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Abstract

Existing works on image emotion recognition
mainly assigned the dominant emotion category or
average dimension values to an image based on the
assumption that viewers can reach a consensus on
the emotion of images. However, the image emo-
tions perceived by viewers are subjective by nature
and highly related to the personal and situational
factors. On the other hand, image emotions can be
conveyed by different features, such as semantics
and aesthetics. In this paper, we propose a nov-
el machine learning approach that formulates the
categorical image emotions as a discrete probabil-
ity distribution (DPD). To associate emotions with
the extracted visual features, we present a weight-
ed multi-modal shared sparse leaning to learn the
combination coefficients, with which the DPD of
an unseen image can be predicted by linearly inte-
grating the DPDs of the training images. The repre-
sentation abilities of different modalities are jointly
explored and the optimal weight of each modality
is automatically learned. Extensive experiments on
three datasets verify the superiority of the proposed
method, as compared to the state-of-the-art.

1 Introduction
Images play an important role in people’s daily lives, which
are widely used, along with text and videos, to share their
activities and express their opinions. With broad application
prospect [Chen et al., 2014]), analyzing the affective content
of images has been paid much attention recently. This task is
often referred to as image emotion recognition (IER) [Joshi et
al., 2011; Zhao et al., 2014a], which typically includes three
steps: collecting human annotations of image emotions, ex-
tracting visual features from images and employing machine
learning techniques to learn the mapping between visual fea-
tures and emotions.
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Figure 1: Affective image classification vs. emotion distribution
prediction. The words Contentment and Sadness are the target emo-
tion categories by affective image classification, while the pie chart
on the right of each image is the target probability distribution by
emotion distribution prediction. Besides, the image emotions are
conveyed through different visual features. Left: the emotions of
abstract paintings are mainly related to image aesthetics. Right: the
emotions of natural images are mainly related to semantic concepts.

Specifically, effective hand-crafted or learning-based fea-
tures have been designed to bridge the affective gap [Zhao
et al., 2014a]. Existing IER methods mainly focused on as-
signing the dominant emotion category (DEC) or the aver-
age dimension values to an image, based on the assumption
that viewers can reach a consensus on the emotion of images.
However, labeling the emotions in images is in fact highly
inconsistent, which causes the so-called subjective percep-
tion problem. That is, viewers might perceive different emo-
tions from the same image due to the influence of various
personal and situational factors, such as the cultural back-
ground, personality and social context [Joshi et al., 2011;
Zhao et al., 2014a; Peng et al., 2015; Zhao et al., 2015b;
Zhao et al., 2016]. Figure 1 illustrates the subjectivity issue
for categorical emotions. To train an IER model, the emotion
annotations need to be solicited from viewers. The ground-
truth annotation of an image is usually obtained using the
DEC. From Figure 1, we can see that the two images of each
group differ a lot in terms of their emotion variances, even
though they are with the same DEC.

As noted in [Zhao et al., 2016], to tackle the subjectiv-
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Figure 2: Diagram of the proposed emotion distribution prediction
process. The white and gray boxes are used to denote the observed
variables and the variables to be estimated, respectively.

ity challenge, two kinds of IER tasks can be performed:
user-centric personalized emotion prediction for each view-
er [Zhao et al., 2016] and image-centric emotion probability
distribution prediction for each image [Zhao et al., 2015b;
Peng et al., 2015; Zhao et al., 2017]. To address the issue
of discrete probability distribution (DPD) modelling, shared
sparse learning (SSL) [Zhao et al., 2015b], support vector re-
gression (SVR) and convolutional neural network regression
(CNNR) [Peng et al., 2015] were employed to learn the map-
ping between visual features and emotion probabilities. How-
ever, only uni-modal visual feature was considered in these
methods, which is obviously insufficient, since image emo-
tions are likely to be conveyed through complex visual fea-
tures from low-level to high-level [Zhao et al., 2014b], such
as color contrast and semantic concepts, as shown in Figure 1.
In addition, the SVR and CNNR approaches do not guarantee
that the predicted probability is non-negative.

In this paper, we propose a novel method to predict the
DPD of image emotions from visual features, based on the
following hypotheses:
• Hypothesis 1: The images, which are jointly close to one

another in the multi-modal visual feature space, would
have similar DPDs in the categorical emotion space.
• Hypothesis 2: The DPD of a test image can be approxi-

mately modeled as a linear combination of the DPDs of
the training images.

The proposed method, named weighted multi-modal
shared sparse leaning (WMMSSL), mainly involves two pro-
cesses, as illustrated in Figure 2. First, it learns a set of com-
bination coefficients (called shared factors) to jointly recon-
struct the multi-modal visual features of a test image with the
features of the training images. Second, it linearly combines
the DPDs using the shared factors leaned from the training
images to compute the DPD of the test image. The two pro-
cesses are referred to shared factors learning and emotion dis-
tribution mapping, respectively. The two special properties

of WMMSSL lie in the exploration of representation abilities
of different features and the automated weight learning for
each feature in accordance with its importance. We validate
the effectiveness of WMMSSL on Abstract [Machajdik and
Hanbury, 2010], Emotion6 [Peng et al., 2015] and Image-
Emotion-Social-Net [Zhao et al., 2016] datasets.

2 Related Work
Image emotion recognition. Categorical emotion states
(CES) [Ekman, 1992; Mikels et al., 2005] and dimension-
al emotion space (DES) [Schlosberg, 1954] are two kinds of
emotion representation models. Accordingly, different tasks
can be performed, including affective image classification, re-
gression and retrieval [Zhao et al., 2016].

Feature extraction plays an important role in IER. In the
early years, different levels of hand-crafted features are de-
signed to bridge the affective gap, including low-level col-
or and texture [Machajdik and Hanbury, 2010], shape [Lu et
al., 2012], mid-level principles-of-art [Zhao et al., 2014a]
and high-level adjective noun pairs [Borth et al., 2013;
Chen et al., 2014; Wang et al., 2016]. More recently, with the
great success of convolutional nerual network (CNN) in many
computer vision tasks, CNN has also been directly employed
in IER [You et al., 2016b; Alameda-Pineda et al., 2016].

To learn the mapping between features and emotions, dif-
ferent machine learning methods have been employed, such
as SVM [Lu et al., 2012], sparse learning [Zhao et al., 2017]
and matrix completion [Alameda-Pineda et al., 2016].
Probability distribution prediction. In many machine
learning applications, just predicting the most likely val-
ue for a target variable is not enough. For instance, in
economics it is often important to study the fluctuation of
stocks. In such cases, it would be more reasonable and
useful to predict the probability distribution for that vari-
able [Carney et al., 2005], such as surf height [Carney et al.,
2005], user behavior [Liu et al., 2013] and spike events [Pi-
pa et al., 2013]. As the emotions that are evoked in view-
ers by an image are highly subjective, predicting the distri-
bution instead of the dominant emotion would make more
sense. Generally, the distribution prediction task can be for-
malized as a regression problem. For CES, the task aims
to predict the discrete probability of different emotion cate-
gories, the sum of which is equal to 1 [Zhao et al., 2015b;
Peng et al., 2015]. For DES, the task usually turns to predict-
ing the parameters of specified continuous probability dis-
tribution, such as Gaussian distribution [Zhao et al., 2015a;
Zhao et al., 2017].
Sparse learning and multi-modal learning. Sparse learning
represents the target variable as a sparsely linear combination
of a set of basis functions and is widely used in many areas,
such as face recognition [Wright et al., 2009], visual clas-
sification [Yuan et al., 2012] and emotion analysis [Zhao et
al., 2017]. Meanwhile, in many real-world applications, we
might have multi-modal data [James and Dasarathy, 2014],
either from different sources [You et al., 2016a] or with multi-
ple features [Zhao et al., 2014b]. As different modal data usu-
ally represent different aspects of the target, jointly combin-
ing them may promisingly improve the performance [James
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Figure 3: The framework of the proposed method for DPD predic-
tion of image emotions from visual features. The black solid and
blue dash arrowed lines indicate the operations for the training and
test images, respectively.

and Dasarathy, 2014; Ding et al., 2016]. Besides the tradi-
tional early fusion and late fusion, there are many other multi-
modal fusion strategies, such as hypergraph learning [Zhou et
al., 2006] and multimodal deep learning [Ngiam et al., 2011].

3 System Overview
Our goal is to predict the DPD of image emotions when multi-
modal features are available. Suppose we haveL emotion cat-
egories c1, c2, · · · , cL and N training images I1, I2, · · · , IN .
The mth modal features of the N training images are Xm =
[xm

1 , xm
2 , · · · , xmN ] and the feature dimension is dm (m =

1, 2, · · · ,M ). Let pn = [pn1, · · · , pnl, · · · , pnL]T denote
the emotion distribution of the image In, where pnl repre-
sents the probability that image In conveys emotion cl (n =
1, 2, · · · , N , l = 1, 2, · · · , L). For each image In, we have∑L

l=1 pnl = 1. Suppose I is a test image, its M modal fea-
tures are y1, y2, · · · , yM and the ground-truth distribution is
p = [p1, p2, · · · , pL]T. Let X = {X1,X2, · · · ,XM} and Y =
{y1, y2, · · · , yM} denote the feature set of the training images
and the test image, respectively. Let P = [p1, p2, · · · , pN ] de-
note the training labels of emotion distribution. Then our task
is to predict emotion distribution p̂ = [p̂1, · · · , p̂l, · · · , p̂L]T,
where p̂l = p(cl|Y) for test image I based on training exam-
ples (X,P). That is, our task aims to find the mapping

f : {(X,P),Y} → p̂. (1)

The framework of the proposed method is shown in Fig-
ure 3, which consists of operations in the visual space and the
emotion space. In the visual space, we extract multi-modal
features from the images and use PCA for dimension reduc-
tion. In the emotion space, the human emotion annotations
are normalized to obtain the ground-truth DPDs for the train-
ing images. For a given test image, the shared factors learning
algorithms are used to learn the mapping factors in the visual
space, which are directly transferred to the emotion space to
predict the DPD of the test image.

4 Weighted Multi-Modal Shared Sparse
Learning

In practice, we can extract multi-modal visual features to rep-
resent images [Zhao et al., 2014b]. Jointly combining the
strengths of multi-modal features may improve the perfor-
mance of emotion distribution prediction. CNNR is based on

CNN features, while SSL can simply adopt early or late fu-
sion to handle multi-modal features without considering the
latent correlations between different features. We present a
weighted multi-modal shared sparse learning (WMMSSL) to
provide additional useful information to the prediction prob-
lem by the constraint of joint sparsity across different fea-
tures, which may enforce the robustness in coefficient esti-
mation [Yuan et al., 2012].

WMMSSL assumes that multi-modal features Y and p̂ can
be written in terms of bases X and P ∈ RL×N respectively,
but with shared sparse coefficients Θ ∈ RN×M . That is

ym = Xmθm(m = 1, 2, · · · ,M) and p̂ = PΘw, (2)
where Θ = [θ1,θ2, · · · ,θM ] and w = [w1,w2, · · · ,wM ]T

are obtained by

[Θ∗,w∗] = argmin
∑M

m=1
wm‖ym − Xmθm‖22

+ α‖Θ‖2,1 + β‖w‖22,
s.t. θm ≥ 0, ‖θm‖1 = 1 and w ≥ 0, ‖w‖1 = 1,

(3)

where α and β are regularization coefficients that control the
relative importance of the regularization terms and the sum-
of-squares error term. The constraints θm ≥ 0, ‖θm‖1 = 1
and w ≥ 0, ‖w‖1 = 1 together ensure that the predicted p̂ is
a probability distribution.

To solve the dual-optimization problem in Eq. (3), we al-
ternatively conduct optimization.

(1) Updating Θ when fixing w
We employ IRLS [Chartrand and Yin, 2008] to optimize Θ

in Eq. (3), the component ‖Θ‖2,1 of which is transformed by

‖Θ‖2,1 =
N∑

n=1

√√√√ M∑
m=1

(θmn )2 '
N∑

n=1

∑M
m=1(θmn )2√∑M
m=1(θmn )2 + ε

,

(4)
where ε > 0 is introduced to avoid division by zero. Let

ϕn = 1/

(√∑M

m=1
(θmn )2 + ε

)
. Define diagonal matrix

Φ(n, n) =
√
ϕn(1 ≤ n ≤ N). Then the objective function

of Eq. (3) with respect to Θ is transformed to

O(Θ) =
∑M

m=1
wm‖ym − Xmθm‖22 + α‖Φθm‖22. (5)

minO(Θ) can be optimized for each θm independently

min wm‖ym − Xmθm‖22 + α‖Φθm‖22,
s.t. θm ≥ 0, ‖θm‖1 = 1,

(6)

which can be easily and efficiently solved by off-the-shelf
quadratic optimization methods.

(2) Updating w when fixing Θ
The optimization problem of Eq. (3) with respect to w is

transformed to

min
∑M

m=1
wm‖ym − Xmθm‖22 + β‖w‖22,

s.t. w ≥ 0, ‖w‖1 = 1,
(7)

which is a also quadratic programming problem. The learning
procedure is summarized in Algorithm 1. The computation
complexity is O(c ·M · E · N2), where c is the number of
iterations in conjugate gradient when optimizing θm.
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Algorithm 1: Procedure for weighted multi-modal shared
sparse leaning

Input: Training examples (X,P), test feature Y, max-epochs
E, error threshold τ1, τ2, regularization coefficients
α, β

Output: Predicted emotion distribution p̂ for Y
1 Initialization: θm(0) ← 1/N(m = 1, 2, · · · ,M), ε← 10−9,
p← 0, w(0) ← 1/M ;

2 for e← 1 to E do
/* Updating Θ when fixing w */

3 for m← 1 to M do
4 Compute the diagonal matrix Φ(e) by

ϕ(e)
n ← 1/

(√∑M

m=1
(θ

m(e−1)
n )2 + ε

)
,

Φ(e)(n, n)←
√
ϕ

(e)
n (1 ≤ n ≤ N);

5 Optimize θm by

θm(e) ← argmin w(e−1)
m ‖ym − Xmθm‖22 + α‖Φ(e)θm‖22,

s.t. θm ≥ 0, ‖θm‖1 = 1;6

7 end
/* Updating w when fixing Θ */

8 Optimize w by

w(e) ← argmin
∑M

m=1
wm‖ym − Xmθm(e)‖22 + β‖w‖22,

s.t. w ≥ 0, ‖w‖1 = 1;9

10 if ‖θm(e) − θm(e−1)‖2 < τ1(m = 1, 2, · · · ,M) &
‖w(e) − w(e−1)‖2 < τ2 then

11 break;
12 end
13 end
14 Θ(e) = [θ1(e),θ2(e), · · · ,θM(e)];
15 return p̂ = PΘ(e)w(e).

5 Experiments
To our knowledge, there are three public datasets that contain
DPD information of image emotions: Abstract [Machajdik
and Hanbury, 2010], Emotion6 [Peng et al., 2015] and Image-
Emotion-Social-Net (IESN) [Zhao et al., 2016]. In this sec-
tion, we introduce the experimental settings and evaluate the
performance of the proposed method.

5.1 Experimental Settings
Datasets: The Abstract dataset [Machajdik and Hanbury,
2010] includes 279 abstract paintings without any recog-
nizable objects. These images were peer rated in a web-
survey by approximately 230 people into 8 emotion cate-
gories [Mikels et al., 2005]. On average each image was rated
about 14 times. Only 228 images can be used for affective im-
age classification [Machajdik and Hanbury, 2010], while all
the images can be used for emotion distribution prediction.

The Emotion6 dataset [Peng et al., 2015] consists of 1,980
images collected from Flickr, 330 for each of the Ekman’s
6 basic emotions [Ekman, 1992]. The emotional responses
from subjects were obtained using Amazon Mechanical Turk
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Figure 4: The distribution of images that are labeled with differ-
ent emotion numbers, where the horizontal axis is the number of
different emotions, and the vertical axis is image proportion. The
majority of images are labeled with at least two emotion categories,
which demonstrates that the perceived emotions are truly subjective.

(AMT). Each image was scored by 15 subjects into Ekman’s
6 basic emotions and neutral.

The IESN dataset [Zhao et al., 2016] contains 1,012,901
images collected from Flickr using keywords based search-
ing strategy [Borth et al., 2013]. The emotion information
of the social images in IESN are automatically obtained from
the text data. Similar to Abstract [Machajdik and Hanbury,
2010], the emotions are also classified into 8 categories. To-
tally, we select 3,792 images, each of which is assigned with
more than 15 categorial emotion labels.

The emotion distribution on the 8 or 7 categories of
each image can be easily obtained by normalization, i.e.,
dividing the number of subjects who perceive each emo-
tion category by the number of all emotion perceptions.
For example, given an image, suppose the perceived emo-
tion number by 20 subjects on the 8 emotion categories
is v = [7, 0, 4, 5, 0, 6, 2, 1], then the DPD is v/

∑
(v) =

[0.28, 0, 0.16, 0.2, 0, 0.24, 0.08, 0.04]. Note that one subjec-
t can perceive multiple emotions from the same image. The
distribution of emotion numbers for the images in the three
datasets is shown in Figure 4, from which we can clearly see
the subjectivity issue of emotion perceptions.
Emotion Features: To enhance the representation power, we
extract various features, including hand-crafted ones of dif-
ferent levels and learning-based ones.

We first extract two classes of low-level hand-crafted fea-
tures for their global descriptors of the overall image content,
including GIST [Patterson and Hays, 2012] and the features
derived from elements-of-art (color and texture) [Machajdik
and Hanbury, 2010]. Mid-level features are more inter-
pretable and have stronger link to emotions than low-level
ones [Zhao et al., 2014a]. Here we extract two classes of
mid-level features, including attributes [Patterson and Hays,
2012] and features inspired from principles-of-art [Zhao et
al., 2014a]. High-level features reflect the semantic contents
in images. We extract a set of concepts described by adjec-
tive noun pairs (ANPs), which are detected by a large detec-
tor library SentiBank [Borth et al., 2013]. Further, we extract
the deep learning features from the response of the fully con-
nected layer (FC) 7 of the ImageNet-CNN [Krizhevsky et al.,
2012], which is the final fully connected layer before produc-
ing the class predictions. The six sets of extracted features are
abbreviated as GIST, Elem, Attr, Prin, ANP and CNN with
dimension 512, 48, 102, 165, 1200 and 4096, respectively.
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Table 1: Performance comparison between the proposed WMMSSL with SSL and CNNR for emotion distribution prediction on Abstract
dataset measured by SSD, KL, BC, R2 (×10−1) and the standard deviations (×10−1).

SSL-GIST SSL-Elem SSL-Attr SSL-Prin SSL-ANP SSL-CNN CNNR SSL-Early SSL-Late WMMSSL
SSD 1.369±0.073 1.354±0.134 1.473±0.090 1.346±0.106 1.316±0.035 1.282±0.046 1.244±0.096 1.271±0.045 1.241±0.055 1.191±0.060
KL 5.525±0.329 5.439±1.379 6.070±0.204 5.421±0.551 5.475±0.153 5.225±0.177 5.103±0.305 5.126±0.096 5.034±0.177 4.820±0.209
BC 7.992±0.108 8.095±0.168 7.849±0.928 8.106±0.077 8.118±0.048 8.118±0.074 8.173±0.093 8.142±0.046 8.210±0.081 8.319±0.078
R2 1.915±0.236 2.161±0.372 1.850±0.395 2.478±0.428 2.483±0.337 2.660±0.385 2.796±0.309 2.678±0.354 2.818±0.456 2.993±0.467

Table 2: Performance comparison between the proposed WMMSSL with SSL and CNNR for emotion distribution prediction on Emotion6
dataset measured by SSD, KL, BC, R2 (×10−1) and the standard deviations (×10−1).

SSL-GIST SSL-Elem SSL-Attr SSL-Prin SSL-ANP SSL-CNN CNNR SSL-Early SSL-Late WMMSSL
SSD 2.043±0.061 1.828±0.061 1.984±0.033 1.806±0.065 1.794±0.122 1.427±0.043 1.394±0.080 1.344±0.033 1.402±0.086 1.268±0.076
KL 6.389±0.317 5.999±0.882 6.205±0.096 5.863±0.445 5.705±0.306 5.244±0.041 4.846±0.469 4.825±0.084 5.064±0.150 4.793±0.097
BC 7.868±0.097 7.940±0.049 7.909±0.009 8.111±0.113 8.151±0.061 8.402±0.015 8.437±0.050 8.484±0.012 8.411±0.044 8.529±0.059
R2 2.755±0.381 3.601±0.104 2.832±0.151 3.644±0.117 3.683±0.182 4.237±0.014 4.434±0.348 4.533±0.180 4.368±0.161 4.679±0.172

Table 3: Performance comparison between the proposed WMMSSL with SSL and CNNR for emotion distribution prediction on IESN dataset
measured by SSD, KL, BC, R2 (×10−1) and the standard deviations (×10−1).

SSL-GIST SSL-Elem SSL-Attr SSL-Prin SSL-ANP SSL-CNN CNNR SSL-Early SSL-Late WMMSSL
SSD 1.928±0.431 1.854±0.078 1.863±0.008 1.852±0.113 1.728±0.002 1.719±0.054 1.703±0.022 1.676±0.125 1.706±0.090 1.569±0.014
KL 5.606±1.136 5.292±0.385 5.173±0.177 5.083±0.929 4.915±0.288 4.874±0.115 4.828±0.953 4.812±0.108 4.837±0.134 4.777±0.016
BC 8.450±0.290 8.456±0.054 8.461±0.020 8.486±0.055 8.505±0.003 8.515±0.037 8.534±0.047 8.542±0.072 8.525±0.068 8.583±0.015
R2 6.828±0.361 7.043±0.059 7.154±0.283 7.201±0.501 7.221±0.319 7.232±0.239 7.306±0.015 7.314±0.178 7.265±0.171 7.358±0.382

Baselines: Shared sparse learning (SSL) [Zhao et al., 2015b]
and convolutional neural network regression (CNNR) [Peng
et al., 2015] are selected as baselines for comparison. Besides
each uni-modal feature, we also implement early and late fu-
sion for SSL to handle multi-modal features. The settings of
CNNR is similar to [Peng et al., 2015], where the Caffe ref-
erence model [Jia et al., 2014] is pre-trained and the CNN is
fine-tuned with our training set.

Evaluation Metrics: The sum of squared difference
(SSD) [Zhao et al., 2015b], the Kullback-Leibler divergence
(KL), the Bhattacharyya coefficient (BC) and the coeffi-
cient of determination (R2) are used as evaluation metrics.
0 ≤ SSD ≤ 1, KL ≥ 0 and lower values indicate bet-
ter performance. 0 ≤ BC ≤ 1 and larger value represents
better results. R2 ranges from 0 to 1 and larger value repre-
sents stronger linear relationship between two distributions.
Please note that (1) SSD measures the performance from the
aspect of regression, while KL, BC and R2 measure the dis-
tance between two distributions; (2) KL and BC emphasize
on each individual element, whereas R2 considers the vari-
ance among all the elements in the DPD.

Implementation Details: We randomly select 80%, 50%
and 50% of images from the Abstract, Emotion6 and IESN
datasets respectively as the training set and the remained form
the testing set. The following parameter settings are adopted
for WMMSSL: α = 0.05 and β = 0.1. We also conduct em-
pirical analysis on parameter sensitivity, which demonstrates
that WMMSSL has superior and stable performance with a
wide range of parameter values on all three datasets. The fea-
tures that are over 50-dimensional are all reduced to 50 by
PCA to accelerate the optimization. For better comparison,
the parameters of the baselines are carefully tuned and the
best results are reported. To remove the influence of any ran-
domness, we perform 20 runs and report the average results
and the standard deviation.

5.2 Results and Discussion
On Uni-Modal Visual Features
Firstly, we conduct experiments to compare the performance
of different visual features and uni-modal feature based meth-
ods, i.e. SSL [Zhao et al., 2015b] and CNNR [Peng et al.,
2015], for emotion distribution prediction. The performances
measured by SSD, KL, BC, R2 and the standard deviations
on Abstract, Emotion6 and IESN datasets are summarized in
Table 1, Table 2 and Table 3, respectively. In the middle col-
umn of each table, the best uni-modal feature based method
is highlighted in italic.

From the results, we have the following observations. (1)
Generally, the CNN features have stronger discriminabili-
ty than the hand-crafted ones; the high-level and mid-level
hand-crafted features perform better than low-level ones.
Theses results are consistent with several existing litera-
tures [You et al., 2016b; Zhao et al., 2016; Zhao et al.,
2014b]. (2) The CNNR method achieves the best results in
most cases with uni-modal features, which demonstrates the
effectiveness of CNNR in DPD prediction of image emotions
[Peng et al., 2015]. (3) The metrics SSD, KL, BC and R2

relatively comply with the performance measure of emotion
distribution prediction.

Besides the common observations above, there are some
inconsistencies across datasets. (1) The features derived
from principles-of-art and elements-of-art perform even bet-
ter than the high-level ANP features on Abstract and Emo-
tion6 datasets. This is probably because the images in Ab-
starct are abstract paintings without recognizable objects, the
emotions of which are mainly evoked by art theory and aes-
thetics. Meanwhile, the apparent semantics directly related to
the evoked emotions, such as expressive faces, are removed
in the Emotion6 dataset construction [Peng et al., 2015]. (2)
The metric R2 is much larger in IESN dataset than Abstract
and Emotion6 datasets, since the evoked emotion numbers of
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Figure 5: The influence of parameter α when β = 0.1 in WMMSSL.
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Figure 6: The influence of parameter β when α = 0.05 in WMMSSL.

each image is smaller in IESN (Figure 4) due to the influence
of social factors, such as the joined interest groups.

On Different Feature Fusion Methods
Secondly, we compare the performance of different feature
fusion methods for emotion distribution prediction, including
the proposed WMMSSL, early fusion and late fusion for SSL.
The results are reported in the right column of Table 1, Table 2
and Table 3, where the better fusion method for SSL is shown
in bold, while the best overall result is highlighted in both
italic and bold.

Comparing the results, we can observe that: (1) fusing
multi-modal features by either early fusion or late fusion for
SSL can obtain better prediction performance than most uni-
modal features; (2) the best fusion method for SSL is depen-
dent on the datasets; on Abstract dataset, late fusion achieves
better performance, while early fusion works better on Emo-
tion6 and IESN datasets; (3) SSL with late, early and early fu-
sion method outperforms CNNR on Abstract, Emotion6 and
IESN datasets, respectively; (4) the proposed fusion method,
namely WMMSSL, performs the best on the three datasets,
which demonstrates the effectiveness of WMMSSL for emo-
tion distribution prediction.

Specifically, the performance gains of SSL with the best
fusion method over the best uni-modal features measured by
SSD,KL,BC,R2 are 3.20%, 3.66%, 1.13%, 5.94% on Ab-
stract, 5.82%, 7.99%, 0.98%, 6.99% on Emotion6 and 2.50%,
1.48%, 0.32%, 1.13% on IESN datasets, respectively. Com-
pared with the best results of CNNR and SSL, the proposed
WMMSSL achieves the KL performance gains of 5.55%,
4.25% on Abstract, 1.09%, 0.66% on Emotion6 and 1.06%,
0.73% on IESN datasets, respectively. These results demon-
strate that the proposed WMMSSL outperforms the state-of-
the-art approaches for emotion distribution prediction with
significant performance gains.

On Parameter Sensitivity
In WMMSSL, we have two model parameters, α to control
the model sparsity and β as the feature weight parameter.
We investigate how sensitive WMMSSL is to the parameters.
When analyzing α and β, we fix the other as the value we
introduced above.

The influences of the regularization parameters α, β on
WMMSSL are validated, with results shown in Figure 5 and
Figure 6. From these results, we can find that: (1) the influ-
ences of α, β are different on different datasets; more stable
performances are obtained on Emotion6 and IESN datasets
than Abstract dataset; (2) generally, with the decrease of α,
the performance tends to become better with relatively stable
performance achieved when α decreases to 0.1; (3) on Ab-
stract dataset, with the increase of β, the performance first-
ly becomes better and then turns to be worse, meaning that
there exists the best β; though not so obviously, WMMSSL
achieves better KL values when β ≥ 0.1 on Emotion6 and
IESN datasets. These results reveal the robustness of the pro-
posed method for emotion distribution prediction.

6 Conclusion
In this paper, we proposed a novel method, named weight-
ed multi-modal shared sparse leaning, to predict the discrete
probability distribution of image emotions. Features from dif-
ferent modalities, both hand-crafted ones and learning-based
ones, are jointly explored. The optimal weights for different
features that reflect their representation abilities are automat-
ically learned from the training data. Experiments on Ab-
stract, Emotion6 and IESN datasets demonstrated the effec-
tiveness of WMMSSL. For future studies, we plan to improve
the computational efficiency of WMMSSL to tackle large-
scale data. Further, we will implement applications based on
emotion distribution, such as affective image retrieval.
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