
Using Constraint Programming to Solve a Cryptanalytic Problem∗

David Gerault(1), Marine Minier(2), and Christine Solnon(3)

(1) Université Clermont Auvergne, LIMOS, France
(2) Université de Lorraine, LORIA, UMR 7503, F-54506, France

(3) Université de Lyon, INSA-Lyon, F-69621, LIRIS, CNRS UMR5205, France
david.gerault@uca.fr, marine.minier@loria.fr, christine.solnon@insa-lyon.fr

Abstract
We describe Constraint Programming (CP) models
to solve a cryptanalytic problem: the chosen key
differential attack against the standard block cipher
AES. We show that CP solvers are able to solve
these problems quicker than dedicated cryptanaly-
sis tools, and we prove that a solution claimed to
be optimal in two recent cryptanalysis papers is not
optimal by providing a better solution.

1 Introduction
Since 2001, AES (Advanced Encryption Standard) is the en-
cryption standard for block ciphers [FIPS 197, 2001]. It
guarantees communication confidentiality by using a secret
key K to encode an original plaintext X into a ciphertext
AESK(X), in such a way that the ciphertext can further
be decoded into the original one using the same key, i.e.,
X = AES−1K (AESK(X)). Cryptanalysis aims at testing
whether confidentiality is actually guaranteed. In particular,
differential cryptanalysis [Biham and Shamir, 1991] evalu-
ates whether it is possible to find the key within a reasonable
number of trials by considering plaintext pairs (X,X ′) and
studying the propagation of the initial difference X ⊕X ′ be-
tween X and X ′ while going through the ciphering process
(where ⊕ is the xor operator). Today, differential cryptanaly-
sis is public knowledge, and block ciphers such as AES have
proven bounds against differential attacks. Hence, [Biham,
1993] proposed a new type of attack called related-key attack
that allows an attacker to inject differences not only between
the plaintexts X and X ′ but also between the keys K and K ′
(even if the secret key K stays unknown from the attacker).

To mount related-key attacks, the cryptanalist must find
optimal related-key differentials, i.e., a plaintext difference
δX and a key difference δK that maximize the probabil-
ity that, for randomly chosen plaintext X and key K, the
difference X ⊕ δX in the input plaintexts becomes the dif-
ference AESK(X) ⊕ AESK⊕δK(X ′) in the output cipher-
texts. Finding the optimal related-key differentials for AES
is a highly combinatorial problem that hardly scales. Two
main approaches have been proposed to solve this problem: a

∗This research was conducted with the support of the FEDER
program of 2014-2020 and the region council of Auvergne

graph traversal approach [Fouque et al., 2013], and a Branch
& Bound approach [Biryukov and Nikolic, 2010]. The ap-
proach of [Fouque et al., 2013] requires about 60 GB of mem-
ory when the key has 128 bits, and it has not been extended
to larger keys. The approach of [Biryukov and Nikolic, 2010]
only takes several megabytes of memory, but it requires sev-
eral days of computation when the key has 128 bits, and sev-
eral weeks when the key has 192 bits.

During the process of designing new ciphers, this search
generally needs to be performed several times, so it is desir-
able that it can be done rather quickly. Another point that
should not be neglected is the time needed to design and im-
plement these approaches: To ensure that the computation is
completed within a “reasonable” amount of time, it is neces-
sary to reduce the branching by introducing clever reasoning.
Of course, this hard task is also likely to introduce bugs, and
checking the correctness or the optimality of the computed
solutions may not be so easy. Finally, reproducibility may
also be an issue. Other researchers may want to adapt these
algorithms to other problems, with some common features
but also some differences, and this may again be very diffi-
cult and time-consuming.

In [Gerault et al., 2016], we proposed to use Constraint
Programming (CP) to solve this problem. When using CP
to solve a problem, one simply has to model the problem by
means of constraints. Then, this model is solved by generic
solvers usually based on a Branch & Propagate approach:
The search space is explored by building a search tree, and
constraints are propagated at each tree node in order to prune
branches. CP opens new perspectives for this kind of crypt-
analysis problems. First, it is very competitive with dedicated
approaches: When the key has 128 bits, Chuffed [Chu and
Stuckey, 2014] is able to find optimal solutions in less than
one hour. Second, the CP model is easier to check or re-use
than a full program that not only describes the problem to
solve, but also how to solve it. Actually, CP allowed us to
prove that a solution claimed to be optimal in [Biryukov and
Nikolic, 2010; Fouque et al., 2013] is not optimal by provid-
ing a better solution.

2 Problem Statement
AES block cipher. AES ciphers blocks of length n = 128
bits, and each block is a 4× 4 matrix of bytes. The length of
keys is l ∈ {128, 192, 256}. In this paper, we only consider

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4844

Operations applied at each round i ∈ [0, r − 1]:

Key K = K0
(4×4 bytes)

KS

SKi[j][3] =
S(Ki[j][3])KS

Subkey Ki+1

XiPlaintext X

(4×4 bytes)

ARK
i = 0

ARK
i = r

i < r

S

SXi = S(Xi)

SR

SR(SXi)

MC

Yi = MC(SR(SXi)) Xr

SB

Ciphertext

SXr = AESK(X)

Figure 1: AES ciphering process. Each 4 × 4 array represents a group of 16 bytes. Before the first round, ARK is applied on X and K
to obtain X0. Then, for each round i ∈ [0, r − 1], S is applied on Xi to obtain SXi, SR and MC are applied on SXi to obtain Yi, KS is
applied on Ki to obtain Ki+1 (and during KS, S is applied on Ki[j][3] to obtain SKi[j][3], ∀j ∈ [0, 3]), and ARK is applied on Ki+1 and
Yi to obtain Xi+1. The ciphertext SXr is obtained by applying SB on Xr .

keys of length l = 128, and keys are 4× 4 matrices of bytes.
Given a 4× 4 matrix of bytes M , we note M [j][k] the byte at
row j ∈ [0, 3] and column k ∈ [0, 3].

AES is an iterative process, and we note Xi the ciphertext
at the beginning of round i ∈ [0, r]. Each round is composed
of the following operations, as displayed in Fig. 1:

• SubBytes S. S is a non-linear permutation which
is applied on each byte of Xi separately, i.e., ∀j, k ∈
[0, 3], Xi[j][k] is replaced by S(Xi[j][k]), according to
a lookup table. We note SXi = S(Xi).

• ShiftRows SR. SR is a linear mapping that rotates on
the left by 1 byte position (resp. 2 and 3 byte positions)
the second row (resp. third and fourth rows) of SXi.

• MixColumnsMC. MC is a linear mapping that mul-
tiplies each column of SR(SXi) by a 4× 4 fixed matrix
chosen for its good properties of diffusion [Daemen and
Rijmen, 2002]. In particular, it has the Maximum Dis-
tance Separable (MDS) property: For each column, the
total number of bytes which are different from 0, before
and after applying MC, is either equal to 0 or strictly
greater than 4. We note Yi = MC(SR(SXi)).

• KeySchedule KS. The subkey at round 0 is the ini-
tial key, i.e., K0 = K. For each round i ∈ [0, r − 1],
the subkey Ki+1 is generated from Ki by applying KS.
It first replaces each byte Ki[j][3] of the last column by
S(Ki[j][3]) (where S is the SubBytes operator), and
we note SKi[j][3] = S(Ki[j][3]). Then, each column of
Ki+1 is obtained by performing a xor operation between
bytes coming from Ki, SKi, or Ki+1.

• AddRoundKey ARK. ARK performs a xor operation
between bytes of Yi and subkey Ki+1 to obtain Xi+1.

Let us note Bytes the set of all bytes (for all rounds), i.e.,

Bytes = {X[j][k], Xi[j][k], SXi[j][k], Yi[j][k],

Ki[j][k], SKi[j][3] | i ∈ [0, r], j, k ∈ [0, 3]}

Optimal related-key differentials. Let us note δB =
B ⊕ B′ the difference between two bytes B and B′, and
diffBytes = {δB | B ∈ Bytes} the set of all differential
bytes.

Mounting attacks requires finding a related-key differential
characteristic, i.e. a plaintext difference δX = X ⊕X ′ and a
key difference δK = K ⊕K ′, such that δX becomes δSXr

after r rounds with a probability as hight as possible. This can
be achieved by tracking the propagation of the initial differ-
ences through the cipher. Once such an optimal differential
characteristic is found, the cryptanalist asks for the encryp-
tion of messages satisfying the input difference. When this
difference propagates as expected, he can infer informations
leading to a recovery of the secret key K with less workload
than exhaustive search. The difficulty of recovering K de-
creases as the probability of the used differential characteris-
tic increases. The AES operators SR,MC,ARK, and KS
are linear, i.e., they propagate differences in a deterministic
way (with probability 1). However, the S operator is not lin-
ear: Given a byte difference B ⊕ B′ = δB, the probability
that δB becomes S(B)⊕S(B′) = δSB is Pr(δB → δSB).
It is equal to 1 if δB = 0 (i.e., B = B′). However, if δB 6= 0,
then Pr(δB → δSB) ∈ { 2

256 ,
4

256}.
The probability that δX becomes δSXr is equal to the

product of all Pr(δB → δSB) such that δB (resp. δSB)
is a byte difference before (resp. after) passing through
the S operator when ciphering X with K and X ′ with K ′,
i.e., the product of all Pr(δXi[j][k] → δSXi[j][k]) and all
Pr(δKi[j][3]→ δSKi[j][3]) with i ∈ [0, r] and j, k ∈ [0, 3].
The goal is to find δX and δK that maximize this probability.

Two step solving process. To find δX and δK, we search
for the values of all differential bytes in diffBytes. Both
[Biryukov and Nikolic, 2010] and [Fouque et al., 2013]
propose to solve this problem in two steps. In Step 1, a
Boolean variable ∆B is associated with every differential
byte δB ∈ diffBytes such that ∆B = 0 ⇔ δB = 0 and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4845

∆B = 1 ⇔ δB ∈ [1, 255]. The goal of Step 1 is to find
a Boolean solution that assigns values to Boolean variables
such that the AES transformation rules are satisfied. Dur-
ing this first step, the SubBytes operation S is not con-
sidered. Indeed, it does not introduce nor remove differ-
ences. Therefore, we have ∆Xi[j][k] = ∆SXi[j][k] and
∆Ki[j][3] = ∆SKi[j][3]. As we search for a solution with
maximal probability, the goal of Step 1 is to search for a
Boolean solution which minimizes the number of variables
∆Xi[j][k] and ∆Ki[j][3] which are set to 1.

In Step 2, the Boolean solution is transformed into a byte
solution: For each differential byte δB ∈ diffBytes , if the
corresponding Boolean variable ∆B is assigned to 0, then
δB is also assigned to 0; otherwise, we search for a byte value
in [1, 255] to be assigned to δB such that the AES transfor-
mation rules are satisfied and the probability is maximized.
Note that some Boolean solutions may not be transformable
into byte solutions. These Boolean solutions are said to be
byte-inconsistent.

3 Basic CP Model for Step 1
A first CP model for Step 1 may be derived from the AES
transformation rules in a rather straightforward way. A CP
model is defined by a set of variables, such that each variable
x has a domain D(x), and a set of constraints, i.e., relations
that restrict the values that may be simultaneously assigned
to the variables.

Variables. For each differential byte δB ∈ diffBytes , we
define a Boolean variable ∆B whose domain is D(∆B) =
{0, 1}: it is assigned to 0 if δB = 0, and to 1 otherwise.

XOR constraint. We first define a XOR constraint for ARK
and KS. Let us consider three differential bytes δA, δB and
δC such that δA⊕ δB = δC. If δA = δB = 0, then δC = 0.
If (δA = 0 and δB 6= 0) or (δA 6= 0 and δB = 0) then
δC 6= 0. However, if δA 6= 0 and δB 6= 0, then we cannot
know if δC is equal to 0 or not: This depends on whether
δA = δB or not. When abstracting differential bytes δA,
δB and δC with Boolean variables ∆A, ∆B and ∆C (which
only model the fact that there is a difference or not), we obtain
the following definition of the XOR constraint:
XOR(∆A,∆B,∆C)⇔ ∆A+ ∆B + ∆C 6= 1.

AddRoundKey and KeySchedule constraints. Both
ARK and KS are modeled with XOR constraints between
∆Xi, ∆Yi, and ∆Ki variables (forARK), and between ∆Ki

and ∆SKi variables (for KS).

ShiftRows and MixColumns. SR simply shift vari-
ables. The MDS property of MC is ensured by posting a
constraint on the sum of some variables of ∆Xi and ∆Yi
variables, which must belong to the set {0, 5, 6, 7, 8}.

Objective function. We introduce an integer variable
objStep1 that must be minimized, and we post an equality
constraint between objStep1 and the sum of Boolean variables

on which a non linear S operation is performed (all variables
∆Xi[j][k] and ∆Ki[j][3] with i ∈ [0, r] and j, k ∈ [0, 3]).

Let v be the optimal value of objStep1. It may happen
that none of the Boolean solutions with objStep1 = v is
byte-consistent, or that the maximal probability p of Boolean
solutions with objStep1 = v is such that it is possible to
have a better probability with a larger value for objStep1 (i.e.,
p < (4

256)v+1). In this case, we need to search for new
Boolean solutions, such that objStep1 is minimal while being
strictly greater than v. This is done by adding the constraint
objStep1 > v before solving again Step 1.

Limitations of the basic CP model. This basic CP model
is complete, i.e., for any solution at the byte level (on δ vari-
ables), there exists a solution at the Boolean level (on ∆ vari-
ables). However, preliminary experiments have shown us that
there is a huge number of Boolean solutions which are byte
inconsistent. For example, when the number of rounds is
r = 4, the optimal cost is objStep1 = 11, and there are more
than 90 millions of Boolean solutions with objStep1 = 11.
However, none of these solutions is byte-consistent. In this
case, most of the Step 1 solving time is spent at generating
useless Boolean solutions which are discarded in Step 2.

4 Additional Constraints for Step 1
When reasoning at the Boolean level, many solutions are not
byte-consistent because constraints at the byte level have been
ignored. To propagate some properties at the byte level, we
introduce new variables and constraints that model equality
relations between differential bytes.

New equality variables. For each couple of differential
bytes (δA, δB) ∈ diffBytes2, we introduce a Boolean equal-
ity variable EQδA,δB which is equal to 1 if δA = δB,
and to 0 otherwise. These variables are constrained to de-
fine an equivalence relation by adding a symmetry constraint
(EQδA,δB = EQδB ,δA) and a transitivity constraint (if
EQδA,δB = EQδB,δC = 1 then EQδA,δC = 1). Also, EQ
variables are related to ∆ variables by adding the constraints:

(EQδA,δB = 1)⇒ (∆A = ∆B)

EQδA,δB + ∆A+ ∆B 6= 0

Revisiting the XOR constraint. When defining the con-
straint XOR(∆A,∆B,∆C), if ∆A = ∆B = 1, then we
cannot know if ∆C is equal to 0 or 1. However, when-
ever ∆C = 0 (resp. ∆C = 1), we know for sure that the
corresponding byte δC is equal to 0 (resp. different from
0), meaning that the two bytes δA and δB are equal (resp.
different), i.e., that EQδA,δB = 1 (resp. EQδA,δB = 0).
The same reasoning may be done for ∆A and ∆B because
(δA⊕ δB = δC)⇔ (δB⊕ δC = δA)⇔ (δA⊕ δC = δB).
Therefore, we redefine the XOR constraint as follows:

XOR(∆A,∆B,∆C)⇔ ((∆A+ ∆B + ∆C 6= 1)

∧ (EQδA,δB = 1−∆C)

∧ (EQδA,δC = 1−∆B)

∧ (EQδB,δC = 1−∆A))

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4846

Propagation of MDS at Byte Level. The MDS property
ensures that, for each column, the total number of bytes which
are different from 0, before and after applying MC, is either
equal to 0 or strictly greater than 4. This property also holds
for any xor difference between two different columns of X
and Y matrices. To propagate this property, for each pair of
columns inX and Y matrices, we add a constraint on the sum
of equality variables between bytes of these columns.

Constraints derived from KS. The KeySchedule
mainly performs xor and S operations. As a consequence,
each byte δKi[j][k] may be expressed as a xor between
bytes of the original key difference δK0, and bytes of
δSKi−1 (which are differences of key bytes that have passed
through S during the previous round). Hence, for each
byte δKi[j][k], we precompute the set V (i, j, k) such that
V (i, j, k) only contains bytes of δK0 and δSKi−1 and
δKi[j][k] =

⊕
δA∈V (i,j,k) δA. For each set V (i, j, k), we

introduce a set variable V1(i, j, k) which is constrained to
contain the subset of V (i, j, k) corresponding to the Boolean
variables equal to 1. We use these set variables to infer that
two differential key bytes that have the same V1 set are equal.
Also, if V1(i, j, k) is empty (resp. contains one or two ele-
ments), we infer that ∆Ki[j][k] is equal to 0 (resp. a variable,
or a xor between 2 variables).

5 CP Model for Step 2
Given a Boolean solution for Step 1, Step 2 aims at search-
ing for the byte-consistent solution with the highest proba-
bility (or proving that there is no byte-consistent solution).
Hence, for each Boolean variable ∆A of Step 1, we define
an integer variable δA whose domain depends on the value
of ∆A: If ∆A = 0, then D(δA) = {0} (i.e., δA is also
assigned to 0); otherwise, D(δA) = [1, 255]. As we look
for a byte-consistent solution with maximal probability, we
also add an integer variable PA for each byte A that passes
through the S operator, i.e., Xi[j][k] and Ki[j][3]: This vari-
able corresponds to the base 2 logarithm of the probability
Pr(δA → δSA) of obtaining the S output difference δSA
when the S input difference is δA. The domain of these
variables depends on the value of ∆A in the Step 1 solu-
tion: If ∆A = 0, then Pr(0 → 0) = 1 and therefore
D(PA) = {0}; otherwise, Pr(δA → δSA) ∈ { 2

256 ,
4

256}
and D(PA) = {−7,−6}.

The constraints basically follow the AES operations to re-
late variables, as described for Step 1, but consider the defini-
tion of the operations at the byte level, instead of the Boolean
level. A main difference is that the SubBytes operation,
which has no effect at the Boolean level, must be modeled
at the byte level. This is done thanks to a ternary table con-
straint which extensively lists all triples (X,Y, P) such that
there exist two bytes B1 and B2 whose difference before and
after passing through S is equal to X and Y , respectively,
and such that P is the base 2 logarithm of the probability of
this transformation. The goal is to find a byte-consistent so-
lution with maximal differential probability. As we consider
logarithms, this amounts to searching for a solution that max-
imizes the sum of all PA variables.

6 Results and Conclusion
The CP model for Step 1 was implemented with the MiniZ-
inc modeling language [Nethercote et al., 2007], and we
compared three CP solvers: Gecode [Gecode Team, 2006],
Choco 4 [Prudhomme and Fages, 2013], and Chuffed [Chu
and Stuckey, 2014]. The best results were obtained with
Chuffed. The basic CP model (described in Section 3) does
not scale well because it generates a huge number of Boolean
solutions which are not byte-consistent. When adding the
additional constraints described in Section 4, most of these
byte-inconsistent solutions are filtered out, and Chuffed is
able to solve all instances in less than one hour. The CP
model for Step 2 was implemented with Choco 3. It solves
all instances (i.e., finds an optimal byte-consistent solution
for each Boolean solution of Step 1 when it exists) in a few
seconds. As a conclusion, CP solvers are much faster than the
Branch & Bound approach of [Biryukov and Nikolic, 2010],
which needs several days to solve these instances. It is also
faster and much less memory consuming than the approach
of [Fouque et al., 2013], that needs 60GB and 30 minutes on
a 12-core computer to pre-compute the graph.

New results for differential cryptanalysis. For r =
4 rounds, we have found a byte-consistent solution with
objStep1 = 12 and a probability equal to 2−79. This solution
is better than the solution claimed to be optimal in [Biryukov
and Nikolic, 2010] and [Fouque et al., 2013]: In these pa-
pers, the authors say that the best byte-consistent solution has
objStep1 = 13, and a probability equal to 2−81.

We have shown how to extend our CP models to AES with
longer keys (such that l ∈ {192, 256}) in [Gérault et al.,
2017]. These models allowed us to find optimal solutions
for all possible instances of AES with l ∈ {128, 192, 256}
in less than 35 hours for Step 1, and in less than 6 minutes
for Step 2. This is a clear improvement with respect to ex-
isting work as the approach of [Fouque et al., 2013] cannot
be extended to l > 128 due to its memory complexity, and
the approach of [Biryukov and Nikolic, 2010] needs several
weeks to solve instances with l = 192. Furthermore, we have
shown that the solution proposed in [Biryukov and Nikolic,
2010] for l = 192 and r = 11 is inconsistent. We have also
found better solutions when l = 256, and we have computed
the actual optimal solution for AES with l = 256. Its proba-
bility is 2−146 (instead of 2−154 for the solution of [Biryukov
et al., 2009]). Using this solution, we improved the related-
key distinguisher and the basic related-key differential attack
on the full AES-256 by a factor 26 and the q-multicollisions
by a factor 2 (see [Gérault et al., 2017] for more details).

These cryptanalysis problems open new and exciting chal-
lenges for the CP community. In particular, these problems
are not easy to model. More precisely, naive CP models such
as the one described in Section 3 may not scale well. The
introduction of equality constraints at the byte level drasti-
cally improves the solving process, but these constraints are
not straightforward to find and implement. Hence, a chal-
lenge is to define new CP frameworks, dedicated to this kind
of cryptanalysis problems, in order to ease the development
of efficient CP models for these problems.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4847

References
[Biham and Shamir, 1991] Eli Biham and Adi Shamir. Dif-

ferential cryptoanalysis of feal and n-hash. In Advances
in Cryptology - EUROCRYPT ’91, volume 547 of Lecture
Notes in Computer Science, pages 1–16. Springer, 1991.

[Biham, 1993] Eli Biham. New types of cryptoanalytic at-
tacks using related keys (extended abstract). In Advances
in Cryptology - EUROCRYPT ’93, volume 765 of Lec-
ture Notes in Computer Science, pages 398–409. Springer,
1993.

[Biryukov and Nikolic, 2010] Alex Biryukov and Ivica
Nikolic. Automatic search for related-key differential
characteristics in byte-oriented block ciphers: Application
to aes, camellia, khazad and others. In Advances in
Cryptology - EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 322–344. Springer,
2010.

[Biryukov et al., 2009] Alex Biryukov, Dmitry Khovra-
tovich, and Ivica Nikolic. Distinguisher and related-key
attack on the full AES-256. In Advances in Cryptology
- CRYPTO 2009, volume 5677 of Lecture Notes in Com-
puter Science, pages 231–249. Springer, 2009.

[Chu and Stuckey, 2014] Geoffrey Chu and Peter J.
Stuckey. Chuffed solver description, 2014. Available at
http://www.minizinc.org/challenge2014/
description_chuffed.txt.

[Daemen and Rijmen, 2002] J. Daemen and V. Rijmen. The
Design of Rijndael. Springer-Verlag, 2002.

[FIPS 197, 2001] FIPS 197. Advanced Encryption Stan-
dard. Federal Information Processing Standards Publica-
tion 197, 2001. U.S. Department of Commerce/N.I.S.T.

[Fouque et al., 2013] Pierre-Alain Fouque, Jérémy Jean, and
Thomas Peyrin. Structural evaluation of aes and chosen-
key distinguisher of 9-round aes-128. In Advances in
Cryptology - CRYPTO 2013, volume 8042 of Lecture
Notes in Computer Science, pages 183–203. Springer,
2013.

[Gecode Team, 2006] Gecode Team. Gecode: Generic con-
straint development environment, 2006. Available from
http://www.gecode.org.

[Gerault et al., 2016] David Gerault, Marine Minier, and
Christine Solnon. Constraint programming models for
chosen key differential cryptanalysis. In Principles and
Practice of Constraint Programming - CP 2016, volume
9892 of Lecture Notes in Computer Science, pages 584–
601. Springer, 2016.

[Gérault et al., 2017] David Gérault, Pascal Lafourcade, Ma-
rine Minier, and Christine Solnon. Revisiting aes
related-key differential attacks with constraint program-
ming. Cryptology ePrint Archive, Report 2017/139, 2017.
http://eprint.iacr.org/2017/139.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J.
Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard
CP modelling language. In Principles and Practice of

Constraint Programming - CP 2007, volume 4741 of
Lecture Notes in Computer Science, pages 529–543.
Springer, 2007.

[Prudhomme and Fages, 2013] Charles Prudhomme and
Jean-Guillaume Fages. An introduction to choco 3.0:
an open source java constraint programming library. In
CP Workshop on ”CP Solvers: Modeling, Applications,
Integration, and Standardization”, 2013.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4848

