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Abstract

We focus on the problem of obtaining top-k lists
of items from larger itemsets, using human work-
ers for doing comparisons among items. An ex-
ample application is short-listing a large set of col-
lege applications using advanced students as work-
ers. We describe novel efficient techniques and ex-
plore their tolerance to adversarial behavior and the
tradeoffs among different measures of performance
(latency, expense and quality of results). We em-
pirically evaluate the proposed techniques against
prior art using simulations as well as real crowds
in Amazon Mechanical Turk. A randomized vari-
ant of the proposed algorithms achieves significant
budget saves, especially for very large itemsets and
large top-k lists, with negligible risk of lowering the
quality of the output.

1 Introduction

We address the problem of obtaining top-k lists of items out
of arbitrarily large itemsets using crowdsourcing, a natural
and commonly occurring problem. An example application
of a crowdsourced top-k query is selecting applications for
college admissions. Educational institutions typically receive
thousands of applications out of which they select a small set
of the higher ranked applicants.

Previous studies applicable to the top-k problem in the con-
text of crowdsourcing have major limitations. A natural ap-
proach to the top-k problem are tournament style algorithms,
as in [Venetis and Garcia-Molina, 2012a] which obtains max-
ima and [Polychronopoulos et al., 2013] which obtains small
top-k lists. The work in [Polychronopoulos et al., 2013]
has comparable performance to the methods in [Venetis and
Garcia-Molina, 2012a] for the max problem and employs a
technique that addresses random spamming but not vandal-
ism, i.e. adversarial spamming by workers who invert the
correctness of results. Moreover, the methods cannot tackle
top-k lists that are larger than the size of the ranking tasks
given to humans. The work in [Marcus et al., 2011] is partic-
ularly wasteful in resources. The method studied in [David-
son et al., 2013] invokes the method described in [Feige et
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al., 1994] to obtain the top-k list for a reduced itemset. The
method in [Feige ef al., 1994] has a very high latency, since
it is essentially a heapsort algorithm for noisy comparisons,
where comparisons take place sequentially and not in parallel.
Thus, the technique in [Davidson et al., 2013] is also of high
latency. Worker tasks are restricted to pairwise comparisons,
while in reality human workers can perform tasks containing
significantly more than two items. Moreover, the method’s
analytic results hold under specific assumptions for the error
functions of human workers. In practice, it is difficult to have
any knowledge on worker error distribution a priori [Venetis
and Garcia-Molina, 2012b]. The work in [Ciceri et al., 2016]
assumes prior knowledge on the quality of the items, which
is not realistic for many applications. Relevant to our prob-
lem is the work in [Ailon, 2012], which presents a way of
sampling a quasilinear number of pair-wise comparison re-
sults for the purpose of learning to rank, but performs full
sorting with no emphasis on the top-k. A randomized sort-
ing algorithm was studied in [Wauthier et al., 20131, in which
predicted permutations are more accurate near the top rather
than the middle of the sorted list. Existing proposals in the
literature generally lack a robust defense mechanism against
the problem of spamming which is rampant in crowdsourcing
[Tpeirotis, 2010].
The main contributions of our work are the following:

e We describe a class of crowdsourced top-k algorithms
that have logarithmic latency and require a number of
crowdsourcing tasks which grows linearly with the size
of the itemset.

e We propose a budgeting strategy aiming to efficiently
address the impact of adversarial users, and a random-
ized variant of the top-k algorithms that can reduce the
required budget drastically by taking a negligible risk of
compromising the quality of the output result.

e We report results from experiments that test the perfor-
mance of several instantiations of the proposed meth-
ods with simulations and real crowds. The results show
tolerance of the proposed techniques against errors and
vandalism. We draw conclusions on the efficiency of
the budgeting strategy, the randomized variant and the
trade-off among latency, cost and quality of results. The
randomized algorithm is particularly beneficial for very
large itemsets and large top-k lists.
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2 Problem Statement

We have a set of items I and we assume that the items in /
can be ranked based on some characteristic of interest. We
call this ranking the baseline ranking, and we denote it with
(. Assuming [ is unknown, our goal is to obtain the k items
that are close to the top-k items in the ranking /3, by issuing a
limited number @ of ranking tasks to the crowd.

3 A Recursive Crowdsourced Top-£
Algorithm

We introduce a novel recursive algorithm, called Crowd-Top-
k [de Alfaro et al., 2016], for the top-k problem, that decou-
ples the size of the top-k list from the size of the ranking tasks
given to humans. It can therefore work for any size of input
itemset and top-k list. The method splits the input itemset into
partitions of size s and gives each partition to human workers
for ranking. After obtaining the rankings from the crowd, the
algorithm uses the maximum elements from each partition to
form a new set. It then recursively calls itself on this new set.
As long as the set has at least k - s items, the algorithm is in
the reduction phase, obtaining rankings and recursively call-
ing itself on the set of maxima from each partition. When the
set has less than & - s items, that is, when it cannot be parti-
tioned further into k or more partitions of size s, the algorithm
gets into its endgame phase. It uses an endgame method (see
Section 3.1) to obtain the top-k list of the small set (using ex-
haustive pairwise comparisons is a feasible option for that, as
that set is small). Through comparison inferences, the method
obtains the top-k list for each input set of the reduction phase,
until it obtains the top-£ list of the initial input set.

Example Figure 1 shows the execution of the Crowd-Top-k
algorithm to obtain a top-5 list (k = 5) of an itemset Iy with
320 items, using crowdsourced ranking tasks of size 4. In the
figure, we tag each item with a number which is its rank in
the baseline ranking. The algorithm is unaware of the base-
line ranking. For the top-5 items, which the algorithm aims
to retrieve, we use larger italic font. The left part of the fig-
ure is the reduction phase, and the right part of the figure is
the endgame which crawls back to the initial recursive call
to obtain the final top-k list. Initially, the algorithm parti-
tions the itemset into 80 partitions of size 4, and the crowd
ranks the items of each partition. We observe that item 4 hap-
pens to fall into the same partition with item 1 in this random
partitioning. The algorithm forms itemset /; from the max-
ima of the partitions and calls itself on [;. Since I; is a big
itemset (80 items), the method partitions it into 20 partitions
of size 4 and obtains rankings of the items in each partition
using the crowd. Note that item 5 happens to fall into the
same partition as item 3. The method forms set I3 from the
maxima of the partitions of I; and calls itself on I5. The I
is small (20 items), and cannot be partitioned in more than
5 partitions, therefore, the endgame begins. The algorithm
obtains the top-5 list of I using a method for the endgame
top-k problem. In this example, we obtain the top-5 list 75
by exhaustive comparisons of the items in I». Top-5 ranked
list T5 does not contain items 4 and 5, as they do not belong
to I5. The endgame proceeds by popping the recursive stack
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Figure 1: Example of execution of the Crowd-Top-k algorithm to
obtain the top-5 list of an itemset of 320 items using crowdsourced
ranking tasks of size 4

to obtain the candidate items of the top-5 list of itemset I.
It forms C; from the partitions of /; that contain the top-5
items of I and includes items whose rank in I can still be
less than or equal than k. It then obtains the top-5 ranked list
T, of I performing exhaustive comparisons in Cy. The list
T7 includes item 5 retrieved from the partition whose maxi-
mum is item 3. The endgame proceeds, forms candidate set
C) from partitions of Iy and 73 and obtains the final top-5 list
of Iy, which includes item 4 obtained from the partition of I
whose maximum is item 1. During the backtracking, the size
of each of the candidate sets C; is less than k - s, where s is
the size of the ranking tasks.

Assuming constant k, s, the algorithm has a logarithmic
latency as measured by the number of recursive calls. The
total number of ranking tasks is linear in the size of the input
itemset. We omit the proof due to space constraints.

3.1 Endgame Top-£ Algorithms

We informally call the methods that obtain top-k lists for
small itemsets, endgame algorithms. Algorithm Crowd-Top-k
is generic with respect to the method that it uses to obtain the
top-k list when the endgame begins. One option is to use the
human-powered sorts algorithm [Marcus et al., 2011] which
issues a quadratic number of ranking tasks in batches. We
implemented the Compare operator proposed in [Marcus et
al., 2011] and used it to obtain top-k lists for small itemsets.
Though it is expensive in terms of number of tasks required,
its advantage is that it issues all necessary tasks in a single
roundtrip. The method described in [Wauthier et al., 2013]
called Unbalanced Rank Estimation (URE) which estimates
the rank of each item by issuing a limited number of pair-
wise comparisons in a single roundtrip is another option. We



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

also implemented a comparisons inference algorithm that is-
sues comparisons in several roundtrips by selecting the most
informative comparisons. The problem of selecting the most
informative comparisons bears similarities to the ‘Next Votes
Problem’ that Guo et al. studied in [Guo et al., 2012]. Since
this problem is hard to solve optimally, we employ a heuris-
tic. Finally, we implemented a top-k variant of the quick-sort
algorithm. For small top-£ lists the tournament algorithm can
be used in the endgame.

3.2 Handling Inaccuracy of Crowds

Our algorithm handles the inaccuracy of crowds through re-
dundancy. We assign each ranking task to multiple workers
and obtain one ranking out of the potentially different rank-
ings that workers provide for a particular partition. Producing
a single ranking out of multiple rankings over the same set of
items is called rank aggregation. Our method uses median
rank aggregation due to several desired properties [Fagin et
al., 2003; 2004]. Inaccuracy of crowds can be due to honest
mistakes or spamming. For ranking tasks, spamming can be
random, i.e. a user can provide any permutation by chance
without doing the work, or adversarial. Adversarial spam-
mers or vandals provide inverted or nearly inverted true rank-
ings. We employ the method for adaptive allocation of tasks
described in [Polychronopoulos et al., 2013] which can tackle
mistakes by workers and random spamming. In settings with
significant percentages of adversarial spammers (as can hap-
pen in large, unmoderated crowds) those methods are not ef-
ficient as they cannot tackle adversarial behavior. Based on
an analytic estimate of the impact that adversarial users have
on an aggregation, we introduce a budgeting strategy that dis-
tributes the available ranking tasks across the recursive calls,
in an attempt to battle adversarial behavior. The analysis casts
the allocation of the budget to an optimization problem that
resembles a non-linear variant of the knapsack problem. We
implemented and experimented with this technique under dif-
ferent assumptions for the presence of adversarial spammers
in the crowd.

3.3 Randomized Variant of the Crowd-Top-K
Algorithm

We propose a randomized variant of the Crowd-Top-k algo-
rithm. A key observation that allows us to devise a random-
ized variant is that the reason we create the new candidate set
using the top-k maxima and items from partitions where the
top-k maxima belong, is the non-zero probability that more
than one items of the top-k list of the input itemset may fall
in the same random partition (see also the example we pro-
vide in Figure 1). We call the event that exactly w items of
the top-k list of the itemset fall in the same partition a w-fold
collision. We formally bound the probability that such a colli-
sion occurs at one of the recursive call of the algorithm, using
a union bound analysis. The randomized variant takes a risk
threshold as additional input. This represents the level of risk
of losing items of the top-k list due to randomization which
the user of the algorithm deems acceptably low. The method
calculates the number of items that we need to consider at
every stage of the endgame to maintain the risk below the
threshold and creates reduced itemsets during the endgame,
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reducing the cost of the endgame by accepting a risk of los-
ing items of the top-k list due to random collisions.

4 Experimental Study

4.1 Simulations

In the simulation setting, human workers can be either hon-
est workers or spammers, where spammers can be either
random or adversarial. Each item 7 has a value V(i) that
represents its quality. The error measure we use is: €, =

ZL‘}&B)’L) ‘_/?gf)lrl(el) as in [Polychronopoulos et al., 2013]

where (1, ..., Bi are the items in the baseline top-k list and
V() is the quality value of item 7. We model the amount

of work, and thus the cost, of a HIT as ¢ = S'IO#, where
s is the size of the ranking tasks. We restrict our reporting
to the equi-distant assumption, where the qualities are inte-
ger numbers and neighboring items in the baseline ranking
have value distance of one, but other assumptions (e.g. the
Gaussian assumption for values of items) lead to similar or
superior results. Honest workers report the truth consistent
with the value of the items but with occasional random swaps
according to the Thurstonian model [Thurstone, 1927] that
describes how human agents distort the perception of phys-
ical stimuli. The same model is also used in [Venetis and
Garcia-Molina, 2012a] and [Polychronopoulos et al., 2013].
Default random spam is 25% and default error rate is 20%.

Figure 2(a) shows the performance against the tournament
approach for a small top-k list (k= 5 for ranking tasks of
size s = 10) The results confirm the superiority of the recur-
sive approach over the tournament algorithm. The number of
roundtrips fluctuates for the two methods, ranging from 11 to
30, due to the adaptive allocation of tasks to human workers.
The method of [Feige et al., 1994] has a very high latency
(> 10, 000 roundtrips) which makes it unsuitable in real set-
tings and for this setting it also achieved poorer quality results
than the Crowd-Top-k algorithm.

Figure 2(b) shows comparative results of five methods. The
unbalanced rank estimation method has the smallest latency
as it uses a single roundtrip but provides the poorest quality
results. The Crowd-Top-k algorithm using the quick-sort top-
k variant in the endgame is the method that makes the most
efficient use of the budget providing the highest quality out-
put. The method of [Feige et al., 1994] is providing results
of comparative quality, yet, the latency is prohibitively high
(>2000 roundtrips). The Crowd-Top-k method using unbal-
anced rank estimation for the endgame maintains the error
low and the latency at 9 roundtrips.

Figure 2(c) demonstrates the error for three levels of van-
dals in the crowd, at 5% and 10% and 15%. We evaluate
the Crowd-Top-k algorithm with URE for the endgame using
several budget arrangements that maximally satisfy the bud-
get constraint. The x-axis represents the Manhattan distance
of the budget arragement to the arrangement that our bud-
geting method returns as optimal arrangement. The results
confirm the relevance of the analysis, as the error increases
with increasing distance from the budget distribution of the
budgeting method.
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Figure 2: Results of experimental study

Figure 2(d) demonstrates the error for the randomized vari-
ant as the risk increases. The risk is the probability that we
lose some item of the top-k list from the final result, due to
the randomization. We observe that the error is essentially
unchanged and even paradoxically decreases slightly instead
of increasing in some cases. This happens because the risk of
loss remains negligibly low, but the number of items that we
send to the URE method of the endgame drops significantly.
For constant parameter ¢ = 200 of the URE method, the sam-
pling rate increases, and for a smaller dataset this leads to
an enhanced output. We need significantly lower budget to
achieve comparable or even superior quality. We can see the
use of budget, expressed in required amount of work, in the
Figure 2(e). We achieve a budget save that approaches 57%
for a very low risk of 3 - 10~%, without noticeable change in
the quality of results.

4.2 Mechanical Turk Workers

For the experiments on Mechanical Turk, the task of work-
ers is to rank polygons according to their size. We have three
sets of polygons with different levels of difficulty (smaller
differences in the area of the polygons makes the task of rank-
ing more difficult), which we consider as easy, medium and
hard. We tested the Crowd-Top-k algorithm with quick-sort
style endgame. We allowed for a risk of loss of less than
2% by allowing at most 3 items from each partition to pro-
ceed to the endgame. First round uses 1 worker per item
and second round 3. Using 7 workers for each comparison
in the endgame this corresponds to roughly 800 HITs overall,
of which 160 were ranking tasks and the rest pairwise com-

parisons. This corresponds to a cost of approximately 1220
according to our cost metric, though for both tasks we paid
the same lowest possible rate and the workers contributed to
them with no problem. It is fair though to reason in terms
of cost since a hypothetic platform may allow for lower com-
pensation rates. We also tested the algorithm in [Davidson et
al., 2013] assuming logX = 1 which roughly corresponds
to & around 15%. This requires roughly 800 pairwise HITs
when posting 3 comparisons in the upper levels of the X-
tree. Finally, we tested its non-randomized version which
is essentially the algorithm in [Feige et al., 1994] requiring
roughly 1300 pairwise comparison HITs. The results in Fig-
ure 2(f) demonstrate a comparable performance of the three
tested methods in terms of quality of results for all three lev-
els of difficulty. The difference in latencies is significant. The
Crowd-Top-k has an approximate latency of 13 roundtrips and
72 minutes, while the algorithm of [Davidson ez al., 2013] has
a latency of 214 roundtrips and 508 minutes (there is only one
task in each roundtrip but the total time is significantly higher
than the Crowd-Top-k’s latency, because of the parallel execu-
tion of tasks in each roundtrip of Crowd-Top-k). The latency
of those methods would get prohibitively high for even bigger
datasets as it would increase linearly, while the Crowd-Top-
k algorithm would scale as the latency increases logarithmi-
cally.
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