteeing that adjacent pieces have matching first and sec-
ond derivatives. Using the I-spline representation, the DM
utility function writes: u(x) =

∑m
j=1 bjIj(x; 3, t), bj ≥ 0,

j = 1, . . . ,m. Assuming that outcomes are defined in the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4570

Figure 2: Two examples of utility functions.

[0, 1] interval, individual utilities are normalized in order to
have u(0) = 0 and u(1) = 1 by imposing that

∑m
j=1 bj = 1.

In Figure 2, we give two examples of functions u (dashed
lines) generated from a basis of functions Ij(x; 3, t), j =
1, . . . , 5 (solid lines), for a uniform subdivision of the in-
terval. In the left part of the figure, the utility is de-
fined from weights (0.3, 0.2, 0.0, 0.2, 0.3) whereas in the
right part of the figure, the utility is defined from weights
(0.5, 0.3, 0.2, 0.0, 0.0). Using only these five coordinates, we
can generate an infinity of smooth functions covering or well
approximating most functions. We might use a finer subdi-
vision to cover even more complex functions including local
irregularities.

The main advantage of this representation is to provide
a compact definition of the parameter set. Indeed, only m
variables are needed to characterize function u. This num-
ber is independent of the size of the tree. Moreover, al-
though I-spline functions are not linear, it is worth noting
that any preference statement of type “I prefer ` to `′” where
` = (x1, p1; . . . ;xq, pq) and `′ = (x′1, p

′
1; . . . ;x′r, p

′
r) trans-

lates into a linear inequality in variables bj , j = 1, . . . ,m,
which writes as follows:

m∑
j=1

bj

q∑
k=1

pkIj(xk; 3, t) ≥
m∑
j=1

bj

r∑
k=1

p′kIj(x
′
k; 3, t)

Hence U is implicitly represented by a convex polyhedron
defined as the set of all vectors (b1, . . . , bm) that are com-
patible with the available preference statements. Moreover,
function u being defined as a convex combination of the I-
spline basis functions, it is necessarily monotonic and we can
get rid of any monotonicity constraint.

Numerical tests. Our elicitation strategy (see lines 9-14 in
Algorithm 3) has been compared to the random strategy that
consists in choosing outcome x and value λ at random at each
iteration step. The MMR value reduces much more quickly
with our strategy than with the random strategy. To give
an example, for datasets with 100 (non stochastically dom-
inated) lotteries, our strategy determines the best lottery after
15 queries on average while the MMR value with the random
strategy is still above 30% of the initial regret at that moment.

Moreover, we report the results of numerical tests aiming
to evaluate the performance of our interactive search proce-
dure (Algorithm 3) on randomly generated instances of per-
fect binary trees (alternating decision nodes and chance nodes
along each path). The depth d of the tree varies from 8 to

δ = 0.1 δ = 0.05
Algorithm 3 TS Algorithm 3 TS

d t q t q t q t q
8 0.15 12.1 0.90 7.2 0.22 17.0 1.69 8.9

10 0.39 16.4 11.94 8.6 0.42 21.0 14.46 10.9
12 1.21 19.7 725.51 9.4 1.20 22.3 2103.53 12.2
14 4.33 20.4 - - 4.60 25.8 - -
16 17.10 22.2 - - 17.21 26.7 - -
18 65.07 23.0 - - 68.36 27.4 - -

Table 1: Elicitation in trees (results averaged over 30 runs).

18 and the tolerance threshold from δ = 0.05 to 0.1. As
a baseline for comparison, we consider the two stage proce-
dure (named TS) that consists in computing L = POU (LT)
using Algorithm 1 and then asking preference queries until
MMR(L,U) drops below δ (queries are generated as de-
scribed in Section 3). Within both procedures, individual
utilities are represented by spline functions. Starting from an
empty set of preferences statements, simulated DMs answer
to queries according to a randomly generated utility function.
In Table 1, we report t (the computation times, in sec.) and
q (the number of queries); the symbols “-” means that the
procedure was still running after 5 hours1.

First, we see that Algorithm 3 is very efficient both in terms
of number of queries and computation times. For example,
for instances involving 22

9−1 policies (i.e. d = 18), it needs
no more than 70 seconds and 23 queries to compute the result
(for δ = 0.1). Moreover, Algorithm 3 is much faster than
TS: when δ = 0.05 and d = 12, Algorithm 3 needs about
1 second to compute the result while TS takes more than 35
minutes. This shows that interleaving search and elicitation
enables to drastically speed-up the determination of a near-
optimal solution in combinatorial domains.

5 Conclusion

We have proposed an adaptive utility elicitation procedure
for the interactive selection of policies in sequential decision
problems under risk. Our procedure interleaves preference
queries with backward induction to progressively reduce the
set of admissible utility functions and therefore the set of pos-
sibly optimal lotteries. The proposed procedure determines a
near-optimal policy in polynomial time, using a polynomial
number of preference queries. In addition to these theoretical
guarantees, our numerical tests show the practical efficiency
of this approach, especially when utility functions are repre-
sented by spline functions. This approach can easily be ex-
tended to the elicitation of additive utilities under risk, either
in a multi-agent setting or in a multiattribute setting.

Acknowledgements

This work is supported by the ANR project 14-CE24-0007-
01- Cocorico-CoDec.

1The tests are performed on a Intel Core i7-4770 CPU with 15GB
of RAM. LPs are optimized using the Gurobi solver.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4571

References
[Aziz et al., 2015] Haris Aziz, Markus Brill, Felix Fischer,

Paul Harrenstein, Jérôme Lang, and Hans Georg Seedig.
Possible and necessary winners of partial tournaments. J.
Artif. Intell. Res. (JAIR), 54:493–534, 2015.

[Benabbou and Perny, 2015a] Nawal Benabbou and Patrice
Perny. Combining preference elicitation and search in
multiobjective state-space graphs. In IJCAI, pages 297–
303, 2015.

[Benabbou and Perny, 2015b] Nawal Benabbou and Patrice
Perny. Incremental weight elicitation for multiobjective
state space search. In AAAI, pages 1093–1099, 2015.

[Boutilier et al., 2004] Craig Boutilier, Ronen I Brafman,
Carmel Domshlak, Holger H Hoos, and David Poole.
Preference-based constrained optimization with CP-nets.
Computational Intelligence, 20(2):137–157, 2004.

[Boutilier et al., 2006] Craig Boutilier, Relu Patrascu, Pas-
cal Poupart, and Dale Schuurmans. Constraint-based opti-
mization and utility elicitation using the minimax decision
criterion. Artifical Intelligence, 170(8–9):686–713, 2006.

[Boutilier, 2013] Craig Boutilier. Computational decision
support: regret-based models for optimization and prefer-
ence elicitation. P. H. Crowley, T. R. Zentall (Eds.), Com-
parative Decision Making: Analysis and Support Across
Disciplines and Applications, pages 423–453, 2013.

[Brafman et al., 2010] Ronen I Brafman, Francesca Rossi,
Domenico Salvagnin, Kristen Brent Venable, and Toby
Walsh. Finding the next solution in constraint-and
preference-based knowledge representation formalisms.
In KR. Citeseer, 2010.

[Braziunas and Boutilier, 2007] Darius Braziunas and Craig
Boutilier. Minimax regret based elicitation of generalized
additive utilities. In UAI, pages 25–32, 2007.

[Chajewska et al., 2000] Urszula Chajewska, Daphne
Koller, and Ronald Parr. Making rational decisions using
adaptive utility elicitation. In AAAI, pages 363–369, 2000.

[Chajewska et al., 2001] Urszula Chajewska, Daphne
Koller, and Dirk Ormoneit. Learning an agent’s utility
function by observing behavior. In ICML, pages 35–42,
2001.

[Dasgupta et al., 1995] Pallab Dasgupta, PP Chakrabarti,
and SC DeSarkar. Utility of pathmax in partial order
heuristic search. J. of algorithms, 55:317–322, 1995.

[Drummond and Boutilier, 2013] Joanna Drummond and
Craig Boutilier. Elicitation and approximately stable
matching with partial preferences. In IJCAI, 2013.

[Fürnkranz and Hüllermeier, 2010] Johannes Fürnkranz and
Eyke Hüllermeier. Preference learning: An introduction.
Springer, 2010.

[Gelain et al., 2010] Mirco Gelain, Maria Silvia Pini,
Francesca Rossi, K Brent Venable, and Toby Walsh. Elic-
itation strategies for soft constraint problems with missing
preferences: Properties, algorithms and experimental
studies. Artificial Intelligence, 174(3):270–294, 2010.

[Ha and Haddawy, 1997] Vu Ha and Peter Haddawy.
Problem-focused incremental elicitation of multi-attribute
utility models. In UAI, pages 215–222, 1997.

[Hammond, 1988] Peter J. Hammond. Consequentialist
foundations for expected utility. Theory and decision,
25(1):25–78, 1988.

[Hines and Larson, 2010] Greg Hines and Kate Larson. Pref-
erence elicitation for risky prospects. In AAMAS, pages
889–896, 2010.

[Kikuti et al., 2011] Daniel Kikuti, Fabio Gagliardi Cozman,
and Ricardo Shirota Filho. Sequential decision making
with partially ordered preferences. Artificial Intelligence,
175(7):1346–1365, 2011.

[Konczak and Lang, 2005] Kathrin Konczak and Jérôme
Lang. Voting procedures with incomplete preferences. In
MPREF, 2005.

[Marinescu et al., 2013] Radu Marinescu, Abdul Razak, and
Nic Wilson. Multi-objective constraint optimization with
tradeoffs. In Int. Conf. on Principles and Practice of Con-
straint Programming, pages 497–512. Springer, 2013.

[Perny and Spanjaard, 2002] Patrice Perny and Olivier Span-
jaard. On preference-based search in state space graphs. In
AAAI, pages 751–756, 2002.

[Perny et al., 2016] Patrice Perny, Paolo Viappiani, and Ab-
dellah Boukhatem. Incremental Preference Elicitation for
Decision Making Under Risk with the Rank-Dependent
Utility Model. In UAI, pages 597–606, 2016.

[Ramsay, 1988] James O. Ramsay. Monotone regression
spline in action. Statistical Science, page 425441, 1988.

[Regan and Boutilier, 2009] Kevin Regan and Craig
Boutilier. Regret-based reward elicitation for Markov
decision processes. In UAI, pages 444–451, 2009.

[Roijers et al., 2014] Diederik M Roijers, Shimon Whiteson,
and Frans A Oliehoek. Linear support for multi-objective
coordination graphs. In AAMAS, pages 1297–1304, 2014.

[Von Neumann and Morgenstern, 1947] John Von Neumann
and Oskar Morgenstern. Theory of games and economic
behavior. 2nd Ed. Princeton University Press, 1947.

[Wang and Boutilier, 2003] Tianhan Wang and Craig
Boutilier. Incremental utility elicitation with the minimax
regret decision criterion. In IJCAI, pages 309–316, 2003.

[Weng and Zanuttini, 2013] Paul Weng and Bruno Zanuttini.
Interactive value iteration for markov decision processes
with unknown rewards. In IJCAI, pages 2415–2421, 2013.

[White et al., 1984] Chelsea C White, Andrew P Sage, and
Shigeru Dozono. A model of multiattribute decision mak-
ing and trade-off weight determination under uncertainty.
IEEE Transactions on Systems, Man, and Cybernetics,
14(2):223–229, 1984.

[Xia and Conitzer, 2008] Lirong Xia and Vincent Conitzer.
Determining possible and necessary winners under com-
mon voting rules given partial orders. In AAAI, pages 196–
201, 2008.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4572

