
Robust Quadratic Programming for Price Optimization

Akihiro Yabe, Shinji Ito, Ryohei Fujimaki
NEC Corporation

a-yabe@cq.jp.nec.com, s-ito@me.jp.nec.com, rfujimaki@nec-labs.com

Abstract

The goal of price optimization is to maximize total
revenue by adjusting the prices of products, on the
basis of predicted sales numbers that are functions
of pricing strategies. Recent advances in demand
modeling using machine learning raise a new chal-
lenge in price optimization, i.e., how to manage sta-
tistical errors in estimation. In this paper, we show
that uncertainty in recently-proposed prescriptive
price optimization frameworks can be represented
by a matrix normal distribution. For this particular
uncertainty, we propose novel robust quadratic pro-
gramming algorithms for conservative lower-bound
maximization. We offer an asymptotic probabilistic
guarantee of conservativeness of our formulation.
Our experiments on both artificial and actual price
data show that our robust price optimization allows
users to determine best risk-return trade-offs and to
explore safe, profitable price strategies.

1 Introduction
Product price is the most significant factor in determining
sales. Better pricing strategies (i.e., pricing for multiple prod-
ucts) lead to higher total profits, and determination of the best
price strategy is one of the most important strategic busi-
ness decisions. Price optimization has been actively stud-
ied in marketing science and revenue management [Kunz and
Crone, 2014] and has already achieved great success in such
industries as online retail [Ferreira et al., 2015], fast fash-
ion [Caro and Gallien, 2012], hotels [Koushik et al., 2012;
Lee, 2011], and airlines [Côté et al., 2003]. Most price op-
timization frameworks consist of two stages. The first is
demand modeling, which reveals such complicated relation-
ships among prices and sales quantities as price elasticity of
demand [Marshall, 2009], cross price elasticity (a.k.a. can-
nibalization) [van Ryzin and Mahajan, 1999], and the law of
diminishing marginal utility [Marshall, 2009]. The second
derives the best price strategy by maximizing a utility func-
tion, typically total revenue or profit. Most existing studies
for multi-product price optimization employ mixed-integer
programming [Caro and Gallien, 2012; Koushik et al., 2012;
Lee, 2011] due to the discrete nature of individual prices.

Recently, [Ito and Fujimaki, 2017] have proposed prescrip-
tive price optimization. They first employ recent advanced re-
gression techniques (e.g. non-linear, sparse) to flexibly model
complex relationships between demand and price with re-
spect to multiple products, and they have shown that the profit
maximization problem can be naturally expressed by means
of a binary quadratic programming (BQP) problem. [Ito
and Fujimaki, 2017] has proposed a relaxation method using
semi-definite programming (SDP). Although the SDP method
is more efficient than existing mixed-integer programming
based methods, its scalability is still limited since it theo-
retically requires O(M6) computational time, where M is
the number of products. [Ito and Fujimaki, 2016] has uti-
lized connection between submodularity and the substitute-
goods property [Koushik et al., 2012] known in economics
and has proposed an extremely fast proximal gradient algo-
rithm with network-flow optimization that, under certain con-
ditions, guarantees the global optimality of the original BQP
problem.

A key drawback in previous works is its optimism with re-
spect to its optimization. There exist two types of uncertainty
in prescriptive price optimization, i.e., system noise and esti-
mation error. System noise represents stochastic uncertainty
in demand. Estimation error occurs due to the stochastic na-
ture of machine learning, i.e., regression coefficients vary due
to stochastic changes in sales records. Although previous
works have not taken into account these uncertainties, it is
known in the area of stochastic optimization that such uncer-
tainties might significantly degrade the quality of "optimal"
solutions due to optimistic bias in objective values [Delage
and Ye, 2010; Duchi et al., 2016].

This paper proposes a novel robust quadratic method for
price optimization. Our key contributions are mainly two-
fold. First, we prove that uncertainty in prescriptive price op-
timization can be represented by a matrix normal distribution
when the least square estimation is employed. This provides
a natural robust formulation of price optimization as conser-
vative lower-bound maximization. Although it is common for
robust optimization to take system noise into account [Ben-
Tal et al., 2009], our study is unique in the sense that we ex-
plicitly model the uncertainty that occurs in estimation made
using machine learning (i.e., estimation error). Second, we
propose algorithms for robust quadratic optimization consist-
ing of sequential relaxation to a non-robust counterpart that
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employs a non-robust algorithm (such as [Ito and Fujimaki,
2016; 2017]) as its sub-routine. The algorithm is guaranteed
to obtain a local optimum by O(log(N/δ)) calls of the non-
robust optimization oracle, which is much fewer than that of
existing algorithms [Tütüncü and Koenig, 2004]. We have
experimentally evaluated our robust pricing strategy for sev-
eral values of conservativeness parameters, using an artificial
price simulator, and are able to show its efficiency in terms of
computational time and actual revenue improvement.

2 Problem Settings
2.1 Quadratic Price Optimization
Suppose we haveM products and their prices and sales quan-
tities are denoted by x = (x1, . . . , xM )> ∈ X ⊆ RM and
y = (y1, . . . , yM )> ∈ RM , respectively, where X is a closed
bounded set. Further, let us assume that the vector y of the
sales quantities follows a multi-dimensional regression with
non-linear basis functions as follows:

y = A∗v(x) + ε, (1)

where v : X → RN is a N -dimensional non-linear trans-
formation of x, A∗ ∈ RM×N is the true regression coef-
ficient matrix representing cross price elasticity [Marshall,
2009] (this paper assumes N ≥ M ), and ε is system noise
over RM that follows a multidimensional normal distribu-
tion N (0,Σ∗) with zero mean and covariance matrix Σ∗ ∈
RM×M . Without loss of generality1, we assume that the
first M elements in v(x) are linear features, i.e., v(x) =
(x>, N −M non-linear features)>. The transformation v al-
lows us to incorporate such non-linear effects as the law of
diminishing marginal utility. We here omit non-price features
but it is straightforward to incorporate such features as well,
as pointed in [Ito and Fujimaki, 2016].

The goal of our price optimization is to maximize gross
profit as defined by (x − c)>y, where c = (c1, . . . , cM )> ∈
RM is a cost vector. Hereinafter, for notational simplicity,
this paper assumes c = 0 and thus maximizes gross revenue
x>y. The problem can then be expressed by the following
quadratic programming:

min
x∈X

v(x)>Q∗v(x), where Q∗ :=

(
−A∗

0

)
∈ RN×N .

(2)

2.2 Link to Prescriptive Price Optimization
This subsection shows that the prescriptive optimization
problem [Ito and Fujimaki, 2016; 2017] is reduced to (2),
which considers the following general sparse additive mod-
els for demand modeling, yi =

∑M
j=1 fi,j(xj) + bi, where

fi,j : Pj → R is any uni-variate feature transformation func-
tion and Pi := {pi,1, pi,2, . . . , pi,L} ⊆ R is a set of price
candidates. The price optimization problem can then be for-
mulated as follows:

max
x∈X

M∑
i=1

(xi − ci)

 M∑
j=1

fi,j(xj) + bi

 , (3)

1If we don’t use linear feature x, we can simply fix the first M
columns of A∗ to be zero.

where X := {x | xi ∈ Pi, i = 1, . . . ,M}. Again, for sim-
plicity, we here assume c = 0, and this does not change the
discussion that follows.

Without loss of generality, we can assume that there exists
a set of basis vk : R → R and coefficients a′i,j,k for k =
1, 2, . . . ,K such that

fi,j(xj) =
N∑
n=1

a′i,j,kv
′
k(xj) (4)

for all xj ∈ Pj . The most typical and simplest setting is K =
1 and v1(xj) = xj (linear basis), but in general we can rep-
resent (4) by having every fi,j as a basis for i, j = 1, . . . ,M .
Then we have y = Fv(x) + bi, where F ∈ RM×KM is
defined by Fi,(k−1)M+j = a′i,j,k. for k = 1, 2, . . . ,K and
n = 1, 2, . . . , N . This shows the equivalence of (3) and (2).

3 Robust Price Optimization
3.1 Robust QP under Matrix Normal Uncertainty
Since the true model A∗ cannot be obtained in practice, a
natural way is to replace it by an estimator Â. Suppose we
have a set of training samples denoted by {xd, yd}Dd=1. We
assume the least square estimator Â ofA∗ defined as follows:

Â := arg min
A

D∑
d=1

‖yd −Av(xd)‖2. (5)

For n ≥ 1, let In denote the identity matrix of size n. We
define matrices V and W by

V := (v(x1), v(x2), . . . , v(xM )) ∈ RN×D (6)

W := V V > ∈ RN×N . (7)

Then by the polar decomposition, there exists a matrix Γ ∈
RN×D satisfying ΓΓ> = IN and V = W 1/2Γ. Let Um,n
denote the random matrix over Rm×n, where each entry of
Um,n is independently generated by N (0, 1) and where N
represents a normal distribution.

The next proposition provides the distribution of Â.

Proposition 1. Given {xm}Mm=1, Â is generated by

Â = A∗ + Σ∗1/2UM,NW
−1/2. (8)

Proposition 1 indicates that Â follows the matrix nor-
mal distribution [Gupta and Nagar, 1999], denoted by
MN (A∗,Σ∗,W ), as follows:

P (Â|A∗,Σ∗,W ) (9)

=
exp(− 1

2 tr[W−1(Â−A∗)>Σ∗−1(Â−A∗)])
(2π)ND/2|Σ∗|N/2|W |D/2

.

In order to derive a formulation for robust price optimization,
we first consider the confidence region of Â. Let us define the
estimator Σ̂ of Σ∗ and the confidence region Cλ as follows:

Σ̂ :=
1

D
(Y − ÂV )(Y − ÂV )> (10)

Cλ : = {A | A = Â+ Σ̂1/2UW−1/2, ‖U‖F ≤ λ}, (11)
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where U ∈ RM×N , and ‖U‖F is the Frobenius norm of U .
Then we derive the robust optimization problem with matrix
normal uncertainty as

max
x∈X

min
A∈Cλ

x>Av(x)⇔ min
x∈X

max
Q∈C′λ

v(x)>Qv(x), (12)

where

C′λ := {Q = Q̂+ L>1 UL2, ‖U‖F ≤ λ}, (13)

Q̂ :=

(
−Â
0

)
, L1 :=

(
Σ̂

1
2 0

0 0

)
, L2 := W−

1
2 .

Here λ ≥ 0 is a scalar parameter for controlling the con-
servativeness (a smaller λ corresponds to a more aggressive
strategy).

3.2 Probabilistic Guarantees of Robustness
This section presents an asymptotic probabilistic guarantee of
our robust formulation, which can be regarded as a specializa-
tion of [Duchi et al., 2016, Theorem 6]. It ensures that we can
prevent optimistic bias in objective values and shows that our
robust optimum value does not asymptotically over-estimate
the true optimum revenue in designed probability.

Let χ2
k be a random variable generated by the chi-squared

distribution with degree of freedom k.
Proposition 2. Assume that the optimum solution of (2) is
unique, and that the historical strategies xd are generated by
some distribution. Then we have

lim
D→∞

P

(
max
Q∈C′λ

v(x̂)>Qv(x̂) ≥ v(x̂)>Q∗v(x̂)

)
= 1− 1

2
P (χ2

1 ≥ λ2). (14)

where x̂ := arg minx∈X maxQ∈C′λ v(x)>Qv(x).

4 Algorithms
4.1 Tight, Tractable Upper Bounds
Let us define the function f : X → R as follows:

f(x) = max
U

v(x)>Qv(x) (15)

s.t. Q = Q̂+ L>1 UL2, ‖U‖F ≤ λ. (16)

Our goal, then, is to obtain a strategy x ∈ X which minimizes
f . We can remove the maximization in f and obtain another
representation as follows:
Lemma 3. It holds that

f(x) = v(x)>Q̂v(x) + λ‖L1v(x)‖‖L2v(x)‖, (17)

where ‖ • ‖ is the `2 norm of •.

Proof. We have

f(x) = v(x)>Q̂v(x) + max
U :‖U‖F≤λ

v(x)>L>1 UL2v(x)

= v(x)>Q̂v(x) + λ‖L1v(x)‖‖L2v(x)‖. (18)

The last equality is attained when

U =
λ(L1v(x))⊗ (L2v(x))>

‖(L1v(x))⊗ (L2v(x))>‖F
. (19)

The term ‖L1v(x)‖‖L2v(x)‖ is a product of the square
roots of quartic functions w.r.t. v(x) and is not tractable for
optimization. The next proposition provides a tractable upper
bound of f .
Proposition 4. For any x ∈ X and γ > 0, it holds that

f(x) ≤ g(x, γ), (20)
where

g(x, γ) := v(x)>
(
Q̂+ λ

γM1 +M2/γ

2

)
v(x). (21)

and
M1 := L>1 L1, M2 := L>2 L2. (22)

The equality is attained if and only if γ‖L1v(x)‖ =
‖L2v(x)‖.

Proof. For any v = v(x) ∈ RD, we have

‖L1v‖‖L2v‖ =
√
γ(v>M1v))(v>M2v)/γ (23)

≤
(
γ(v>M1v) + (v>M2v)/γ

)
/2 (24)

The equality condition is γ(v>M1v) = (v>M2v)/γ, which
is equivalent to γ‖L1v(x)‖ = ‖L2v(x)‖.

The following corollary shows theoretical tightness of this
upper bound, i.e., the optimal solution of the original problem
is achievable with an appropriately chosen γ.
Corollary 5. It holds that

min
x∈X

f(x) = min
x∈X

inf
γ∈(0,∞)

g(x, γ). (25)

On the basis of Proposition 4 and Corollary 5, the opti-
mization problem can be re-written as follows:

min
x

inf
γ
g(x, γ) s.t. x ∈ X , γ > 0. (26)

4.2 Upper Bound Minimization Algorithms
Since robust optimization is essentially more difficult than its
non-robust counterpart, we make the following assumption to
ensure that the non-robust counterpart is solvable.

Assumption 6. For any Q′ satisfying Q′ + Q
′> � Q̂ +

Q̂>, we have a non-robust optimization oracle to solve
minx∈X v(x)>Q′v(x).

This assumption immediately holds for convex non-robust
counterparts and also holds for certain types of non-convex
ones, such as with branch-and-bound methods [Burer and
Vandenbussche, 2008], minimum cut methods for uncon-
strained binary quadratic programming under submodular-
ity conditions [Kolmogorov and Zabin, 2004], and prescrip-
tive price optimization under substitute goods property condi-
tions [Ito and Fujimaki, 2017; 2016]. Note that this assump-
tion is required for our theoretical analysis, and we can em-
ploy an approximation algorithm in practice.

For Eq. (21) and a given γ̃, Qγ̃ + Q>γ̃ � Q̂ + Q̂> holds
where Qγ̃ := Q̂ + λ(γ̃M1 + M2/γ̃)/2, and hence the ora-
cle in Assumption 6 is applicable. For later convenience, we
formally summarize this in the following proposition2.

2Even if such x̃ is not unique, the following discussion remains
valid for an arbitrary choice of such x̃, and therefore here we do not
consider uniqueness.
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Algorithm 1 Golden Section Search

Require: Q̂, L1, L2, λ, α, β, δ
Initialize a = α, b = β, r = (

√
5− 1)/2

while |a− b| ≥ δ do
c← b− r ∗ (b− a), d← a+ r ∗ (b− a)
b← d if h(c) < h(d), and a← c otherwise.

end while
Output x̃ := arg minx∈X g(x, γ̃) where γ̃ = (a+ b)/2.

Algorithm 2 Coordinate Decent

Require: Q̂, L1, L2, λ, γ0, δ
Check γ0 > 0, and initialize r ← ∞, γ̃ ← γ0, x̃ ←
arg minx g(x, γ̃).
while r − g(x̃, γ̃) > δ and γ̃ 6∈ {0,∞} do
r ← g(x̃, γ̃)
x̃← arg minx g(x, γ̃)
γ̃ ← arg minγ g(x̃, γ) by (27).

end while
Output x̃.

Proposition 7. Under Assumption 6, for a given γ̃ ∈ (0,∞),
we can obtain x̃ := arg minx∈X g(x, γ̃) by means of a single
call of the non-robust optimization oracle.

Further, on the basis of Proposition 4, for a given x̃, the
infimum of g(x̃, γ) with respect to γ is given by

γ̃ = arg inf
γ
g(x̃, γ) = ‖L2v(x̃)‖/‖L1v(x̃)‖. (27)

The above consideration indicates that the minimization of
g w.r.t. one of x or γ is tractable when the other is fixed. This
paper proposes two simple algorithms to solve Eq. (26) Let
us define a function h : (0,∞)→ R by

h(γ) := min
x∈X

g(x, γ). (28)

For robust prescriptive price optimization, we can employ al-
gorithms proposed in [Ito and Fujimaki, 2017; 2016] as h(γ).

Algorithm 1 is a golden section search [Kiefer, 1953]
method in which we calculate h(γ) by a single call of the
oracle. An advantage of Algorithm 1 is a convergence guar-
antee for a fixed number of calculation of h(γ) that provides
theoretical validity to our upper bound minimization (see Sec-
tion 4.3 for details). Algorithm 2 is a coordinate descent al-
gorithm that alternates optimizations of g(x, γ) w.r.t. x and
γ. Though this algorithm offers no guarantee on the num-
ber of iterations needed for convergence, our experiments in
Section 6 show that Algorithm 2 empirically converges with
only a few iterations and is, in practice, much faster than Al-
gorithm 1. Let us emphasize that, though more advanced op-
timization techniques might be applicable, our empirical re-
sults in Section 6 show that these simple algorithms converge
fast enough in practice.

4.3 Convergence analysis
For a range 0 < α ≤ β, let h[α,β] : [α, β] →
R denote the function restricting the domain of h

onto [α, β]. Further, let us define an upper bound
l by l := (‖L1‖F + ‖L2‖F ) maxx∈X ‖v(x)‖ ≥
maxx∈X max{‖L1v(x)‖, ‖L2v(x)‖}. The following theo-
rem guarantees the convergence of Algorithm 1 in a fixed
number of iterations.
Theorem 8. Suppose that v is continuous and that there does
not exist x ∈ X such that L1v(x) = L2v(x) = 0. Under As-
sumption 6, for any δ′ > 0, setting α = 1/β, β = 2λl2/δ
and δ = δ′/λβ2l2, Algorithm 1 outputs x with the follow-
ing property by O(log(λl/δ′)) calls of the non-robust opti-
mization oracle: there exists a local optimum x∗ ∈ X of f
satisfying f(x) ≤ f(x∗) + δ′.

For comparison with an existing method, as is discussed
in the next subsection, we prove in the following proposi-
tion that, under a fairly natural assumption, the function f
becomes convex. In this case, f has a unique minimum, and
our algorithm is able to obtain the global minimum. Here S+
is a set of positive semidefinite matrices, and Q is defined by

Q := {(Q+Q>)/2 | Q = Q̂+L>1 UL2, ‖U‖F ≤ λ}. (29)

Proposition 9. If X is a convex set, v is affine, and Q ⊆ S+,
then f is a convex function.

5 Related Work
Studies of robust optimization with ellipsoidal uncertainty
were initiated independently by [Ben-Tal and Nemirovski,
1998] and [Ghaoui and Lebret, 1997]. For robust quadratic
programming minx∈X x

>Qx, [Ben-Tal et al., 2002] have
considered the case in which A of Q = A>A has ellipsoidal
uncertainty. For the case in which Q has ellipsoidal uncer-
tainty, which is also the case this paper considers, [Halldórs-
son and Tütüncü, 2003] have proposed an interior point
method for a general self-concordant convex-concave func-
tion given by [Nemirovski, 1999] to this robust optimization.
Further detailed information on robust optimization can be
found in [Ben-Tal et al., 2009; Bertsimas et al., 2011].

In contrast to [Halldórsson and Tütüncü, 2003] which is
applicable only when the convexity in Proposition 9 holds,
our algorithm is applicable to non-convex robust quadratic
programming under the existence of a (possibly approxi-
mate) algorithm for a non-robust counterpart. If Proposi-
tion 9 holds, both Algorithm 1 and [Halldórsson and Tütüncü,
2003] are applicable. In such a case, the non-robust counter-
part is convex quadratic programming, which can be solved
by
√
N log(1/δ) Newton steps, and thus Algorithm 1 re-

quiresO(
√
N log(1/δ) log(N/δ)) Newton steps if ||v(x)||∞,

||L1||∞ and ||L1||∞ are bounded3. If N is large, this is bet-
ter than the O(N log(1/δ)) Newton steps of the algorithm
in [Halldórsson and Tütüncü, 2003].

6 Experiments
We employed the state-of-the-art prescriptive price optimiza-
tion of [Ito and Fujimaki, 2016] to calculate h(γ) defined by
Eq. (28), and compared our robust algorithm and non-robust

3If ||v(x)||∞, ||L1||∞ and ||L1||∞ are bounded, O(l) =
O(logN) holds.
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counterpart. Note that the results with λ = 0 are reduced to
the results of the algorithm in [Ito and Fujimaki, 2016].

6.1 Evaluation on Artificial Price Simulator
Simulation Data We conducted experiments with an arti-
ficial price simulator to support our robust formulation and
theoretical analysis. We applied a similar simulation data
generation process as that of the original paper [Ito and Fu-
jimaki, 2016]. The true demand (regression) model followed
(1), where v(x) = (x1, x2, . . . , xM , 1)> were linear features
with N = M + 1. Then the true coefficient matrix A∗ was
generated by a∗i,i ∼ U([−2M,−M ]), a∗i,j ∼ U([0, 2]) if
i 6= j, and a∗i,N ∼ U([M/2, 3M/2]). We defined the pric-
ing strategies as X := {0.6, 0.7, 0.8, 0.9, 1.0}M where 1.0
was the list price and 0.9 is 10%-off. The distribution of the
non-diagonal entries a∗i,j for j = 1, 2, . . . ,M were chosen
to balance the effect of ith price and the other prices on the
sales quantity of ith product. The linear term was arranged to
obtain a moderate optimum strategy of ≈ 0.8 when the non-
diagonal entries were zero. The training data ({xd, yd})Dd=1
were generated by xd,i = 1.0, 0.9, 0.8, 0.7, 0.6 with probabil-
ity 0.5, 0.2, 0.1, 0.1, 0.1, respectively for all i = 1, 2, . . . ,M ,
where the system noise in yd followed N (0, 25IM ). Here
xd,i has importance because it is natural to assume that the
product is sold more at the list price than at discounted prices.
In each experiment, we generated 10 true models randomly
and 100 training datasets were generated for each dataset.
The results are averages of all runs.

Effect of Robust Formulation Fig. 1 (left) demonstrates
how robust solutions changed along with λ. We observed:
• The revenues were maximized with λ = 2, 3, 4 in all cases.

By appropriately choosing the robustness parameter λ, we
mitigate uncertainty in price optimization and achieve both
better revenue and higher robustness.

• With the small training data (D = 5M ), the non-robust so-
lutions (λ = 0) result in much lower revenue than robust
solutions. This is because the statistical uncertainty in es-
timation was large with small training data and therefore
non-robust solutions easily became poor. As the size of
training data increased, the difference became smaller.

• As λ increased, the standard deviation decreased (standard
deviation is plotted only for D = 5M cases for visualiza-
tion purposes). This indicates that the solutions became
more conservative and thus more stable.

• Even with the best chosen λ value, the obtained revenue is
5-10% worse than the true maximal revenue that was ob-
tained with the true demand model. This difference came
from estimation error, which we cannot avoid regardless of
the choice of optimization algorithms. This result indicates
that the true optimal value is not achievable in expectation
and we must always undergo a certain reduction in the ex-
pected revenue because of the estimation error.

Probabilistic Guarantee with Finite Samples We next
demonstrate that the asymptotic probabilistic guarantee on
the upper-bound of the objective value holds with a practical
number of training samples and reasonably large λ, and show

that our robust optimization mitigates the over-estimation
problem. Fig. 1 (middle) shows the result for D = 100 and
M = 10, 30, 50 along with λ. The vertical axis is the prob-
ability of over-estimation P (maxQ∈C′λ v(xλ)>Qv(xλ) ≤
v(xλ)>Q∗v(xλ)), where xλ is the robust optimum strategy
with λ. We observed:
• The non-robust optimization over-estimated revenue in 70-

80% of the cases, and the optimism of the non-robust opti-
mization was empirically confirmed.

• Although the empirical probabilities (blue, green, red)
were larger than the theoretical asymptotic value (pale
blue) in this setting (D = 100), the difference rapidly de-
creased with increasing λ. With a reasonably large λ value
(e.g. λ ≥ 3), both the absolute value of empirical probabil-
ities and the difference between empirical and theoretical
probabilities became sufficiently small in practice.

Comparison of Algorithms We compared Algorithm 1
and Algorithm 2, with a sampling algorithm of min-max op-
timization that is a baseline for the robust optimization al-
gorithm. The ith step of the sampling problem solves (12)
with the replacement of U by finite samples {Uj}j=1,...,i−1,
and we can then add a new Ui that is a maximizer for the
current optimum solution. Observe that the sampling algo-
rithm approximates the original robust optimization problem
by adding a series of quadratic constraints, and thus in this
framework the efficient price optimization algorithm [Ito and
Fujimaki, 2016] is not applicable. For solving this sample
approximation, we used the MIQCP solver of GUROBI opti-
mizer version 6.0, after convex approximation of Q̂+ Uj .

Fig. 1 (right) shows convergence of the objective value over
algorithm iterations. The majority of computational time was
devoted to the evaluation of h(γ) using non-robust optimiza-
tion oracle in our two algorithms, and to the application of the
MIQCP solver in the sampling algorithm. Thus we summa-
rized this experiment along with algorithm iteration. All al-
gorithms achieved the same objective values at convergence.

We observed that Algorithm 1 and the sampling algorithm
needed almost the same number of iterations for convergence.
However, while two applications of the non-robust optimiza-
tion oracle in Algorithm 2 took 0.08 second per each itera-
tion, the computational time needed for solving MIQCP grew
as the number of quadratic constraints grew, and for λ = 20
it took 274 sec in the first 10 iterations. We also observed that
Algorithm 2 took only a few iterations for convergence in all
cases, and confirmed that Algorithm 2 was faster in practice
and required only slightly more computational time than its
non-robust counterpart.

6.2 Evaluation on Real Point-of-Sales Data
We applied the proposed method to real sales history of
beers4 [Ito and Fujimaki, 2017; Wang et al., 2015]. The
data consisted of prices and sales quantities on 50 products
over 642 days. We used the price features for the prediction,
and we obtained 50 regression models by means of the least

4The data has been provided by KSP-SP Co., LTD, http://
www.ksp-sp.com.
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Figure 1: (left) Expected return and its deviation on robust strategies. The number of products is M = 10. The horizontal and vertical axes
are, respectively, the robustness parameter λ and expected return. The blue, green, and red lines show the results for data sizeD = 5M, 10M,
and 20M , respectively. The pale blue line shows the revenue with the optimum strategy when true model is known.
(middle) The probability of an over-estimate of revenue for D = 300. The horizontal ax is the robustness parameter λ, and the vertical
ax is the probability of over-estimation of revenue. The blue, green, and red line respectively show the result for the number of products
M = 10, 30, 50. The pale blue line shows the theoretical guarantee in Proposition 2.
(right) Convergence of Algorithm 1, 2, and the sampling algorithm forM = 20, D = 100. The horizontal and vertical axes show the number
of iteration and the value of objective functions, respectively. The blue, green, red line show the values for λ = 1, 10, 20, respectively.

Table 1: Real data experiments with sales histories of beers. On the basis of the least square estimate, we calculated robust optimum
strategies for several risk-return parameter λ values. Pi is the product ID sorted by the ratio of (optimum price at λ = 0)/(average). Red and
blue products indicate, respectively, risky and stable pricing strategy in small λ values. Green products indicate large cross price elasticity.

ID λ=0 30 60 90 average
P1 326 502 519 541 542
P2 159 218 243 263 264
P3 326 457 493 537 541
P4 584 880 926 967 969
P5 148 219 233 244 245
P6 903 1058 1278 1478 1491
P7 743 743 1005 1210 1226
P8 903 1006 1234 1473 1490
P9 153 200 235 251 252

P10 153 229 240 252 252
P11 600 735 881 980 987
P12 107 142 158 174 176
P13 104 140 155 169 171
P14 903 903 1156 1463 1483
P15 153 222 237 251 251
P16 114 184 179 186 187
P17 675 675 855 1091 1107

ID λ=0 30 60 90 average
P18 1019 1019 1041 1626 1670
P19 55 77 84 90 90
P20 55 69 81 89 90
P21 675 675 675 1071 1099
P22 138 138 189 220 222
P23 138 138 194 219 220
P24 230 285 285 294 294
P25 167 178 181 187 187
P26 313 313 307 312 312
P27 267 254 256 265 266
P28 265 252 253 264 264
P29 256 235 243 255 255
P30 1600 1364 1467 1584 1592
P31 189 189 184 188 188
P32 188 188 182 187 187
P33 162 143 148 160 161
P34 162 151 152 161 161

ID λ=0 30 60 90 average
P35 255 229 239 251 253
P36 218 218 209 215 216
P37 208 202 200 206 206
P38 285 283 271 281 282
P39 189 189 183 187 187
P40 189 189 182 186 187
P41 189 189 180 186 187
P42 189 189 189 188 187
P43 91 79 82 89 90
P44 180 171 168 177 178
P45 255 232 239 251 252
P46 1124 694 894 1096 1110
P47 275 245 253 269 271
P48 1124 697 839 1084 1101
P49 1505 920 985 1438 1470
P50 1288 1062 912 1232 1257

square estimator. For each product, we set lower and upper
bounds on the product price as 60% and 100% of its histor-
ically maximum price. We then conducted robust optimiza-
tion for λ = 0, 30, 60, 90. Table 1 shows the optimized robust
pricing strategies for each λ. We observed:
• For many products (red), non-robust prices (λ = 0) were

drastically discounted from the average prices, and the
prices monotonically increased optimal prices to average
prices over λ. With the most conservative setting λ = 90,
the optimized prices were very close to average values.
These products are considered to have large price elasticity
of demand. This is natural because the average prices and
largely-discounted prices can be seen as, respectively, the
most "tested" strategies and the most risky.

• For many different products (green), prices changed little
over λ. These products are considered to have small price
elasticity of demand and the list prices (average prices) are
the safest and the most profitable.

• For some products (blue), non-robust prices were close to
averaged prices. They once dropped to discounted prices
and then returned to the averaged prices over λ. These
products are mostly high-valued and therefore are consid-
ered to have large cross price elasticity. This complex

behavior of the optimized prices was caused by the price
changes in the other products.

Although we were unable to evaluate these strategies in real
retail stores, we have learned here that our algorithm provides
a way to simulate scenarios with different risk levels, and the
users can explore for the best pricing strategies on the basis
of their domain expertise.

7 Summary
This paper has proposed a novel robust quadratic optimiza-
tion framework for prescriptive price optimization. Our sta-
tistical observations have revealed that the uncertainty oc-
curring in estimation in machine learning follows a matrix
normal distribution, which has lead us to formulate robust
quadratic programming as a conservative upper-bound mini-
mization. Our sequential algorithms for robust quadratic pro-
gramming converge fast, both practically and theoretically,
and can be implemented on the basis of existing non-robust
price optimization algorithms. Experimental results on both
artificial and actual price data showed that our method en-
ables users to obtain both profitable and safe price strategies
in prescriptive price optimization.
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