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Abstract

This paper introduces first-order modular logic pro-
grams, which provide a way of viewing answer
set programs as consisting of many independent,
meaningful modules. We also present conservative
extensions of such programs. This concept helps to
identify strong relationships between modular pro-
grams as well as between traditional programs. For
example, we illustrate how the notion of a conser-
vative extension can be used to justify the common
projection rewriting. This is a short version of a pa-
per was presented at the 32nd International Confer-
ence on Logic Programming [Harrison and Lierler,
2016].

1 Introduction

Answer set programming is a prominent knowledge repre-
sentation paradigm with roots in logic programming [Leake,
2016]. Tt is especially useful for addressing combinatorial
search problems. In answer set programming, a given compu-
tational problem is represented by a declarative program that
describes the properties of a solution to the problem. Then, an
answer set solver is used to generate answer sets, also called
stable models, for the program. These models correspond to
solutions to the original problem.

In this paper we show how some logic programs under the
answer set semantics can be viewed as consisting of various
“modules”, and how stable models of these programs can be
computed by composing the stable models of the modules.
We call collections of such modules first-order modular pro-
grams. To illustrate this approach consider the following two
rules

r(X,Y) « in(X,Y). (D

Intuitively, these rules encode that the relation r is the transi-
tive closure of the relation in. The empty set is the only an-
swer set of the program composed of these rules alone. Thus,
in some sense the meaning of these two rules in isolation is
the same as the meaning of any program that has a single an-
swer set that is empty. (The empty program is an example of
another program with a single empty answer set.) We show
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how to view rules (1) and (2) as a module and use the operator
SM introduced by Ferraris et al. (2011) to define a semantics
that corresponds more accurately to the intuitive meaning of
these rules. The operator SM provides a definition of the sta-
ble model semantics for first-order logic programs that does
not refer to grounding or fixpoints as does the original defi-
nition [Gelfond and Lifschitz, 1988]. The operator SM has
proved an effective tool for studying properties of logic pro-
grams with variables, which are the focus of this paper.

Modularity is essential for modeling large-scale practical
applications. Here we propose first-order modular programs
and argue their utility for reasoning about answer set pro-
grams. We use the Hamiltonian Cycle problem as a run-
ning example to illustrate that a “modular” view of a program
gives us

e a more intuitive reading of the parts of the program;

e the ability to incrementally develop modules or parts of
a program that have stand-alone meaning and that inter-
face with other modules via a common signature;

e a theory for reasoning about modular rewritings of in-
dividual components with a clear picture of the overall
impact of such changes.

First-order modular programs can be viewed as a general-
ization of propositional modular logic programs [Lierler and
Truszczyiiski, 2013]. In turn, propositional modular logic
programs generalize the concept of modules introduced by
Oikarinen and Janhunen 2008. ASP-FO logic [Denecker
et al., 2012] is another related formalism. It is a modu-
lar formalization of generate-define-test answer set program-
ming [Lifschitz, 2002] that allows for unrestricted interpreta-
tions as models, non-Herbrand functions, and first-order for-
mulas in the bodies of rules. An ASP-FO theory is a set con-
sisting of modules of three types: G-modules (G for gener-
ate), D-modules (D for define), and T-modules (T for test).
In contrast, there is no notion of type among modules in the
modular programs introduced here.

We also define conservative extensions for first-order mod-
ular programs. This concept is related to strong equivalence
for logic programs [Lifschitz er al., 2001]. If two rules are
strongly equivalent, we can replace one with the other within
the context of any program and the answer sets of the result-
ing program coincide with those of the original one. Con-
servative extensions allow us to reason about rewritings even
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when the rules in question have different signatures. The the-
orem stated at the end of this paper, for instance, shows that
conservative extensions can be used to justify the projection
rewriting [Faber et al., 1999], which is commonly employed
to improve program performance. Consider the rule

<+ not r(X,Y),edge(X,Z),edge(Z',Y). 3)

which says that every vertex must be reachable from every
other vertex. This rule can be replaced with the following
three rules without affecting the stable models in an “essen-
tial way”

—not r(X,Y)AvI(X) Av2(Y).
vI(X) + edge(X,Y).
v2(Y) + edge(X,Y).

Furthermore, this replacement is valid in the context of any
program, as long as that program does not already con-
tain either of the predicates v/ and v2. Currently, these
performance-enhancing rewritings are done manually. We
expect the theory about conservative extensions developed
here to provide a platform for automating such rewritings in
the future. We note that conservative extensions are related
to the notion of knowledge forgetting in [Wang er al., 2014].
However, that work applies only to propositional programs.

2 Review: Traditional Programs

A (traditional logic) program is a finite set of rules of the
form

ays...;q < Agg1,---,41,001 Q14 1,...,N0l Ay,
not not ay1,...,not not a,,

“

(0 <k <1<m<n), where each g; is an atomic formula,
possibly containing function symbols, variables, or the equal-
ity symbol with the restriction that atomic formulas ay,...,ax
and a;;+1,...,a, may not contain the equality symbol. The
expression containing atomic formulas a;; through a, is
called the body of the rule. A rule with an empty body is
called a fact. An instance of a rule R in a program II is a
rule that can be formed by replacing all variables in R with
ground terms formed from function symbols and object con-
stants occurring in Il. The process of grounding a traditional
logic program consists of the following steps:

1. each rule is replaced with all of its instances by substi-
tuting ground terms for variables;

2. ineach instance, every atomic formula of the form#; =1,
is replaced by T if #; is the same as #, and by _L other-
wise.

It is easy to see that the resulting ground program does not
have equality symbols and can be viewed as a propositional
program. The answer sets of a traditional program IT are sta-
ble models of the result of grounding I, where stable models
are defined using the fixpoint operation introduced in [Fer-
raris, 2005].

Traditional programs do not include some constructs avail-
able in ASP input languages. (For example, aggregate ex-
pressions and arithmetic are not covered.) Even so, they
do cover a substantial practical fragment. In particular, ac-
cording to [Ferraris and Lifschitz, 2005] and [Ferraris, 20051,
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rules of the form (4) are sufficient to capture the meaning of
the commonly used choice rule construct. For instance, the
choice rule {p(X)} < q(X) is understood as the rule

p(X) + q(X), not not p(X).

Consider the Hamiltonian Cycle problem on an undirected
graph. A Hamiltonian Cycle is a subset of the set of edges
in a graph that forms a cycle going though each vertex ex-
actly once. A sample program for finding such a cycle can be
constructed by adding rules (1), (2), and (3) to the following:

edge(a,d). ... edge(c,c). 5)
edge(X,Y) + edge(Y,X). (6)
{in(X,Y)} < edge(X,Y). (7)
—in(X,Y),in(X,2),Y £ 2. (8)
— in(X,2),in(Y,Z),X #Y. )
—in(X,Y),in(Y,X). (10)

Each answer set of the Hamiltonian Cycle program above
corresponds to a Hamiltonian cycle of the given graph, speci-
fied by facts (5), so that the predicate in encodes these cycles.
If an atom in(a,b) appears in an answer set it says that the
edge between a and b is part of the subset forming the Hamil-
tonian cycle. Intuitively,

o the facts in (5) define a graph instance by listing its
edges, and rule (6) ensures that this edge relation is sym-
metric (since we are dealing with an undirected graph);
the vertices of the graph are implicit—they are objects
that occur in the edge relation;!

e rule (7) says that any edge may belong to a Hamiltonian
cycle;

e rules (8) and (9) impose the restriction that no two edges
in a Hamiltonian cycle may start or end at the same ver-
tex, and rule (10) requires that each edge appears at
most once in a Hamiltonian cycle (recall that in(a,b)
and in(b,a) both encode the information that the edge
between a and b is included in a Hamiltonian cycle);

e rules (1) and (2) define a relation 7 (reachable) that is the
transitive closure of relation in;

o rule (3) ensures that every vertex in a Hamiltonian cycle
must be reachable from every other vertex.

Clearly, rules in the program can be grouped according to in-
tuitive meaning. Yet, considering these groups separately will
not produce “meaningful” logic programs under the answer
set semantics as discussed in the introduction. In this paper,
we show how we can view each of these groups of rules as a
separate module, and then use the SM operator [Ferraris et al.,
2011; 2009], along with a judicious choice of “intensional”
and “extensional” predicates to achieve a more accurate cor-
respondence between the intuitive reading of the groups of
rules and their model-theoretic semantics.

3 Operator SM

The SM operator was introduced by Ferraris et al. (2011;
2009). There are a few key differences between the origi-
nal stable model semantics and the semantics provided by the

I'This precludes graphs that include isolated vertices.
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SM operator that make the latter a convenient formalism for
facilitating a view of groups of rules in a program as separate
units or “modules”. First, the SM operator does not rely on
grounding, but instead operates on first-order sentence rep-
resentations of logic programs. Secondly, the semantics as
defined by SM allows for a distinction between “extensional”
and “intensional” predicates. Intuitively, “extensional” pred-
icates correspond to the input of the program, or module,
and “intensional” predicates correspond to output or auxiliary
concepts. Finally, unlike the original stable model semantics,
the SM operator does not involve a fixpoint calculation, but
instead defines stable models as models of a second-order for-
mula. The result of applying the SM operator to a first-order
sentence F' with intensional predicates p is a second-order
formula, denoted SMp[F].

The SM operator applies to first-order sentences, rather
than to logic programs. Yet, traditional logic programs can be
identified with the first-order sentences of a particular form.
For example, we understand the Hamiltonian Cycle program
presented in Section 2 as an abbreviation for the conjunction
of the following formulas

edge(a,d )N\ ... Nedge(c,c)

Vxy(edge(y,x) — edge(x,y))
Vxy((——in(x,y) Aedge(x,y)) — in(x,y))

Vxyz((in(x,y) Ain(x,z) A=(y =z)) = L)
Vayz((in(x,z) Ain(y,z) A=(x =y)) — L) an
Yooy ((in(x,y) Ain(y,x)) —= L)

Vxy(in(x,y) = r(x,y))

Vayz((r(x,2) Ar(z,y)) = r(x,y))

Vayzz'((—r(x,y) Aedge(x,z) Aedge(Z,y)) — L)

where a,d’,...c,c’ are object constants and x,y,z,7’ are vari-
ables.

The answer sets of any traditional program IT that contains
at least one object constant coincide with Herbrand models of

SM,, [IT], where p is the list of all predicates occurring in IT.

4 Modular Logic Programs

A first-order modular logic program is a collection of logic
programs, where the SM operator is used to compute models
of each individual logic program in the collection.

We call a formula of the form SMp[F], where p is a tuple
of predicate symbols and F is a traditional program, a defin-
ing module (of p in F) or a def-module. We can view any
traditional program IT as a def-module SM,,[IT], where p is
the list of all predicates occurring in IT. A first-order modu-
lar logic program (or, modular program) P is a finite set of
def-modules

{SMy, [F1],...,SMp, [Fn]}.

By o(P) we denote the set of all function and predicate sym-
bols occurring in a modular program P, also called the sig-
nature of P. A stable model of a modular program P is any
interpretation over o (P) that is a model of the conjunction of
all def-modules in P.

We now illustrate how modular programs capture the en-
coding (11) of the Hamiltonian Cycle so that each of its
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modules carries its intuitive meaning. The modular program
P, .consists of five def-modules:

SM_qeeledge(a,d’ ) A ... Nedge(c,c')N (12)
Vxy(edge(y,x) — edge(x,y)]

SM, [Vxy((——in(x,y) Aedge(x,y)) — in(x,y))] (13)
SM[Vxyz((in(x,y) Ain(x,z) A=(y =z)) = L)A (14)
Vayz((in(x,z) Ain(y,z) A=(x =y)) = L)A

Vxy((in(x,y) Ain(y,x)) = L)]
SM, [Vxy(in(x,y) — r(x,y))A (15)
Vayz((r(x,2) Ar(z,y)) = r(x,y))]

SM[VaxyzZ ((—r(x,y) A edge(x,z) Aedge(Z,y)) — L)] (16)

The def-modules shown above correspond to the intuitive
groupings of rules of the Hamiltonian Cycle encoding dis-
cussed in Section 2.

e A model of def-module (12) is any interpretation I over
o(Py.) such that the extension? of the edge predicate in
corresponds to the symmetric closure of the facts in (5).

e A model of def-module (13) is any interpretation / over
0 (Pyc) such that the extension of the predicate in in [ is
a subset of the extension of the predicate edge in I.

e A model of def-module (14) is any interpretation I over
o (P.) that satisfies the conjunction in (14).

o A model of def-module (15) is any interpretation / over
0 (P ), where relation r is the transitive closure of rela-
tion in.

e A model of def-module (16) is any interpretation I over
6 (P.) that satisfies the implication in (16).

Any interpretation over ¢(P,.) that satisfies the conditions
imposed by every module is a stable model of P..

5 Relating Modular Programs and
Traditional Programs

We view a traditional logic program as an abbreviation for a
first-order sentence formed as a conjunction of formulas of
the form

V(akﬂ/\---/\al/\ﬂalﬂ/\---/\—'am/\ (17)
1 A Amay = ar V- Vag),

which corresponds to rule (4). The symbol V denotes univer-
sal closure. We call the disjunction in the consequent of a
rule (17) its head, and the conjunction in the antecedent its
body. The conjunction ag,| A --- A a; constitutes the positive
part of the body. A modular program is called simple if for
every def-module SMp[F], every predicate symbol p occur-
ring in the head of a rule in F occurs also in the tuple p. For
instance, Py, is a simple modular program.

The dependency graph [Ferraris et al., 2009] of a simple
modular program P, denoted DGIP], is a directed graph that

e has all intensional predicates in P as vertices, and

2The extension of a predicate in an interpretation is the set of
tuples that satisfy the predicate in that interpretation.
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e has an edge from p to ¢ if there is a def-module
SMp[F] € P containing a rule with p occurring in the
head and g occurring in the positive part of the body.

We call a simple modular program P coherent if

(i) no two def-modules in P have overlapping intensional
predicates, and

(i1) every strongly connected component in the dependency
graph of P is contained within p for some def-module
SMp[F] in P.

From the symmetric splitting result from [Ferraris et al.,
2009] it follows that the Herbrand stable models of a coher-
ent modular program P that (i) contains at least one object
constant and (ii) has each predicate symbol in P occurring
in p for some def-module SMp[F], coincide with the answer
sets of the traditional program constructed as the conjunction
of all first order sentences occurring in this modular program.

The strongly connected components of the dependency
graph of P, each consist of a single vertex. It is easy to
check that the Hamiltonian Cycle program P, is coherent and
that all of its predicate symbols are intensional in some def-
module. Therefore, the Herbrand models of P, coincide with
the answer sets of (11) so that answer set solvers can be used
to find these models.

Arguably, when answer set practitioners develop their ap-
plications they intuitively associate meaning with compo-
nents of their programs. We believe that modular programs
as introduced here provide us with a suitable model for un-
derstanding the meaning of these components.

6 Conservative Extensions

In this section, we study the question of how to formalize
common rewriting techniques used in answer set program-
ming, such as projection, and argue their correctness.

For an interpretation / over signature ¢ and a function sym-
bol (or, predicate symbol) ¢ from & by #/ we denote a function
(or, relation) assigned to 7 by I. Let ¢ and X be signatures so
that o C X. For interpretation / over X, by /;; we denote the
interpretation over ¢ such that for every function or predi-
cate symbol ¢ in o, t! =tls. Let P and P’ be modular logic
programs such that the set of all predicates occurring in P is
a subset of the set of all predicates in P’ and both programs
share the same function symbols. We say that P’ is a conser-
vative extension of P if M — M| p) is a 1-1 correspondence

between the models of P’ and the models of P. It turns out that
we can replace def-modules in a modular program with their
conservative extensions and are guaranteed to obtain a con-
servative extension of the original modular program. Thus,
conservative extensions of def-modules allow us to establish
something similar to strong equivalence accounting for the
possibility of different signatures.

For example, consider the choice rule {p}, a shorthand for
the rule p < not not p. In some answer set programming di-
alects double negation is not allowed in the body of a rule. It
is then common to simulate a choice rule as above by intro-
ducing an auxiliary atom p and using the rules p <— —p and
p < —p. Itis easy to check that SM), 5[(—p — p) A (—p — )]
is a conservative extension of SM,[——p — p|. It follows that

we can replace the latter with the former within the context of

any modular program not containing the predicate symbol p,

and get a conservative extension of the original program.
Similarly, replacing def-module (16) in the Py, by

SMyt [ Vxy((—=r(x,y) Avi(x) Av2(y)) = L) A
Vxz(edge(x,z) = vI(x)) A (18)
VZ'y(edge(',y) = v2(y))]

results in a conservative extension of the original program.
This follows from a more general fact about the projection
rewriting stated below.

Let R be a rule (17) occurring in a traditional logic pro-
gram F, and let x be a non-empty tuple of variables occurring
only in the body of R. By a(x,y) we denote the conjunction
of all conjunctive terms in the body of R that contain at least
one variable from x, where y denotes all the variables occur-
ring in these conjunctive terms but not occurring in x. By f3
we denote the set of all conjunctive terms in the body of R
that do not contain any variables in x. By ¥ we denote the
head of R. Let ¢t be a predicate symbol that does not occur
in F. Then the result of projecting variables X out of R using
predicate symbol t is the conjunction

V((t(y) AB) = v) AVxy (a(x,y) = 1(y))-
We can project variables out of a traditional logic program by
successively projecting variables out of rules. For example,
first projecting z out of the traditional logic program in (16)
and then projecting 7’ out of the first rule of the resulting pro-
gram yields program (18).

Theorem Let SM,, ., [F] be a def-module and R be a rule
in F. Let X denote a non-empty tuple of variables occurring in
the body of R, but not in the head. If G is constructed from F
by replacing R in F with the result of projecting variables x
out of R using a predicate symbol py | that is not in the sig-
i1 |G is a conservative extension

This theorem can be restated in terms of traditional logic
programs using the fact that any traditional program can be
viewed as a def-module.

7 Conclusion

In this paper, we introduced first-order modular logic pro-
grams as a way of viewing logic programs as consisting of
many independent, meaningful modules. We also defined
conservative extensions, which like strong equivalence for
traditional programs, can be useful for reasoning about tra-
ditional programs and modular programs. We showed how
these concepts justify the common projection rewriting.
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