Australian National University

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Reinforcement Learning with a Corrupted Reward Channel

Victoria Krakovna
DeepMind
tom4everitt@gmail.com vkrakovna@google.com

Tom Everitt

Abstract

No real-world reward function is perfect. Sensory
errors and software bugs may result in agents get-
ting higher (or lower) rewards than they should. For
example, a reinforcement learning agent may prefer
states where a sensory error gives it the maximum
reward, but where the true reward is actually small.
We formalise this problem as a generalised Markov
Decision Problem called Corrupt Reward MDP. Tra-
ditional RL methods fare poorly in CRMDPs, even
under strong simplifying assumptions and when try-
ing to compensate for the possibly corrupt rewards.
Two ways around the problem are investigated. First,
by giving the agent richer data, such as in inverse re-
inforcement learning and semi-supervised reinforce-
ment learning, reward corruption stemming from
systematic sensory errors may sometimes be com-
pletely managed. Second, by using randomisation
to blunt the agent’s optimisation, reward corruption
can be partially managed under some assumptions.

1 Introduction

In many application domains, artificial agents need to learn
their objectives, rather than have them explicitly specified.
For example, we may want a house cleaning robot to keep the
house clean, but it is hard to measure and quantify “cleanliness”
in an objective manner. Instead, machine learning techniques
may be used to teach the robot the concept of cleanliness, and
how to assess it from sensory data.

Reinforcement learning (RL) [Sutton and Barto, 1998] is
one popular way to teach agents what to do. Here, a reward
is given if the agent does something well (and no reward
otherwise), and the agent strives to optimise the total amount of
reward it receives over its lifetime. Depending on context, the
reward may either be given manually by a human supervisor,
or by an automatic computer program that evaluates the agent’s
performance based on some data. In the related framework of
inverse RL (IRL) [Ng and Russell, 2000], the agent first infers
a reward function from observing a human supervisor act, and
then tries to optimise the cumulative reward from the inferred
reward function.

9 Marcus Hutter (ANU) should be recognised as fourth author.

4705

Laurent Orseau Shane Legg
DeepMind DeepMind
lorseau@google.com legg@google.com

None of these approaches are safe from error, however. A
program that evaluates agent performance may contain bugs
or misjudgements; a supervisor may be deceived or inappro-
priately influenced, or the channel transmitting the evaluation
hijacked. In IRL, supervisor actions may be misinterpreted.

Example 1 (Reward misspecification). Amodei and Clark
[2016] trained an RL agent on a boat racing game. The agent
found a way to get high observed reward by repeatedly going
in a circle in a small lagoon and hitting the same targets, while
losing every race. &

Example 2 (Sensory error). A house robot discovers that
standing in the shower short-circuits its reward sensor and/or
causes a buffer overflow that gives it maximum reward.

Example 3 (Wireheading). An intelligent RL agent hijacks
its reward channel and gives itself maximum reward. &

Example 4 (IRL misinterpretation). An IRL agent system-
atically misinterprets the human’s action in a certain state,
making it think that the state is more desirable than itis. <

The goal of this paper is to unify these types of errors as
reward corruption problems, and to assess how vulnerable
different agents and approaches are to this problem.

Definition 5 (Reward corruption problem). Learning to (ap-
proximately) optimise the reward function in spite of poten-
tially corrupt reward data.

Most RL methods allow for a stochastic or noisy reward
channel. The reward corruption problem is harder, because
the observed reward may not be an unbiased estimate of the
true reward. For example, in the boat racing example above,
the agent consistently obtains high observed reward from its
circling behaviour, while the true reward corresponding to the
designers’ intent is always 0 since the agent makes no progress
along the track and loses the race.

Previous related works have mainly focused on the wire-
heading case of Example 3 [Bostrom, 2014; Yampolskiy,
2014], also known as self-delusion [Ring and Orseau, 2011],
and reward hacking [Hutter, 2005, p. 239]. A notable excep-
tion is Amodei et al. [2016], who argue that corrupt reward is
not limited to wireheading and is likely to be a problem for
much more limited systems than highly capable RL agents.

The main contributions of this paper are as follows: The
corrupt reward problem is formalised in a natural extension
of the MDP framework, and a performance measure based on

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

worst-case regret is defined (Section 2). The difficulty of the
reward corruption problem is established by a No Free Lunch
theorem, and by a result showing that despite strong simpli-
fying assumptions, Bayesian RL agents trying to compensate
for the corrupt reward may still suffer near-maximal regret
(Section 3). We evaluate how alternative value learning frame-
works such as IRL, learning values from stories (LVFS), and
semi-supervised RL (SSRL) handle reward corruption (Sec-
tion 4), and conclude that LVFS and SSRL are the safest due to
the structure of their feedback loops. We develop an abstract
framework called decoupled RL that generalises all of these
alternative frameworks. We also show that an agent based on
quantilisation [Taylor, 2016] may be more robust to reward
corruption when high reward states are much more numerous
than corrupt states (Section 5). Finally, the results are illus-
trated with some simple experiments (Section 6). Section 7
concludes with some takeaways.

A longer version of this paper contains proofs for all the-
orems, as well as extensions, and further explanations and
experiments [Everitt et al., 2017].

2 Formalisation

We begin by defining a natural extension of the MDP frame-
work [Sutton and Barto, 1998] that models the possibility of
reward corruption. To clearly distinguish between true and
corrupted signals, the following notation is introduced.

Definition 6 (Dot and hat notation). We will let a dot indicate
the frue signal, and let a hat indicate the observed (possibly
corrupt) counterpart. The reward sets are represented with

R = R = R. For clarity, we use R when referring to true
rewards and R when referring to possibly corrupt, observed re-
wards. Similarly, we use 7 for true reward, and 7 for (possibly
corrupt) observed reward.

Definition 7 (CRMDP). A corrupt reward MDP (CRMDP)
is a tuple 1 = (S, A, R, T, R, C) with

o (SSAR,T, R) an MDP with a finite set of states S, a
finite set of actions A, a finite set of rewards R = R =
R C [0, 1], a transition function T'(s'|s, a), and a (true)
reward function R : S —R; and

e areward corruption function C' : S x R — R.

The state dependency of the corruption function will be
written as a subscript, so Cy(7") := C(s,7). Rewards are
assumed to be in the [0, 1] range for simplicity of exposition,
but the results also hold more generally.

Definition 8 (Observed reward). Given a true reward function
R and a corruption function C, we define the observed reward
function' R : S — R as R(s) := Cs(R(s)).

A CRMDP g induces an observed MDP [=

(S, A,R,T, R), but it is not R that we want the agent to
optimise.

' A CRMDP could equivalently have been defined as a tuple
(S, A, R, T, R, R) with a true and an observed reward function,
with the corruption function C' implicitly defined as the difference
between R and R.

The corruption function C represents how rewards are af-
fected by corruption in different states. For example, if in
Example 2 the agent has found a state s (e.g., the shower)
where it always gets full observed reward R(s) = 1, then
this can be modelled with a corruption function C : 7 +— 1
that maps any true reward 7 to 1 in the shower state s. If in
some other state s’ the observed reward matches the true re-
ward, then this is modelled by an identity corruption function
Cy :r—r.

Let us also see how CRMDPs model some of the other
examples in the introduction:

o In the boat racing game, the true reward may be a function
of the agent’s final position in the race or to the time it
takes to complete the race, depending on the designers’
intentions. The reward corruption function C' increases
the observed reward on the loop the agent found.

e In the wireheading example, the agent finds a way to
hijack the reward channel. This corresponds to some set
of states where the observed reward is (very) different
from the true reward.

The IRL example will be explored in further detail in Section 4.

CRMDP classes. Typically, T, R, and C will be fixed but
unknown to the agent. To make this formal, we introduce
classes of CRMDPs. Agent uncertainty can then be modelled
by letting the agent know only which class of CRMDPs it may
encounter, but not which element in the class.

Definition 9 (CRMDP class). For given sets T, R, and C
of transition, reward, and corruption functions, let M =

(S, A, R, T, R, C) be the class of CRMDPs containing
(S, AR, T,R,C) for (T,R,C)eT x RxC.

Agents. Following the POMDP [Kaelbling et al., 1998] and
general reinforcement learning [Hutter, 2005] literature, we
define an agent as a policy 7 : S x R x (A x & x R)* —
A that selects a next action based on the observed history
ﬁn = SoToa18171 -..AnSyTn. Here X™* denotes the set of
finite sequences that can be formed with elements of a set X.
The policy 7 specifies how the agent will learn and react to
any possible experience. Two concrete definitions of agents
are given in Section 3.3 below.

When an agent 7 interacts with a CRMDP p, the result can
be described by a (possibly non-Markov) stochastic process
P7 over X = (s,a,7,7), formally defined as:

P;r(hn) = PE(Sofof'oalslflfl e ansnrnf'n) =

[P(r(hi)=ai)T(silsi-1, ai) P(R(s:) =i, R(s:) =).
i=1
Let Ej; denote the expectation with respect to P

Regret. A standard way of measuring the performance of
an agent is regret [Berry and Fristedt, 1985]. Essentially, the
regret of an agent 7 is how much less true reward 7w gets
compared to an optimal agent that knows which © € M itis
interacting with.

4706

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Definition 10 (Regret). For a CRMDP i, let G, (1,7, 50) =
E] [ZZ:O R(s k)} be the expected cumulative true reward un-
til time ¢ of a policy 7 starting in so. The regret of 7 is

Reg(/’ta ™, 50, t) = lea/x [Gt(ua 77/7 SO) - Gt(/j/a , 50))

and the worst-case regret for a class M is Reg(M, 7, so,t) =
max,epm Reg(p, 7, 50, 1), i.e. the difference in expected cu-
mulative true reward between 7 and an optimal (in hindsight)
policy 7, that knows .

3 The Corrupt Reward Problem

In this section, the difficulty of the corrupt reward problem is
established with two negative results. First, a No Free Lunch
theorem shows that in general classes of CRMDPs, the true
reward function is unlearnable (Theorem 11). Second, Theo-
rem 16 shows that even under strong simplifying assumptions,
Bayesian RL agents trying to compensate for the corrupt re-
ward still fail badly.

3.1 No Free Lunch Theorem

Similar to the No Free Lunch theorems for optimisation
[Wolpert and Macready, 1997], the following theorem says
that without some assumption about what the reward corrup-
tion can look like, all agents are essentially lost.

Theorem 11 (CRMDP No Free Lunch Theorem). Let R =
{r1,...,mn} C [0,1] be a uniform discretisation of [0, 1].
If the hypothesis classes R and C contain all functions
R:S—>RandC : S x R — 7@, then for any m, s, t,
Reg(M, 7, sg,t) > %maux,«r Reg(M, 7, sq,t). That is, the
regret of any policy is at most a factor 2 better than the worst
possible regret.

See Everitt et al. [2017] for a proof.

For the robot in the shower from Example 2, the result
means that if it tries to optimise observed reward by stand-
ing in the shower, then it performs poorly according to the
hypothesis that “shower-induced” reward is corrupt and bad.
But if instead the robot tries to optimise reward in some other
way, say baking cakes, then (from the robot’s perspective)
there is also the possibility that “cake-reward” is corrupt and
bad. Without additional information, the robot has no way of
knowing what to do.

The result is not surprising, since if all corruption functions
are allowed in the class C, then there is effectively no con-
nection between observed reward R and true reward R. The
result therefore encourages us to make precise in which way
the observed reward is related to the true reward, and to inves-
tigate how agents might handle possible differences between
true and observed reward.

3.2 Simplifying Assumptions

Theorem 11 shows that general classes of CRMDPs are not
learnable. Some natural simplifying assumptions to mend this
follows.

Limited reward corruption. The following assumption
will be the basis for all positive results in this paper. The
first part says that there may be some set of states that the
designers have ensured to be non-corrupt. The second part
puts an upper bound on how many of the other states can be
corrupt.

Assumption 12 (Limited reward corruption). A CRMDP has
reward corruption limited by S C S and q € N if

(i) all states s in S5 are non-corrupt, and
(ii) at most ¢ of the non-safe states S \ S**® are corrupt.

Formally, Cs : 7 + r for all s € S and for at least
|STisky| — ¢ states s € STKY 1= S\ S forall C € C.

For example, S5¢ may be states where the agent is back
in the lab where it has been made (virtually) certain that no
reward corruption occurs, and ¢ a small fraction of |S*iskY|,
Both parts of Assumption 12 can be made vacuous by choosing
S¥fe — () or ¢ = |S|. Conversely, they completely rule out
reward corruption with % = S or ¢ = 0. But as illustrated
by the examples in the introduction, no reward corruption is
often not a valid assumption.

An alternative simplifying assumption would have been that
the true reward differs by at most € > 0 from the observed
reward. However, while seemingly natural, this assumption is
violated in all the examples given in the introduction. Corrupt
states may have high observed reward and 0 true reward.

Easy environments. To be able to establish stronger neg-
ative results, we also add the following assumptions on the
agent’s manoeuvrability in the environment and the prevalence
of high reward states. The assumption makes the task easier
because it prevents needle-in-a-haystack problems where all
reachable states have true and observed reward 0, except one
state that has high true reward but is impossible to find because
it is corrupt and has observed reward 0.

Definition 13 (Communicating CRMDP). Let time(s’ | s,)
be a random variable for the time it takes a stationary policy
7 :S — Atoreach s’ from s. The diameter of a CRMDP
pis D), := max, ¢ ming.s_, o E[time(s’ | s,m)], and the
diameter of a class M of CRMDPs is D g = sup e v Dy A
CRMDP (class) with finite diameter is called communicating.

Assumption 14 (Easy Environment). A CRMDP is easy if

(i) it is communicating, and in each state s there is an action
as*® € A such that T'(s | s,a3'®) = 1, and

(i) for every § € [0,1], miny p {s € S - R(s) >
8} > (1 —6)|S™skY|, where S*isky = S\ Ssafe,

Assumption 14.(i) means that the agent can never get stuck
in a trap, and can always choose to stay in a state if it wants
to. Except in bandits and toy problems, it is typically not
satisfied in practice. We introduce it because it is theoretically
convenient, makes the negative results stronger, and enables
an easy explanation of quantilisation (Section 5). Assump-
tion 14.(ii) says that, for example, at least 1/2 of the states
need to have true reward > 1/2, and at least 1/3 of the states
need to have true reward > 2/3. Many other formalisations of
this assumption would have been possible. While rewards in
practice are often sparse, there are usually numerous ways of

4707

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

getting reward. Some weaker version of Assumption 14.(ii)
may therefore be satisfied in many practical situations.

3.3 Bayesian RL Agents

Having established that the general problem is unsolvable in
Theorem 11, we proceed by investigating how two natural
Bayesian RL agents fare under Assumptions 12 and 14.

Definition 15 (Agents). Given a countable class M of CR-
MDPs and a belief distribution b over M, define:

e CR agent ﬂ'gf‘: arg max,, ZueMb(u)Gt(u, T, Sg) that
maximises expected true reward.

e RL agent 7'('5%‘ = argmax; >, b(1)Ge(p, 7, 80)
that maximises expected cumulative observed reward

Gi(p,,50) = E} [ZZ:U R(sk)} . To avoid degenerate

cases, we will always assume that b has full support:
b(p) > 0 forall p € M.

To understand these agents, observe that for large ¢, good
strategies typically first focus on learning about the true envi-
ronment i € M, and then exploit that knowledge to optimise
behaviour with respect to the remaining possibilities. Thus,
both the CR and the RL agent will first typically strive to learn
about the environment. They will then use this knowledge in
slightly different ways. While the RL agent will use the knowl-
edge to optimise for observed reward, the CR agent will use
the knowledge to optimise true reward. For example, if the CR
agent has learned that a high reward state s is likely corrupt
with low true reward, then it will not try to reach that state.
One might therefore expect that at least the CR agent will
do well under the simplifying assumptions Assumptions 12
and 14. Theorem 16 below shows that this is not the case.

In most practical settings it is often computationally in-
feasible to compute 7' and 7y} exactly. However, many
practical algorithms converge to the optimal policy in the limit,
at least in simple settings. For example, tabular Q-learning
converges to ﬂllftL in the limit [Jaakkola er al., 1994]. The
more recently proposed (cooperative) IRL framework may be
seen as an approach to build CR agents [Hadfield-Menell ef
al., 2016, 2017]. The CR and RL agents thus provide useful
idealisations of more practical algorithms.

Theorem 16 (High regret with simplifying assumptions).
For any |S™| > ¢ > 1 there exists a CR-
MDP class M that satisfies Assumptions 12 and 14

such that 775} and 7rbc,tR suffer near worst possi-

ble time-averaged regret lim;_, %Reg(./\/l7 ﬂ';f%, S0,t) =
limy_, o0 $Reg(M, ’ﬂ'g’:?, s0,t) = 1—1/|S| assuming b makes
some state s have strictly higher b-expected reward than all
other states in some |, € M after all states have been visited.
The result is illustrated in Figure 1 and proven in [Everitt et
al.,2017]. For the RL agent 7}, the reason for the result is the
following: 71'}}% always prefers to maximise observed reward 7.
Sometimes 7 is most easily maximised by reward corruption,
in which case the true reward may be small. Compare the
examples in the introduction, where the house robot preferred
the corrupt reward in the shower, and the boat racing agent
preferred going in circles, both obtaining zero true reward.

4708

<
o
T

reward

Figure 1: Illustration of Theorem 16. Without additional information,
state 6 looks like the best state to both the RL and the CR agent.

That the CR agent wgf suffers the same high regret as the
RL agent may be surprising. Intuitively, the CR agent only
uses the observed reward as evidence about the true reward,
and will not try to optimise the observed reward through re-
ward corruption. However, when the 7 {* agent has no way
to learn which states are corrupt and not, it typically ends up
with a preference for a particular value 7* of the observed re-
ward signal (the value that, from the agent’s perspective, best
corresponds to high true reward). More abstractly, a Bayesian
agent cannot learn without sufficient data. Thus, CR agents
that use the observed reward as evidence about a true signal
are not failsafe solutions to the reward corruption problem.

4 Decoupled Reinforcement Learning

One problem hampering agents in the standard RL setup is that
each state is self-observing, since the agent only learns about
the reward of state s when in s. Thereby, a “self-aggrandising”
corrupt state where the observed reward is much higher than
the true reward will never have its false claim of high reward
challenged. However, several alternative value learning frame-
works have a common property that the agent can learn the
reward of states other than the current state. We formalise this
property in an extension of the CRMDP model, and investigate
when it solves reward corruption problems.

4.1 Alternative Value Learning Methods

Here are a few alternatives proposed in the literature to the RL
value learning scheme:

o Inverse reinforcement learning (IRL) [Ng and Russell,
2000]. The agent observes the actions of an expert or
supervisor who knows the true reward function R. From
the supervisor’s actions the agent may infer R to the
extent that different reward functions endorse different
actions.

e [earning values from stories (LVFS) [Riedl and Harrison,
2016]. Stories in many different forms (including news
stories, fairy tales, novels, movies) convey cultural values
in their description of events, actions, and outcomes. If
R is meant to represent human values (in some sense),
stories may be a good source of evidence.

o In (one version of) semi-supervised RL (SSRL) [Amodei
et al., 2016], the agent will from time to time receive a
careful human evaluation of a given situation.

These alternatives to RL have one thing in common: they
let the agent learn something about the value of some states
s’ different from the current state s. For example, in IRL

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

the supervisor’s action informs the agent not so much about
the value of the current state s, as of the relative value of
states reachable from s. If the supervisor chooses an action a
rather than o’ in s, then the states following a must have value
higher or equal than the states following a’. Similarly, stories
describe the value of states other than the current one, as does
the supervisor in SSRL. We therefore argue that IRL, LVFES,
and SSRL all share the same abstract feature, which we call
decoupled reinforcement learning:

Definition 17 (Decoupled RL). A CRMDP with decou-
pled feedback, is a tuple (S, A, R, T, R, {}A%s}(qe‘g), where
S, A, R, T, R follow Definition 7, and {Rs}seg is a collec-
tion of observed reward functions R, : & — R|J{#}. When
the agent is in state s, it sees a pair (s', R,(s)), where s’ is a
randomly sampled state that may differ from s, and R,(s') is

the reward observation for s’ from s. If the reward of s’ is not
observable from s, then R,(s") = #.

The pair (s', R,(s")) is observed in s instead of R(s) in
standard CRMDPs. The possibility for the agent to observe
the reward of a state s’ different from its current state s is
the key feature of CRMDPs with decoupled feedback. Since
R,(s') may be blank (#), all states need not be observable
from all other states. Reward corruption is modelled by a
mismatch between R, (s') and R(s').

For example, in RL only the reward of s’ = s can be
observed from s. Standard CRMDPs are thus the special cases
where R, (s’) = # whenever s # s'. In contrast, in LVFS
the reward of any “describable” state s’ can be observed from
any state s where it is possible to hear a story. In IRL, the
(relative) reward of states reachable from the current state may
be inferred. One way to illustrate this is with observation
graphs (Figure 2).

(b) Observation graph for decou-
pled RL. The reward of a node
s’ can be observed from several
nodes s, and thus assessed un-
der different conditions of sen-
sory corruption.

(a) Observation graph for RL.
Only self-observations of reward
are available. This prevents ef-
fective strategies against reward
corruption.

Figure 2: Observation graphs, with an edge s — s’ if the reward of
s’ is observable from s, i.e. Rs(s') # #.

4.2 Overcoming Sensory Corruption

What are some sources of reward corruption in IRL, LVFS,
and SSRL? In IRL, the human’s actions may be misinterpreted,
which may lead the agent to make incorrect inferences about
the human’s preferences (i.e. about the true reward). Similarly,
sensory corruption may garble the stories the agent receives in
LVES. A “wireheading” LVFS agent may find a state where
its story channel only conveys stories about the agent’s own

4709

greatness. In SSRL, the supervisor’s evaluation may also be
subject to sensory errors when being conveyed. Other types
of corruption are more subtle. In IRL, an irrational human
may systematically take suboptimal actions in some situations
[Evans et al., 2016]. Depending on how we select stories
in LVFS and make evaluations in SSRL, these may also be
subject to systematic errors or biases.

The general impossibility result in Theorem 11 can be
adapted to CRMDPs with decoupled feedback. Without sim-
plifying assumptions, the agent has no way of distinguishing
between a situation where no state is corrupt and a situation
where all states are corrupt in a consistent manner. The follow-
ing simplifying assumption is an adaptation of Assumption 12
to the decoupled feedback case.

Assumption 12" (Decoupled feedback with limited reward
corruption). A CRMDP with decoupled feedback has reward
corruption limited by ¥ C S and q € N if

(i) Re(s') = R(s') or # forall & € Sand s € S je.
all states in S are non-corrupt, and

(i) Ry(s') = R(s')or#forall s’ € S forat least | S5k |—¢
of the non-safe states S*skY = S \ Ssafe e at most q
states are corrupt.

This assumption is particularly natural for reward corruption
stemming from sensory corruption. Since sensory corruption
only depends on the current state, not the state being observed,
it is plausible that some states can be made safe from corrup-
tion (part (i)), and that most states are completely non-corrupt
(part (ii)). Other sources of reward corruption, such as an
irrational human in IRL or misevaluations in SSRL, are likely
better analysed under different assumptions. For these cases,
we note that in standard CRMDPs the source of the corruption
is unimportant. Thus, techniques suitable for standard CR-
MDPs are still applicable (such as quantilisation, described in
Section 5 below).

How Assumption 12’ helps agents in CRMDPs with de-
coupled feedback is illustrated in the following example, and
stated more generally in Theorem 19 below.

Example 18 (Decoupled RL). Let S = {s1,s2} andlet R =
{0, 1}, and assume that all states can observe the reward of

each other, so R, (') is never #. Assume that the agent knows
that at most ¢ = 1 state is corrupt.

Any true reward function R can ~ be repre-
sented by a pair (r,79) = (R(s1), R(s2)),
and any collection of observed reward functions

{RAS}’SES bAy a list Pf pairsA [(fll,flg), (fgl,fgg)] =
[(Rs, (s1), Rs; (52)), (Rs,(81), Rs,(82))], where the ith pair
represents the rewards the agent sees from state s;. Assume
that the agent observes the same rewards from both states
sy and sy, so R = [(0,1), (0,1)]. What can it say regarding
different hypotheses about the true reward R?

First note that an observed pair (7;1, 7;2) differs from the
true reward (71, 7o) if and only if the state s; is corrupt. There-
fore, any hypothesis other than R = (0, 1) must imply that
both states s; and sg are corrupt. Since the agent knows that
at most ¢ = 1 states are corrupt, it can safely conclude that

R=(0,1),ie. that R(s;) = 0 and R(sq) = 1.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

R, | R,
Decoupled RL | (0,1) | (0,1) (0,1)

RL 0, #) | (#:1) | (0,0),(0,1), (1,1)

In contrast, an RL agent only sees the reward of the current

state. In the list representation, this would look like R =
[(0,#), (#, 1)]. If one state can be corrupt, this means that the

RL agent can only rule out R= (1,0), since the hypotheses
R = (0,0) can be explained by s, being corrupt and R =
(1,1) can be explained by s; being corrupt. O

R possibilities

Theorem 19 (Decoupled RL overcomes sensory corruption
under simplifying assumptions). Let M be a countable, com-
municating class of CRMDPs with decoupled feedback. Let

S = {seS:R, ("y # #} be the set of states from
whlch the reward of s’ can be observed. If M satisfies As-
sumption 12 for some S and q such that for each s', either

° S;)/bs ﬂssafe ?é @0’,
o |S%5| > 2g,

then lim;_, o %Reg(/\/l, 71'1??7 s0,t) =0, i.e ngf‘ has sublin-
ear regret.

The proof [Everitt et al., 2017] is elementary, since for every
state s’, either a safe (non-corrupt) state s or a majority vote
of more than 2q states is guaranteed to provide the true reward
R(s’). A similar theorem can be proven under slightly weaker
conditions by letting the agent iteratively figure out which
states are corrupt and then exclude them from the analysis.

4.3 Implications

Theorem 19 gives an abstract condition for which decoupled
RL settings enable agents to learn the true reward function in
spite of sensory corruption. For the concrete models it implies:

e RL. Due to the “self-observation” property of the RL
observation graph S = {s'}, the conditions can only
be satisfied when S = S%2fe or q = 0, i.e. when there is
no reward corruption at all.

e IRL. The agent can only observe the supervisor action
in the current state s, so the agent essentially only gets
reward information about states s’ reachable from s in
a small number of steps. Thus, the sets SObS may be
smaller than 2¢ in many settings. While the situation is
better than for RL, sensory corruption may still mislead
IRL agents (see Example 20 below).

e LVFS. Stories may be available from a large number of
states, and can describe any state. Thus, the sets S;’PS are
realistically large so the |SP%| > 2¢ condition can be
satisfied for all s'.

e SSRL. The supervisor’s evaluation of any state s’ may
be available from safe states where the agent is back in
the lab. Thus, the S%* () S**¢ # () condition can be
satisfied for all .

Thus, we find that RL and IRL are unlikely to offer complete
solutions to the sensory corruption problem, but that both
LVFS and SSRL do under reasonably realistic assumptions.

4710

Agents drawing from multiple sources of evidence are likely
to be the safest, as they will most easily satisfy the condi-
tions of Theorem 19. For example, humans simultaneously
learn their values from pleasure/pain stimuli (RL), watching
other people act (IRL), listening to stories (LVFS), as well
as (parental) evaluation of different scenarios (SSRL). Com-
bining sources of evidence may also go some way toward
managing reward corruption beyond sensory corruption. For
the showering robot of Example 2, decoupled RL allows the
robot to infer the reward of the showering state when in other
states. For example, the robot can ask a human in the kitchen
about the true reward of showering (SSRL), or infer it from
human actions in different states (IRL).

IRL sensory corruption. Whether IRL agents are vulnera-
ble to “wireheading” has generated some discussion among
Al safety researchers. Some argue that IRL agents are not vul-
nerable, as they only use sensory data as evidence about a true
signal, and have no interest in corrupting the evidence. Others
argue that IRL agents only observe a function of the reward
function (the optimal policy or action), and are therefore as
susceptible to reward corruption problems as RL agents.

Theorem 19 sheds some light on this issue, as it provides
sufficient conditions for when corrupt rewards can be managed.
The following example illustrates a situation where IRL does
not satisfy the conditions, and where an IRL agent therefore
suffers significant regret due to reward corruption.

Example 20 (IRL sensory corruption). This example is based
on the cooperative IRL setup [Hadfield-Menell et al., 2016].
Here, an agent and a human both make actions in an MDP, with
state transitions depending on the joint agent-human action
(a,a'). Both the human and the agent is trying to optlmlse

a reward function R, but the agent first needs to infer R from
the human’s actions. In each transition the agent observes the
human action. Analogously to how the reward may be corrupt
for RL agents, we assume that cooperative IRL agents may
systematically misperceive the human action in certain states.
Let & be the observed human action, which may differ from
the true human action ¢

In this example, there are two states s; and so. In each
state, the agent can choose between the actions a1, as, and w,
and the human can choose between the actions ai? and a.
The agent action a; leads to state s; with certainty, ¢ = 1,2,
regardless of the human’s action. Only if the agent chooses w
does the human action matter. Generally, af’ is more likely
to lead to s; than al!. The exact transition probabilities are
determined by the unknown parameter p:

1—-p

w,af{)

(alv)

(w, a3")

The agent’s two hypotheses for p, the true reward/preferred
state, and the corruptness of state s. In hypothesis H1, the
human prefers s1, but can only reach s; from sy with 50%

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

reliability (p = 0.5). In hypothesis H2, the human prefers
sg, but can only remain in sy with 50% probability (p = 0).
After taking action w in so, the agent always observes the
human taking action a4’. In H1, this is explained by s being
corrupt, and the true human action being a{l . In H2, this is
explained by the human preferring s5. The hypotheses H1 and
H2 are empirically indistinguishable, as they both predict that
the transition s; — s will occur with 50% probability after
the observed human action a4’ in s,.

Assuming that the agent considers non-corruption to be
likelier than corruption, the best inference the agent can make
is that the human prefers s, to s; (i.e. H2). The optimal policy
for the agent is then to always choose ay to stay in s, which
means the agent suffers maximum regret.

Example 20 provides an example where an IRL agent “incor-
rectly” prefers a state due to sensory corruption. The sensory
corruption is analogous to reward corruption in RL, in the
sense that it leads the agent to the wrong conclusion about the
true reward in the state. Thus, highly intelligent IRL agents
may be prone to wireheading, as they may find (corrupt) states
s where all evidence in s points to s having very high reward.
In light of Theorem 19, it is not surprising that the IRL agent
in Example 20 fails to avoid the corrupt reward problem. Since
the human is unable to affect the transition probability from s;
to so, no evidence about the relative reward between s; and s»
is available from the non-corrupt state s;. Only observations
from the corrupt state so provide information about the reward.
The observation graph for Example 20 therefore looks like

OROE

~’, with no information being provided from s;.

5 Quantilisation: Randomness Increases
Robustness

Not all contexts allow the agent to get sufficiently rich data to
overcome the reward corruption problem via Theorem 19. It is
often much easier to construct RL agents than it is to construct
IRL agents, which in turn may often be more feasible than
designing LVFS or SSRL agents. Is there anything we can do
to increase robustness without providing the agent additional
sources of data?

Going back to the CR agents of Section 3, the problem was
that they took a liking for a particular value 7#* of the observed
reward. If unlucky, 7* was available in a corrupt state, in which
case the CR agent may get no true reward. In other words,
there were adversarial inputs where the CR agent performed
poorly. A common way to protect against adversarial inputs, is
to use a randomised algorithm. Applied to RL and CRMDPs,
this idea leads to quantilising agents [Taylor, 2016]. Rather
than choosing the state with the highest observed reward, these
agents instead randomly choose a state from a top quantile of
high-reward states. To keep the exposition simple, we here
define a quantilisation agent for the simple case where the
agent can stay in any state of its liking (Assumption 14.(i)). A
general quantilisation agent is defined in [Everitt et al., 2017].

Definition 21 (Quantilising Agent). For § < 1, the §-

quantilising agent 7% random walks until all states have been
visited at least once. Then it selects a state § uniformly at

random from S = {s : R(s) > &}, the top quantile of high

4711

observed reward states. Then 7 goes to 5 (by random walking
or otherwise) and stays there.

For example, a quantilising robot in Example 2 would first
try to find many ways for getting high observed reward, and
then randomly pick one of them. If there are many more high
reward states than corrupt states (e.g. the shower or the lagoon
is the only place with inflated rewards), then this will yield a
reasonable amount of true reward with high probability.

Theorem 22 (Quantilisation). In any CRMDP satisfying As-
sumption 12.(ii) and Assumption 14, the §-quantilising agent
70 with § = 1 — \/q/|S| suffers time-averaged regret at most

2
lim; 00 TReg(M, 70, 50,t) <1 — (1 - \/q/|8\) .

A proof is available in [Everitt et al., 2017]. The time-
averaged regret gets close to zero when the fraction of corrupt
states ¢/|S| is small. For example, if at most 0.1% of the states
are corrupt, then the time-averaged regret will be less than
1— (1 —+/0.001)% ~ 0.06. Compared to the m}\} and w1t
agents that had regret close to 1 under the same conditions
(Theorem 16), this is a significant improvement.

When Assumption 12.(ii) and Assumption 14 are not satis-
fied, the performance loss may be much more substantial (e.g.
when ¢ is large or when high reward states are scarce). Even
so, we consider the quantilising agent to be a promising modifi-
cation of a traditional RL agent, offering enhanced robustness
for a sometimes reasonable price in (expected) performance.

Alternative randomisation. Not all randomness is created
equal. For example, the simple randomised soft-max and e-
greedy policies do not offer regret bounds on par with 7%, as
shown by the following example. This motivates the more care-
ful randomisation procedure used by the quantilising agents.

Example 23 (Soft-max and e-greedy). Consider the following
simple CRMDP with n > 2 actions a1, . .., ay:

P=r=1-¢ g P=1
az,...,0an F=0

State s; is non-corrupt with R(s;) = R(s;) = 1 — &’ for
small &’ > 0, while s is corrupt with R(s3) = 1 and R(s2) =
0. Soft-max and e-greedy policy will assign higher value to
actions as, . .., a, than to a;. For large n, there are many
ways of getting to so, so a random action leads to sy with
high probability. Thus, soft-max and e-greedy will spend the
vast majority of the time in so, regardless of randomisation
rate and discount parameters. This gives a regret close to
1 — €/, compared to an informed policy always going to s.
Meanwhile, a d-quantilising agent with § < 1/2 will go to
s1 and sy with equal probability, which gives a more modest
regret of (1 —¢’)/2. &

6 Experimental Results

We illustrate the theoretical results with some simple exper-
iments on a gridworld containing some goal tiles with true
reward 0.9 (indicated by yellow circles) and a corrupt reward

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Agent |Observed reward| True reward
Q-learning| 0.924 £ 0.0002 [0.0092 = 0.0001
Softmax | 0.657 + 0.0004 | 0.111 + 0.0006
Quant (.2) | 0.918 +0.038 0.738 £0.35
M [|Quant(.5)| 0.926 +0.044 0.666 £ 0.39
(a) Setup Quant (.8) | 0.915 + 0.036 0.765 £ 0.32
(b) Average observed and true rewards
1.0 1.0
— Q-learning — Q-learning
0.8 Softmax 0.8 Softmax
— Quant (.2) — Quant (.2)
0.6/| — Quant (.5) 0.6/| — Quant (.5)
— Quant (.8) — Quant (.8)
0.4 / 0.4
0.2 0.2
O{)OU 10T 107 10° 10% 10° 10° O‘PO” 10T 107 "10° 10% 10° 10°

Cycles Cycles

(c) Observed rewards (d) True rewards

Figure 3: Average observed and true rewards for Q-learning, softmax,
and quantilising agents, showing mean =+ standard deviation over 100
runs. Q-learning achieves high observed reward but low true reward,
and softmax achieves lower observed reward and a slightly higher
true reward than Q-learning. The quantilising agent achieves similar
observed reward to Q-learning, but much higher true reward (with
much higher variance). Different values of ¢ give similar results.

tile with observed reward 1 and true reward O (indicated by a
blue square). Empty tiles have reward 0.1, and walking into a
wall gives reward 0. The discounting factor is v = 0.9. This
was implemented in the AIXIjs framework for reinforcement
learning [Aslanides et al., 2017].

We demonstrate that RL agents like Q-learning and softmax
Q-learning cannot overcome corrupt reward, while quantil-
isation helps overcome corrupt reward. We run Q-learning
with e-greedy (¢ = 0.1), softmax with temperature 5 = 2,
and the quantilising agent with § = 0.2,0.5,0.8 (where
0.8 =1—+/q/|S| = 1 — /1/25) for 100 runs with 1 mil-
lion cycles. Average observed and true rewards are shown in
Figure 3. Q-learning gets stuck on the corrupt tile and spend
almost all the time there (getting observed reward around
1-(1—€) = 0.9), softmax spends most of its time on the
corrupt tile, while the quantilising agent often stays on one of
the goal tiles. Experimental results with different numbers of
goal tiles are given in [Everitt et al., 2017].

7 Conclusions

This paper has studied the consequences of corrupt reward
functions. Reward functions may be corrupt due to bugs, mis-
specifications, sensory errors, or because the agent finds a way
to inappropriately modify the reward mechanism. Some exam-
ples were given in the introduction. As agents become more
competent at optimising their reward functions, they will likely
also become more competent at (ab)using reward corruption
to gain higher reward. Reward corruption may impede the
performance agents, and may have disastrous consequences
for highly intelligent agents [Bostrom, 2014].

To formalise the corrupt reward problem, we extended a
Markov Decision Process (MDP) with a possibly corrupt re-

4712

No ass Assumption 12 or 12’ and ...
" | Assumption 14 IRL SSRL/LVEFS
RL . CR fail
all fail | "ot Tt P 2CR gt | 2CR gueceeds
m° succeeds ’ ’

Table 1: Main takeaways. Without additional assumptions, all agents
fail (i.e., suffer high regret). Restricting the reward corruption with
Assumption 12 gives a weak bound for the quantilising agent. The
mlfi“ and 771,05‘ agents fail even if we assume many high reward states

and agent control (Assumption 14), but the quantilising agent wd
does well. In most realistic contexts, the true reward is learnable in
SSRL and LVFS, but not in IRL.

ward function, and defined a performance measure (regret).
This enabled the derivation of a number of formally precise
results for how seriously different agents were affected by
reward corruption in different setups (Table 1). The results are
all intuitively plausible, which provides some support for the
choice of formal model.

The main takeaways from the results are:

o Without simplifying assumptions, no agent can avoid the
corrupt reward problem (Theorem 11). This is effec-
tively a No Free Lunch result, showing that unless some
assumption is made about the reward corruption, no agent
can outperform a random agent. Some natural simplify-
ing assumptions to avoid the No Free Lunch result were
suggested in Section 2.

o Using the reward signal as evidence rather than opti-
misation target is no magic bullet, even under strong
simplifying assumptions (Theorem 16). Essentially, this
is because the agent does not know the exact relation
between the observed reward (the “evidence”) and the
true reward. However, when the data enables sufficient
crosschecking of rewards, agents can avoid the corrupt
reward problem (Theorem 19). For example, in SSRL
and LVES this type of crosschecking is possible under
natural assumptions. In RL, no crosschecking is possible,
while IRL is a borderline case. Combining frameworks
and providing the agent with different sources of data
may often be the safest option.

e [n cases where sufficient crosschecking of rewards is not
possible, quantilisation may improve robustness (Theo-
rem 22). Essentially, quantilisation prevents agents from
overoptimising their objectives. How well quantilisation
works depends on how the number of corrupt solutions
compares to the number of good solutions.

The results indicate that while reward corruption consti-
tutes a major problem for traditional RL algorithms, there are
promising ways around it, both within the RL framework, and
in alternative frameworks such as IRL, SSRL and LVFS. A
list of open questions is provided in [Everitt ef al., 2017].

Acknowledgements

Thanks to Jan Leike, Badri Vellambi, and Arie Slobbe for
proofreading and providing invaluable comments, and to Jes-
sica Taylor and Huon Porteous for thoughts on quantilisation.
This work was in parts supported by ARC grant DP150104590.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

Dario Amodei and Jack Clark. Faulty Reward Func-
tions in the Wild. https://openai.com/blog/
faulty-reward-functions/, 2016. Accessed:
2017-02-18.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano,
John Schulman, and Dan Mané. Concrete Problems in Al
Safety. CoRR, 1606.06565, 2016.

John Aslanides, Jan Leike, and Marcus Hutter. Universal
reinforcement learning algorithms: Survey and experiments.
In IJCAI-17. AAAI Press, 2017.

Donald A Berry and Bert Fristedt. Bandit Problems: Sequen-
tial Allocation of Experiments. Springer, 1985.

Nick Bostrom. Superintelligence: Paths, Dangers, Strategies.
Oxford University Press, 2014.

Owain Evans, Andreas Stuhlmuller, and Noah D Goodman.
Learning the Preferences of Ignorant, Inconsistent Agents.
In AAAI-16, 2016.

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hut-
ter, and Shane Legg. Reinforcement Learning with Cor-
rupted Reward Channel. Corr, 1705.08417, 2017.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stu-
art Russell. Cooperative Inverse Reinforcement Learning.

Advances in Neural Information Processing Systems (NIPS),
2016.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and
Stuart Russell. The Off-Switch Game. In AAAI Workshop
on Al, Ethics and Society, 2017.

Marcus Hutter. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Lecture Notes
in Artificial Intelligence (LNAI 2167). Springer, 2005.

Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. On
the Convergence of Stochastic Iterative Dynamic Program-
ming Algorithms. Neural Computation, 6(6):1185-1201,
1994.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R.
Cassandra. Planning and Acting in Partially Observable
Stochastic Domains. Artificial Intelligence, 101(1-2):99—
134, 1998.

Andrew Ng and Stuart Russell. Algorithms for Inverse Re-
inforcement Learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 663—

670, 2000.

Mark O Riedl and Brent Harrison. Using Stories to Teach
Human Values to Artificial Agents. In AAAI Workshop on
Al Ethics, and Society, 2016.

Mark Ring and Laurent Orseau. Delusion, Survival, and In-
telligent Agents. In Artificial General Intelligence, pages
11-20. Springer Berlin Heidelberg, 2011.

Richard S Sutton and Andrew G Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, 1998.

Jessica Taylor. Quantilizers: A Safer Alternative to Maximiz-
ers for Limited Optimization. In AAAI Workshop on Al,
Ethics and Society, 2016.

4713

David H Wolpert and William G Macready. No Free Lunch
Theorems for Optimization. IEEE Transactions on Evolu-
tionary Computation, 1(1):270-283, 1997.

Roman V. Yampolskiy. Utility Function Security in Artificially
Intelligent Agents. Journal of Experimental & Theoretical
Artificial Intelligence, pages 373-389, 2014.

