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Abstract
Multi-Agent Path Finding (MAPF) is well studied
in both AI and robotics. Given a discretized envi-
ronment and agents with assigned start and goal lo-
cations, MAPF solvers from AI find collision-free
paths for hundreds of agents with user-provided
sub-optimality guarantees. However, they ignore
that actual robots are subject to kinematic con-
straints (such as velocity limits) and suffer from
imperfect plan-execution capabilities. We there-
fore introduce MAPF-POST to postprocess the out-
put of a MAPF solver in polynomial time to cre-
ate a plan-execution schedule that can be executed
on robots. This schedule works on non-holonomic
robots, considers kinematic constraints, provides a
guaranteed safety distance between robots, and ex-
ploits slack to avoid time-intensive replanning in
many cases. We evaluate MAPF-POST in simu-
lation and on differential-drive robots, showcasing
the practicality of our approach.

1 Introduction
The Multi-Agent Path Finding (MAPF) problem is the fol-
lowing NP-hard combinatorial optimization problem. Given
an environment and agents with assigned start and goal lo-
cations, find collision-free paths for the agents from their
start to their goal locations that minimize the makespan.
Solving the MAPF problem has many applications, includ-
ing improving traffic at intersections, search and rescue, for-
mation control, warehouse applications, assembly planning,
and autonomous aircraft towing vehicles [LaValle, 2006;
Yu and LaValle, 2016; Morris et al., 2016].

Our objective is to develop a MAPF solver that com-
bines the advantages of MAPF solvers from AI and robotics.
MAPF solvers from AI typically work for agents without
kinematic constraints in discretized environments and per-
form well even in cluttered and tight environments. On the
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Figure 1: Example where two agents need to reach assigned goal
locations in a known environment.

other hand, MAPF solvers from robotics typically work for
robots with kinematic constraints in continuous environments
but do not perform well in cluttered and tight environments.
We base our approach on MAPF solvers from AI because
they solve MAPF problems for hundreds of agents in a rea-
sonable amount of time. If even faster MAPF solvers become
available, they can be used without modification.

Using the resulting MAPF plans naively on actual robots
has limitations. First, robots are subject to kinematic con-
straints (such as finite maximum velocity limits), that must
be taken into account to allow them to execute a MAPF plan.
Furthermore, robots suffer from imperfect plan-execution ca-
pabilities that need to be taken into account to avoid robot-
robot collisions or repeated replanning, which can be slow
due to the NP-hardness of the MAPF problem.

We therefore introduce MAPF-POST, a novel approach
that makes use of a simple temporal network to postprocess
a MAPF plan in polynomial time to create a plan-execution
schedule that works on non-holonomic robots, takes their
maximum velocities into account, provides a guaranteed
safety distance between them, and exploits slack (defined as
the difference of the latest and earliest entry times of loca-
tions) to absorb imperfect plan executions and avoid time-
intensive replanning in many cases. We evaluate MAPF-
POST in simulation and on differential-drive robots, show-
casing the practicality of our approach.

2 Our Approach: MAPF-POST
We demonstrate our ideas with a simple running example
of two agents in a narrow corridor of a grid-world with
1m× 1m cells, see Figure 1. Agent 1 (which has to move
from A to E) needs to pass Agent 2 (which has to move
fromB toD) to reach its goal location, which requires Agent
2 to move into an alcove temporarily, no matter what the
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maximum velocities and plan-execution capabilities of the
agents are. We can use a MAPF solver from AI to discover
such critical intermediate configurations and then use a post-
processing step to create a plan-execution schedule that takes
their maximum velocities and imperfect plan-execution capa-
bilities into account.

In Step 1, we use a MAPF solver from AI to find a MAPF
plan consisting of collision-free paths for all agents, assum-
ing uniform edge lengths and synchronized agent movement
from vertex to vertex at discrete timesteps. However, this
MAPF plan is nearly impossible to execute safely on actual
robots due to their imperfect plan-execution capabilities. It is
communication-intensive for the agents to remain perfectly
synchronized as they follow their paths. Their individual
progress will thus deviate from the MAPF plan, for exam-
ple, because the edges have non-uniform lengths or velocity
limits (due to kinematic constraints or safety concerns) or be-
cause the agents cannot move at a uniform velocity (due to
kinematic constraints, slip and other robot and environmental
limitations). For example, if Agent 2 is slightly slower than
Agent 1 in our running example, the agents can collide while
they execute their first action. Controlling the velocities of
the agents and enforcing safety distances between them can
avoid collisions. In Step 2, we use MAPF-POST to create
a plan-execution schedule that takes edge lengths and veloc-
ity limits into account to provide a guaranteed safety distance
between the agents. In Step 3, during plan execution, we can
exploit slack to absorb imperfect plan executions and avoid
time-intensive replanning in many cases.

2.1 MAPF
The MAPF problem can be stated as follows. Given a graph
with vertices (that correspond to locations) and unit-length
edges connecting two different vertices each (that correspond
to passages between locations in which agents cannot pass
each other) as well as a set of agents with assigned start and
goal vertices each, find collision-free paths for the agents
from their start to their goal vertices (where the agents re-
main) that minimize the makespan. At each timestep, an
agent can either wait at its current vertex or traverse a single
edge. Two agents collide when they are at the same vertex
at the same timestep or traverse the same edge at the same
timestep in opposite directions.

We use the following definitions to formalize the MAPF
problem. The graph is G = (S,E), the set of K agents is
1, . . . ,K , the start vertex of agent j is sj ∈ S, and its goal
vertex is gj ∈ S. Let sjt be the vertex of agent j at timestep t.
A path pj = [sj0, . . . , s

j
T j ] for agent j is feasible if and only if

a) agent j starts at its start vertex sj and ends at its goal vertex
gj and remains there; and b) every action is either a move
action along an edge or a wait action. A MAPF plan consists
of feasible paths for all agents that do not collide with each
other. The makespan of a MAPF plan is the earliest timestep
when all agents have reached their goal vertices and remain
there. A MAPF plan with the minimum makespan is called
optimal.

The optimal MAPF plan for our running example is p1 =
[A,B,C,D,E], p2 = [B,C, F,C,D] and has makespan 4.
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Figure 2: TPG for our running example.
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Figure 3: Augmented TPG for our running example. The small cir-
cles represent the safety markers.

Approximating optimal MAPF plans within any constant fac-
tor less than 4/3 is NP-hard [Ma et al., 2016] but subopti-
mal MAPF plans (if they exist) can be found in polynomial
time [Röger and Helmert, 2012; Kornhauser et al., 1984].
Bounded w-suboptimal MAPF solvers from AI can approxi-
mate optimal MAPF plans within a factor of w for hundreds
of agents in a reasonable amount of time [Barer et al., 2014],
although they often run faster when minimizing the flow time
rather than the makespan. Our post-processing step can use
a different optimization criterion and different assumptions
about the lengths of the edges than the MAPF solver.

2.2 Temporal Plan Graph
We now present an algorithm for converting a MAPF plan to a
data structure called the Temporal Plan Graph (TPG). A TPG
is a directed acyclic graph G = (V, E). Each vertex v ∈ V
represents an event, which corresponds to an agent entering
a location. Each edge (v, v′) ∈ E is a temporal precedence
between events v and v′ indicating that event v must be sched-
uled before event v′. Basically, the TPG imposes two types
of temporal precedences between events as dictated by the
MAPF plan. Type 1: For each agent, precedences enforce
that it enters locations in the order given by its path in the
MAPF plan. Type 2: For each pair of agents and each lo-
cation that they both enter, precedences enforce the order in
which the two agents enter the location in the MAPF plan.
A plan-execution schedule assigns a time to each event, cor-
responding to an entry time for each location. Agents that
execute a plan-execution schedule enter all locations at these
entry times. It is possible to prove that the agents do not col-
lide if they execute a plan-execution schedule that is consis-
tent with these precedences. The MAPF plan discretizes time
and specifies a total order among the events. The TPG, how-
ever, does not discretize time and specifies only a partial or-
der among the events, which provides it with the flexibility
to take into account both maximum velocities and imperfect
plan-execution capabilities of actual robots.

Figure 2 shows the TPG for our running example. In gen-
eral, the TPG for a MAPF plan with a makespan of T has
O(KT ) location vertices andO(K2T ) edges and can be con-
structed in O(K2T 2) time.

We now add additional vertices (called safety markers) to
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the TPG to provide a guaranteed safety distance between
agents. The safety markers correspond to new locations and
allow us to relax the meaning of the edges in the TPG. Each
edge (v, v′) ∈ E can now be a precedence indicating that
event v must be scheduled no later than (rather than before)
event v′. Each Type 1 edge e = (v, v′) ∈ E between loca-
tion vertices v and v′ of the TPG (with associated agent j and
associated length l(e)) is split into three Type 1 edges (all as-
sociated with agent j), namely from the first location vertex to
a new safety marker (with associated length δ), from there to
another new safety marker (with associated length l(e)− 2δ),
and from there to the second location vertex (with associated
length δ). The user-provided parameter δ > 0 must be chosen
so that the length of every edge in E is greater than 2δ. Each
Type 2 edge between two location vertices is now changed
to a Type 2 edge from the safety marker directly after the
first location vertex to the safety marker directly before the
second location vertex. We refer to the resulting TPG as the
augmented TPG G′ = (V ′, E ′). (The location vertices could
easily be removed from an augmented TPG but we keep them
for ease of exposition.) Figure 3 shows the augmented TPG
for our running example.

We now associate quantitative information with the edges
of the augmented TPG, transforming it into a Simple Tempo-
ral Network (STN). STNs are widely used for temporal rea-
soning in AI [Dechter et al., 1991]. An STN is a directed
acyclic graph G′ = (V ′, E ′). Each vertex v ∈ V ′ represents
an event. Each edge e = (v, v′) ∈ E ′, annotated with the STN
bounds [LB(e), UB(e)], is a simple temporal constraint be-
tween events v and v′ indicating that event v must be sched-
uled between LB(e) and UB(e) time units before event v′.
We add two additional vertices. XS represents the start event
and therefore has edges annotated with the STN bounds [0, 0]
to all vertices without incoming edges. Similarly, XF repre-
sents the finish event and therefore has edges annotated with
the STN bounds [0,∞] to all vertices without outgoing edges.

The STN bounds allow us to express non-uniform edge
lengths or velocity limits (due to kinematic constraints or
safety concerns). We now explain which STN bounds to as-
sociate with the edges of the augmented TPG to transform it
into an STN. Each edge (v, v′) ∈ E ′ is a precedence indi-
cating that event v must be scheduled no later than event v′.
Thus, we have to associate the STN bounds [0,∞] with all
edges. However, we can assign tighter STN bounds to Type
1 edges. Consider any Type 1 edge e = (v, v′) with associ-
ated agent j and associated length l(e). The lower STN bound
corresponds to the minimum time needed by agent j for mov-
ing from the location associated with vertex v to the location
associated with vertex v′, and the upper STN bound corre-
sponds to the maximum time. From now on, we assume that
agent j has a finite maximum velocity limit v∗max(e) for the
move, for example, due to the kinematic constraints of agent j
or safety concerns about traversing edge e with high velocity.
Then, agent j needs at least l(e)/v∗max(e) time units to com-
plete the move, meaning that it enters the location associated
with vertex v′ at least l(e)/v∗max(e) time units after it enters
the location associated with vertex v, resulting in a tighter
lower STN bound than 0. Thus, we associate the STN bounds
[l(e)/v∗max(e),∞] with the edge. The upper STN bound re-
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Figure 4: STN for our running example.

mains infinity due to the absence of a minimum velocity limit,
although we can easily impose one if necessary, for example,
for robotic planes or boats.

Figure 4 shows a part of the STN for our running example.
The length of all edges in E is 1m, the maximum velocity
limit of Agent 1 is 1/4m/s, and the maximum velocity limit
of Agent 2 is 1/16m/s. We use δ = 1/4m. The simple tempo-
ral constraint between the safety marker after location vertex
B2

0 and the safety marker before location vertex B1
1 enforces

that Agent 1 cannot move at maximum velocity until it en-
ters location B since it needs to let the slower Agent 2 exit
location B before it enters the location.

We compute a plan-execution schedule that is consistent
with the simple temporal constraints of the STN using graph-
based optimization or linear programming. We make an as-
sumption (called the uniform velocity model) that the veloc-
ity of an agent is constant during the traversal of each Type
1 edge in the STN, which means that the agent might have
to change its velocity instantaneously at location vertices or
safety markers. The following two theorems about the exis-
tence of a plan-execution schedule and a guaranteed safety
distance can be proved.
Theorem 1. There always exists a plan-execution schedule
that is consistent with the simple temporal constraints of the
STN for a MAPF plan and assigns finite plan-execution times
to all vertices in the augmented TPG.

Theorem 2. Consider a plan-execution schedule that is con-
sistent with the simple temporal constraints of the STN for
a MAPF plan and assigns finite plan-execution times to all
vertices in the augmented TPG. Then, point agents always
maintain a safety distance of at least 2δvmin/vmax > 0 with
respect to graphG (and thus do not collide) if they execute the
plan-execution schedule under the uniform velocity model,
where vmin and vmax are the minimum and maximum veloci-
ties of any agent when traversing any Type 1 edge.

2.3 Plan Execution
Point agents can execute the plan-execution schedule under
the uniform velocity model without colliding if they make
sure that they enter the location associated with a vertex at
the entry time given by the plan-execution schedule. Un-
fortunately, this is not likely to happen due to the imper-
fect plan-execution capabilities of the agents. However, it
is unnecessary to replan (which is slow) each time in these
cases. Rather, one can construct another STN for the remain-
der of the MAPF plan, calculate a new plan-execution sched-
ule (which is fast) and replan only if no such plan-execution
schedule exists, which can significantly reduce the number of
times replanning is needed.
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(a) Agent simulation. (b) V-REP simulation. (c) Implementation on Create2 robots.

Figure 5: Screenshots of the three validation settings for our running example.

3 Experimental Validation

We used the ECBS+HWY solver [Cohen et al., 2015] as
a bounded suboptimal MAPF solver, extended to support
non-holonomic agents. We implemented MAPF-POST in
C++ using the boost graph library for the STN creation,
and GUROBI as the LP solver, all running on a PC with
an i7-4600U 2.1GHz processor and 12GB RAM. We vali-
dated our approach experimentally in three different settings,
namely using an agent simulation (which implements the
uniform velocity model perfectly using holonomic agents),
a robot simulation and an implementation on actual robots,
which all used a grid-world with 1m× 1m cells and δ =
0.4m. We varied the size of the grid-world, placement of
blocked cells, number of agents, and the maximum transla-
tional and rotational velocities of the agents. Figure 5 shows
screenshots of our running example for all three settings.

We verified the schedule on actual robots using five
differential-drive (and thus non-holonomic) Create2 robots
from iRobot. A central PC used roscore to run MAPF-
POST and connected via WiFi to the robots. The robots were
equipped with a single-board computer using Ubuntu 14.04
with ROS Jade to run all other software. We ran the experi-
ments in a space of approximately 5m× 4m equipped with
a 12-camera VICON MX motion capture system. The robot
simulation used a model of the Create2 robots added to the
robotics simulator V-REP. The cell sizes are sufficiently large
so that we did not need to take the kinematic constraints of
the robots other than the maximum velocity limits into ac-
count. Videos of sample experiments can be found at http:
//idm-lab.org/bib/abstracts/Koen16g.html.

In one simulation experiment, we had 100 robots navigate
in a warehouse-like environment similar to the one in [Wur-
man et al., 2008]. The maximum translational and rota-
tional velocities of all robots were 1m/s and 2 rad/s. We
used highways for the ECBS+HWY solver with ECBS sub-
optimality bound 1.5 and highway suboptimality bound 2.1.
Computing a MAPF plan and running MAPF-POST took
about 6min (despite the large environment and many robots)
and resulted in a makespan of 88 s. The majority of the run-
time was spent on solving the linear program due to the large
suboptimality bounds of ECBS+HWY. When we maximized
the minimum velocity, the actual minimum safety distance
was 0.53m and thus much higher than the safety distance of
0.4m guaranteed by Theorem 2.

4 Related Work
The MAPF problem has been studied in AI, robotics, and
theoretical computer science, see [Wagner, 2015] for an ex-
tensive overview. It can be solved by reduction to other
well-studied problems (e.g. [Surynek, 2015; Yu and LaValle,
2013; Erdem et al., 2013]). Optimal dedicated MAPF solvers
include Enhanced Partial Expansion A* [Goldenberg et al.,
2014], Conflict-Based Search [Sharon et al., 2015], and
M* [Wagner, 2015]. Dedicated suboptimal MAPF solvers in-
clude Push and Rotate [de Wilde et al., 2013], TASS [Khor-
shid et al., 2011], and BIBOX [Surynek, 2009]. Other ap-
proaches combine paths of individual agents (e.g. [Sturtevant
and Buro, 2006; Wang and Botea, 2011]).

The research reported in [Wagner, 2015] and [Cirillo et
al., 2014a] uses a different approach than ours but shares
many of our objectives. Lattice-based planning takes kine-
matic constraints into account during planning [Cirillo et al.,
2014b]. Probabilistic approaches, such as Dec-SIMDP [Melo
and Veloso, 2011] and UM* [Wagner, 2015], take into ac-
count the imperfect plan-execution capabilities of robots but
do this during planning. It is possible to plan for each agent
individually and use a postprocessing approach that deter-
mines velocity profiles for given paths that obey the kine-
matic constraints of robots and avoid collisions while mini-
mizing makespan [Peng and Akella, 2005]. An approach such
as [LaValle and Hutchinson, 1998] avoids replanning in case
of changes to the optimization criterion under the assumption
that robots are able to change their velocities instantaneously.

5 Conclusions
In this paper, we introduced MAPF-POST, a novel approach
that makes use of a simple temporal network to postprocess
the output of a MAPF solver from AI in polynomial time
to create a plan-execution schedule that can be executed on
actual robots. It takes kinematic constraints of the robots
into account, provides a guaranteed safety distance between
robots, and exploits slack to avoid time-intensive replanning
in many cases. Various extensions of our approach are possi-
ble. For example, we have extended it to accommodate user-
provided safety distances [Hönig et al., 2016b]. We also in-
tend to extend it to take additional kinematic constraints into
account, such as the maximum accelerations important for
heavy robots. Finally, we intend to exploit slack for replan-
ning and creating a hybrid between online and offline plan-
ning.
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