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Abstract
Efficient algorithms for the computation of opti-
mum stable models are based on unsatisfiable core
analysis. However, these algorithms essentially run
to completion, providing few or even no subop-
timal stable models. This drawback can be cir-
cumvented by shrinking unsatisfiable cores. Inter-
estingly, the resulting anytime algorithm can solve
more instances than the original algorithm.

1 Introduction
In answer set programming (ASP), programs are associated
with stable models [Gelfond and Lifschitz, 1991; Niemelä,
1999; Marek et al., 2008; Lifschitz, 2008; Eiter et al., 2009;
Brewka et al., 2011], i.e., classical models satisfying a sta-
bility condition: only necessary information is included in a
model of the input program under the assumptions provided
by the model itself for the unknown knowledge in the pro-
gram, where unknown knowledge is encoded by means of
default negation. Reasoning in presence of unknown knowl-
edge is common for rational agents acting in the real world.
It is also common that real world agents cannot meet all their
desiderata, and therefore ASP programs may come with soft
literals for representing numerical preferences over jointly in-
compatible conditions. Stable models are therefore associ-
ated with a cost given by the number of the unsatisfied soft
literals, so that stable models of minimum cost are preferred.

It is important here to stress the meaning of the word pre-
ferred: any stable model describes a plausible scenario for the
knowledge represented in the input program, even if it may
be only an admissible solution of non optimum cost. In fact,
many rational agents would still accept suboptimal solutions,
possibly with an estimate on the maximum distance to the
optimum cost. This flexibility is also justified by the intrinsic
complexity of the problem: the computation of an optimum
stable model requires in general at least linearly many calls
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to a ΣP
2 oracle [Buccafurri et al., 2000], and it is therefore

practically unfeasible for the hardest instances.
According to the above observations, a good algorithm

for answer set optimization should produce better and better
stable models during the computation of an optimum stable
model. Algorithms having this property are called anytime in
the literature [Alviano et al., 2014; Bliem et al., 2016]. How-
ever, the most efficient algorithms are not anytime by them-
selves: they are based on unsatisfiable core analysis [Alviano
et al., 2015b], which means that they try to satisfy all soft
literals, possibly replacing those in the input program with
less restricting constraints until an optimum stable model is
found.

Anytime variants of these algorithms are obtained thanks to
following simple observation [Alviano and Dodaro, 2016b]:
Unsatisfiable cores are often non-minimal, and their sizes
can be significantly reduced by a few additional oracle calls,
where each call may either return a smaller core, or a stable
model possibly improving the current overestimate. Within
this respect, we implemented two strategies, referred to as
linear and reiterated progression based shrinking.

Interestingly, the overhead introduced by the additional or-
acle calls is often mitigated by the performance gain obtained
thanks to the smaller unsatisfiable cores that the algorithm
has to analyze. Indeed, we provide empirical evidence that
often the running time of our core based algorithm sensi-
bly decreases when core shrinking is performed (Section 4).
The advantage of introducing our strategy for core shrinking
is also confirmed by a comparison with CLASP [Gebser et
al., 2015a]: even if our solver, WASP [Alviano et al., 2015a;
Alviano and Dodaro, 2016a], is in general slower than CLASP
at completing stable model searches, its performance is suf-
ficiently improved by core shrinking that the two solvers are
almost on par in terms of solved instances, with the crucial
difference that WASP provides both overestimates and under-
estimates during the computation, while ones or the others are
produced by CLASP only after running to completion.

2 Background
Let A be a set of (propositional) atoms comprising ⊥. A
literal is an atom p preceded by zero or more occurrences
of the default negation symbol ∼. A rule r is an implication
H(r)← B(r), where H(r) is a disjunction of atoms, and B(r)
is a conjunction of literals. H(r) and B(r) are called head and
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body of r, and abusing of notation also denote the sets of their
elements. If H(r)⊆ {⊥}, then r is called integrity constraint.
A program Π is a set of rules. Let At(Π) denote the set of
atoms occurring in Π.

An interpretation I is a set of atoms not containing ⊥. Re-
lation |= is inductively defined as follows: for p ∈A , I |= p
if p ∈ I; I |= ∼` if I 6|= `; for a rule r, I |= B(r) if I |= ` for
all ` ∈ B(r), and I |= r if I∩H(r) 6= /0 whenever I |= B(r); for
a program Π, I |= Π if I |= r for all r ∈ Π. I is a model of a
literal, rule, or program π if I |= π .

The reduct ΠI of a program Π with respect to an interpre-
tation I is obtained from Π by removing any rule r such that
I 6|= B(r) is removed, and then by removing any negated lit-
eral. An interpretation I is a stable model of a program Π if
I |= Π, and there is no J ⊂ I such that J |= ΠI . Let SM(Π) de-
note the set of stable models of Π. A program Π is coherent
if SM(Π) 6= /0; otherwise, Π is incoherent.

In order to simplify the presentation, a program Π may in-
clude count constraints of the form COUNT{`1, . . . , `n} ≥ k,
where `1, . . . , `n (n ≥ 0) are literals, and k ≥ 0, to enforce
|{i ∈ [1..n] | I |= `i}| ≥ k for all I ∈ SM(Π).

For a set S of literals, called soft, the cost of an interpreta-
tion I is S(I) := |{` ∈ S | I 6|= `}|, that is, the number of false
soft literals. I is an optimum stable model of a program Π

with respect to S if I ∈ SM(Π), and there is no J ∈ SM(Π)
such that S(J) < S(I). Let OSM(Π,S) denote the set of opti-
mum stable models of Π with respect to S. Optimum stable
model search is the following computational problem: Given
a (coherent) program Π and a set of soft literals S, compute
an optimum stable model I∗ ∈ OSM(Π,S).

Example 1 Let Π1 be the following program:

a← ∼∼a b∨ c← a b∨d← a b← ∼d c← ∼a

Its stable models are I1 = {b,c}, I2 = {a,b} and I3 = {a,c,d},
and the associated reducts are the following:

Π
I1
1 : b← c←

Π
I2
1 : a← b∨ c← a b∨d← a b←

Π
I3
1 : a← b∨ c← a b∨d← a

If S = {∼a,∼b,∼c,∼d} is a set of soft literals, the associ-
ated costs are S(I1) = S(I2) = 2, and S(I3) = 3. Hence,
OSM(Π1,S) = {I1, I2}. �

3 Optimum Stable Model Search via
Unsatisfiable Core Analysis

Modern ASP solvers accept as input a set L of literals, called
assumptions, in addition to the usual logic program Π, and
return a stable model I of Π such that L⊆ I, if it exists; other-
wise, they return a set C⊆ L such that Π∪{⊥← ∼p | p ∈C}
is incoherent, which is called unsatisfiable core.

Example 2 Consider program Π1 from Example 1. If S =
{∼a,∼b,∼c,∼d} is the set of assumptions, the unsatisfiable
cores are {∼a,∼b}, {∼a,∼c}, {∼b,∼c}, {∼b,∼d}, and their
supersets. �

The algorithm presented in this paper is ONE, reported as
Algorithm 1 (lines 4–10 will be injected later to shrink un-
satisfiable cores). A stable model containing all soft liter-
als is searched (line 2). If found, it is an optimum stable
model. Otherwise, an unsatisfiable core {p0, . . . , pn} is re-
turned; since at least one of p0, . . . , pn must be false in any
optimum stable model, the lower bound is increased by one,
and the problem is relaxed so that the next call to function
solve has to search for a stable model satisfying at least n
literals among p0, . . . , pn. Symmetry breakers of the form
⊥ ← si,∼si+1 are also added to Π, so that si is true if and
only if at least n− i+1 literals among p0, . . . , pn are true.

Example 3 Consider program Π1 and soft literals S =
{∼a,∼b,∼c,∼d} from Example 1. A stable model for the pro-
gram Π1 and assumptions S is searched, and an unsatisfiable
core is returned. Assume that the returned unsatisfiable core
is S itself. The lower bound lb is set to 1, the set S is now equal
to {s1,s2,s3} and Π1 is extended with the following rules:

s1← ∼∼s1 s2← ∼∼s2 s3← ∼∼s3

⊥← s1,∼s2 ⊥← s2,∼s3

COUNT{∼a,∼b,∼c,∼d,∼s1,∼s2,∼s3} ≥ 3.

A stable model for the assumptions {s1,s2,s3} is searched
and an unsatisfiable core, say {s1}, is returned. The lower
bound lb is set to 2, the set S is now equal to {s2,s3}.
(Note that the program is extended with the count constraint
COUNT{s1} ≥ 0, which however is trivially satisfied.) A sta-
ble model for the assumptions {s2,s3} is searched and the
answer set I′1 = {b,c,s2,s3} is found. Thus, the algorithm
terminates returning I′1∩{a,b,c,d}= {b,c}= I1. �

The analyzed unsatisfiable cores significantly influence the
execution of the algorithm, as the set of assumptions and the
introduced rules are different for different unsatisfiable cores.

Example 4 Suppose that the first unsatisfiable core re-
turned by function solve for Π1 and S from Example 1 is
{∼a,∼b,∼c}. Set S becomes {∼b,s1,s2} and Π1 is extended
with the following rules:

s1← ∼∼s1 s2← ∼∼s2 ⊥← s1,∼s2

COUNT{∼a,∼b,∼c,∼s1,∼s2} ≥ 2.

The next unsatisfiable core may be {∼d,s1}; therefore, S be-
comes {s2,s3}, and Π1 is extended with the following rules:

s3← ∼∼s3 COUNT{∼d,s1,∼s3} ≥ 1.

At this point a stable model, say I′1 = {b,c,s2,s3}, is found,
and I′1∩{a,b,c,d}= {b,c}= I1 is returned. �

Note that the algorithm described in this section is com-
pletely silent, as it essentially runs to completion without
printing any suboptimal stable models. The goal of the next
section is to circumvent such a drawback.

3.1 Unsatisfiable Core Shrinking
Unsatisfiable cores returned by function solve are not sub-
set minimal in general. The non-minimality of the unsatis-
fiable core is justified both theoretically and practically: lin-
early many coherence checks are required in general to verify
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Algorithm 1: Unsatisfiable Core Analysis with ONE

Input : A coherent program Π, and a nonempty set of soft literals S.
Output: An optimum stable model I∗ ∈ OSM(Π,S).

1 lb := 0; ub := ∞; V := At(Π); // init bounds and visible atoms
2 (res, I,C) := solve(Π,{p ∈ S});
3 if res is COHERENT then I∗ := I∩V ; return I∗;

11 Let C be {p0, . . . , pn} (for some n≥ 0), and s1, . . . ,sn be fresh atoms;
12 Π := Π∪{si← ∼∼si | i ∈ [1..n]}∪{⊥← si,∼si+1 | i ∈ [1..n−1]}∪{COUNT{p0, . . . , pn,∼s1, . . . ,∼sn} ≥ n};
13 lb := lb+1; S := (S\C)∪{s1, . . . ,sn}; goto 2; // try to solve the relaxed problem

Algorithm 2: Unsatisfiable Core Shrinking with Reiterated Progression
4 m :=−1; pr := 1;
5 Let C be {p0, . . . , pn} (for some n≥ 0);
6 (res, I,C′) := solve_with_budget(Π,{pi | i ∈ [0..m+pr]});
7 if res is INCOHERENT then C :=C′; // smaller core found
8 if res is COHERENT and lb+S(I)< ub then I∗ := I∩V ; ub := lb+S(I);
9 if m+2 ·pr ≥ |C|−1 then m := m+pr; pr := 1/2; // reiterate progression

10 if m+2 ·pr < |C|−1 then pr := 2 ·pr; goto 5; // increase progression

the minimality of an unsatisfiable core, hence giving a ∆P
3 -

complete problem; on the other hand, extracting an unsatisfi-
able core after a stable model search failure is quite easy and
usually implemented by identifying the assumptions involved
in the refutation. The non minimality of the analyzed unsat-
isfiable cores may affect negatively the performance of sub-
sequent calls to function solve due to aggregation over large
sets. However, it also gives an opportunity to improve Al-
gorithm 1: the size of unsatisfiable cores can be reduced by
performing a few stable model searches within a given budget
on the running time. In more detail, Algorithm 2 is injected
in Algorithm 1. It implements a progression search in the
unsatisfiable core {p0, . . . , pn}: the size of the assumptions
passed to function solve_with_budget is doubled at each call
(line 10), and the progression is reiterated when all assump-
tions are covered (line 9). If solve_with_budget terminates
within the given budget, it either returns a smaller unsatisfi-
able core (line 7), or a stable model that possibly improves
the current upper bound (line 8).

Example 5 Consider again the program from Example 3 and
the unsatisfiable core {∼a,∼b,∼c,∼d} returned after the first
call to function solve. The shrinking process searches a stable
model with assumption {∼a}, and I1 = {b,c} may be found
within the allotted budget. In any case, a stable model satis-
fying the assumptions {∼a,∼b} is searched, and the unsatisfi-
able core {∼a,∼b} may be returned if the budget is sufficient.
Otherwise, the progression is reiterated, and one more soft
literal is added to the assumptions. Hence, {∼a,∼b,∼c} may
be returned as an unsatisfiable core if the budget is sufficient.
Otherwise, the original unsatisfiable core is processed. �

As an alternative, the shrinking procedure reported in Al-
gorithm 2 can be modified as follows: variable pr is not dou-
bled in line 10, but instead it is incremented by one, i.e.,
pr := pr+ 1. The resulting procedure is called linear based
shrinking. For unsatisfiable cores of size 4 or smaller, as those
considered in Example 5, the two shrinking procedures coin-

cide, while in general linear based shrinking performs more
stable model searches.

4 Implementation and Experiment
Algorithm ONE [Alviano et al., 2015c] has been implemented
in WASP, an ASP solver based on completion [Alviano and
Dodaro, 2016c] also supporting, among other algorithms, lin-
ear search sat-unsat (LINSU). Within LINSU, a first stable
model is searched to obtain an upper bound of the optimum
cost, and subsequent searches are constrained to improve the
current upper bound, until an incoherence arises. The im-
plementation of ONE optionally includes the two shrinking
procedures described in Section 3.1, so that both underesti-
mates and overestimates can be produced by WASP in any
case, weighted or unweighted. Currently, the time budget of
function solve_with_budget is fixed to 10 seconds, but the ar-
chitecture of WASP can easily accommodate alternative op-
tions, such as a budget proportional to the time required to
find the unsatisfiable core to be shrank.

WASP also implements disjoint cores analysis, which is es-
sentially a preliminary step where only soft literals in the in-
put are passed as assumptions to function solve, while new

Table 1: Number of solved instances within a given error estimation
(140 testcases).

WASP CLASP+ best lb by WASP

ε(ub, lb) ONE LSHR PSHR LINSU OLL

0.00% 84 88 90 77 84
≤ 6.25% 86 95 94 90 87
≤ 12.50% 86 101 97 96 88
≤ 25.00% 92 105 103 99 99
≤ 50.00% 102 105 105 99 101
≤ 100.00% 104 105 105 107 105
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Figure 1: Solved instances within a bound on running time.

soft literals introduced by the analysis of detected cores are
temporarily ignored. Disjoint cores analysis terminates with
the detection of a stable model, and after that algorithm ONE
is run not distinguishing between initial and new soft literals.

In order to assess empirically the impact of these shrink-
ing procedures to the performance of WASP, benchmarks
(with soft literals) from the ASP Competition 2015 [Geb-
ser et al., 2015b] were considered, namely Abstract Di-
alectal Framework, Still Life, Crossing Minimization, Max
Clique, MaxSAT, Steiner Tree, System Synthesis, Valves Lo-
cation, and Video Streaming. Moreover, WASP was also com-
pared with CLASP [Gebser et al., 2015a], which implements
linear search sat-unsat (strategy bb,1) and OLL (strategy
usc,1 with disjoint cores analysis; [Andres et al., 2012;
Morgado et al., 2014]), a core based algorithm that inspired
the definition of ONE. Both solvers were tested with the dis-
joint cores analysis. The experiments were run on an Intel
Xeon 2.4 GHz with 16 GB of memory, and time and memory
were limited to 20 minutes and 15 GB, respectively.

An overview of the obtained results is given in Figure 1.
As a first comment, the fact that CLASP is in general faster
than WASP to complete stable model searches is confirmed by
comparing the performance of the two solvers running linear
search sat-unsat (CLASP solves 29 instances more than WASP)
or the core based algorithms (difference of 9 instances). This
gap is completely filled by adding the shrinking procedures.
Concerning the average execution time of the tested algo-
rithms, the graph highlights that core based algorithms are
faster than linear search sat-unsat in more testcases. More-
over, and more important, the addition of core shrinking does
not add overhead to WASP. The main reason for this per-
formance improvement is that shrinking a core often implies
that subsequently found unsatisfiable cores are smaller: The
cumulative number of literals in the analyzed cores is re-
duced by at least 68% when shrinking is performed (exclud-
ing Steiner Tree, System Synthesis and Video Streaming, for
which WASP found few unsatisfiable cores). The budget is
reached at least once in each problem, and often no more than
2 times, with a peak of 20–25 times on average for instances
of Max Clique and Still Life.

Another advantage of unsatisfiable core shrinking is that
better and better stable models are possibly discovered while
computing an optimum stable model. In order to measure the
impact of our strategies within this respect, let us define the
estimate error ε of the last stable model produced by Algo-
rithm 1 as follows:

ε(ub, lb) :=


ub−lb

lb if ub 6= ∞ and lb 6= 0;
∞ if ub = ∞, or both ub 6= 0 and lb = 0;
0 if ub = lb = 0.

Hence, the cost associated with the stable model returned by
Algorithm 1 is at most ε(ub, lb) times greater than the cost of
an optimum stable model. Such a measure is not applicable
to instances of Abstract Dialectical Framework and System
Synthesis because of technicality not discussed in this paper.

Table 1 reports the number of instances for which WASP
produced a stable model within a given error estimate. In par-
ticular, the first row shows the number of instances for which
an optimum stable model was computed (error estimate is 0).
The last row, instead, shows the number of instances solved
with error estimate bounded by 1, and smaller values for the
error estimate are considered in the intermediate rows. It is
interesting to observe that the stable model produced after the
analysis of all disjoint cores is already sufficient to obtain an
error estimate bounded by 100% for many tested instances.
However, many of these stable models have an error estimate
greater than 25%. In this case, adding core shrinking leads to
better results.

For the sake of completeness, also CLASP is included in Ta-
ble 1. However, since CLASP does not print any lower bound,
the best value for lb produced by WASP is combined with the
upper bounds given by CLASP running LINSU and OLL. If
an error estimate of 100% is acceptable, then the number of
stable models produced by CLASP is aligned with WASP, or
even better. However, when the error estimate must be less
or equal than 50%, the combination of disjoint cores analy-
sis and core shrinking implemented by WASP leads to better
results in this benchmark.

5 Conclusion
The combination of ASP programs and soft literals is impor-
tant to ease the modeling of optimization problems. How-
ever, the computation of optimum stable models is often very
hard, and suboptimal stable models may be the only afford-
able solutions in some cases. Despite that fact, efficient al-
gorithms based on unsatisfiable core analysis are not any-
time. A concrete strategy to turn them into anytime algo-
rithms is given by a shrinking procedure applied to unsatisfi-
able cores before their analysis: better and better stable mod-
els are produced, and eventually a performance gain is ob-
tained thanks to the reduced size of the analyzed unsatisfiable
cores. (An alternative technique was introduced in MaxSAT,
where one literal is iteratively removed from the unsatisfiable
core, either obtaining a smaller unsatisfiable core, or a neces-
sary literal in the processed unsatisfiable core [Nadel, 2010;
Nadel et al., 2014].) On the instances of the Sixth ASP Com-
petition, our implementation is often able to provide (subop-
timal) stable models with a guarantee of distance to the opti-
mum cost of around 10%.
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