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Abstract

The ability of case-based reasoning systems to
solve novel problems depends on their capability to
adapt past solutions to new circumstances. How-
ever, acquiring the knowledge required for case
adaptation is a classic challenge for CBR. This
motivates the use of machine learning to generate
adaptation knowledge. Much adaptation learning
research has studied the case difference heuristic
(CDH) approach, which generates adaptation rules
from pairs of cases in the case base by ascribing
observed differences in case solutions to the differ-
ences in the problems they solve, to generate rules
for adapting similar problem differences. Exten-
sive research has successfully applied the CDH ap-
proach to adaptation rule learning for case-based
regression (numerical prediction) tasks. However,
classification tasks have been outside of its scope.
The work presented in this paper addresses that
gap by extending CDH-based learning of adapta-
tion rules to apply to cases with categorical fea-
tures and solutions. It presents the generalized case
value heuristic to assess case and solution differ-
ences and applies it in an ensemble-based case-
based classification method, ensembles of adapta-
tions for classification (EAC), built on the authors’
previous work on ensembles of adaptations for re-
gression (EAR). Experimental results support the
effectiveness of EAC.

1 Introduction

Case-based reasoning (CBR) systems (e.g., Lopez de
Mantaras et al. [2005]) solve problems by retrieving prior
cases and adapting their solutions to fit new circumstances.
The flexibility of CBR systems to address novel problems
derives from their case adaptation knowledge. However,
endowing CBR systems with the required knowledge has
proven difficult; addressing the case adaptation problem re-
mains a key challenge for CBR. One approach to addressing
this challenge has been the application of machine learning.
A wide range of methods has been investigated. For example,
McSherry [1998] proposes generating adaptations from se-
lected case triples, Leake et al. [1996] propose applying CBR
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to case adaptation, Patterson et al. [2002] propose learning
adaptations by linear regression on the differences between
the top nearest neighbors of an input query, Policastro et al.
[2008] propose training a set of regression learners for esti-
mating initial solutions and adjusting/combining their values,
Craw et al. [2001] and Jarmulak et al. [2001] propose subdi-
viding the case base into a small set of probe cases, used to
retrieve cases from which to generate adaptation rules, and
Wiratunga et al. [2006] propose applying tree learning algo-
rithms. Interactive learning methods have been proposed as
well (e.g., Cordier et al. [2008]).

An especially rich research current has applied methods
based on the case difference heuristic (CDH), first proposed
by Hanney and Keane [1996]. CDH methods learn case adap-
tation rules from knowledge already contained in the CBR
system’s case base. Given a pair of cases, the case differ-
ence heuristic approach compares the problems they address,
and ascribes the difference in their solutions to the differences
in those problems. It then generates a new adaptation rule,
used to adapt retrieved cases when their problems and the in-
put problem have similar differences. The rule adjusts the
retrieved case’s solution by the solution difference observed
when the rule was generated.

The case difference heuristic has been widely and suc-
cessfully applied to regression (numerical prediction) tasks
(e.g., [McSherry, 1998; McDonnell and Cunningham, 2006;
Jalali and Leake, 2013]), and some research has pursued
difference-based methods for structured cases [Badra et al.,
2009; M uller and Bergmann, 2015]. Previous CDH work
relied on exact matching for comparing non-numeric prob-
lem features. In that setting, it is relatively straightforward to
calculate the differences between problem descriptions and
between solutions. This paper presents research by Jalali et
al. [2016] on extending the CDH approach to categorization
tasks and to problem descriptions in which non-numeric fea-
tures are important, as often holds for categorization prob-
lems. It includes two main contributions. The first is the
Generalized Case Difference Heuristic (GCDH), which de-
termines differences using the heterogeneous value difference
metric defined by the authors based on the classic value dis-
tance metric [Stanfill and Waltz, 1986]. Because the value-
distance metric is a “knowledge light” approach, requiring
only statistical information, GCDH enables generating adap-
tation rules with no additional domain knowledge.
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Automatically generating adaptation rules from the case
base transforms the classic adaptation setting for CBR:
Rather than relying on a small set of hand-crafted rules,
a CBR system has access to many rules, but their accu-
racy may not be assured. The second main contribution of
the work addresses that problem with an ensemble-based
method for applying the learned adaptation rules, Ensem-
ble of Adaptations for Classification (EAC). EAC generalizes
our prior work on ensemble-based adaptation, Ensembles of
Adaptations for Regression (EAR) [Jalali and Leake, 2013;
2015b]. An EAR implementation is available as a Weka plu-
gin [Jalali and Leake, 2015al. This paper presents an evalu-
ation of both the GCDH approach and EAC. Results support
the accuracy benefit of EAC.

2 The Case Difference Heuristic Approach

The case Difference Heuristic (CDH) generates adaptation
rules from the case base by comparing pairs of cases. If
their solutions differ, CDH ascribes the solution difference
to the differences in the problems each addresses. It gener-
ates a rule, applicable when an input problem and retrieved
case have similar problem differences, to adapt the retrieved
solution by the corresponding solution difference. As an ex-
tremely simplified example, in the rent prediction domain, if
apartment A has one more bedroom than similar apartment
B, and the rent for A is $100 more, the CDH approach might
generate: If an apartment has one bedroom fewer than the
most similar prior case R, subtract $100 from R’s rent.

Generating rules with the CDH method depends on three
choices: (1) how to characterize the problem differences, (2)
what solution modification should be generated from an ob-
served solution difference (possibilities for numerical predic-
tion include, e.g., adjusting by a fixed value or fixed percent,
or applying a more complex formula), and (3) how to choose
the pairs of cases from which to generate rules. The work
in this paper focuses on (1) and (3). Applying the resulting
rules also depends on an additional choice, (4) how to select
the case(s) to adapt.

Our prior work on Ensemble of Adaptations for Regres-
sion (EAR) focused on (3) and (4). For (3) we tested three
alternatives: Local cases-Local neighbors builds adaptation
rules by comparing cases in vicinity of the query; Global
cases-Local neighbors builds rules by comparing every case
in the case base with a top few nearest neighbors; and Global
cases-Global neighbors builds rules by comparing every case
in the case base with all other cases in the case base. EAC
uses Global cases-Local neighbors.

2.1 The Need to Address Categorical Features

The case difference heuristic has proven effective for regres-
sion tasks. However, problems arise for domains with cate-
gorical input features or target values. When assessing sim-
ilarity of categorical input features, prior CDH approaches
resort to exact matching. The lack of richer handling of cate-
gorical input features can limit effectiveness even for regres-
sion tasks. For example, in the apartment rental domain, rents
may depend on the type of flooring, e.g., hardwood, laminate,
vinyl, or carpet. A system relying on exact matching for case
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similarity cannot differentiate between four apartments that
have identical features except for each having different floor-
ing, even though an apartment with hardwood flooring might
be more expensive. For problems with categorical target val-
ues (i.e., classification tasks), prior CDH methods provide no
guidance.

Determining similarity for categorical features is also im-
portant for selecting adaptation rules to apply. For example,
consider adapting the rent from a retrieved case with vinyl
flooring to an apartment with hardwood flooring, with two
adaptation rules available, neither an exact match:

Rulel: If input flooring is carpet and R’s flooring type is
hardwood, then adapt price by subtracting $300.

Rule2: If input flooring is laminate and R’s flooring type is
hardwood, then adapt price by subtracting $200.

Here, Rule? is intuitively more appropriate to address the dif-
ferences between the input query and the retrieved case com-
pared to Rulel, and should be selected.

3 The Generalized Case Difference Heuristic
Approach

The Generalized Case Difference Heuristic (GCDH) ap-
proach [Jalali et al., 2016] extends the Case Difference
Heuristic (CDH) to handle categorical features and target val-
ues. It calculates the differences by the heterogeneous value
difference metric. Depending on whether case or rule differ-
ences are being calculated, the heterogeneous value differ-
ence metric uses the Case or Rule Value Distance Heuristic
Metric (Case VDHM/Rule VDHM). In this section we intro-
duce the heterogeneous value difference metric by focusing
mainly on its application on case retrieval (i.e., case VDHM),
However, with an appropriate rule representation, the process
for Rule VDHM is very similar to Case VDHM.

Representing problem differences: As in other CDH re-
search, we treat input problem descriptions as represented by
feature vectors, with each component of the vector represent-
ing the difference in that component. From each pair of cases,
GCDH generates a single rule in the form of Eq. 1:

(A.fl""’Afk) = Ay (1

In Eq. 1, f1, ..., fx, and ¢ represent the input and target fea-
tures in the underlying domain respectively, and A, repre-
sents the distance between the given pair of values for feature
x, if x is numeric, and the ordered pair of given values of
feature x (e.g., (¢;,t;)) if x is a categorical feature.

Source case selection: Source case retrieval is an integral
component of GCDH. During rule generation, GCDH deter-
mines the cases from which adaptation rules should be gen-
erated; during prediction, it determines the cases from which
the solution is generated. GCDH calculates the distance be-
tween two cases ¢; and ¢ as:
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=

casediff(cy, co) = (Z | CaseVDHM;(c1.4,ca.4) |?)
i=1

(2)

The Case Value Distance Heuristic Metric Case VDHM

calculates the distance between values a and b of feature f as

follows (for space we abbreviate Case VDHM as CVDHM):

1 if a or b is unknown
1 if f is categorical and
aor b is not observed
if fis categorical

CVDHDM;(a,b) =
vdmy(a,b)
min(1,difff(a, b)) if f is numeric
3)
Here vdm y is the Value Difference Metric VDM, [Stanfill and
Waltz, 1986], which calculates the distance between values a
and b of the categorical feature f as:

c

vdmy(a,b) = Z

c=1

In Eq. 4, Ny, is the number of cases that have value a for
feature f, Ny 4 . is the number of cases that have value a for
feature f and target value ¢, and C is the number of distinct
target classes in the domain. Also, diff(a, ) is calculated as:

Nf,a,c _
Nya

Nipc

4
Npo 4

. la—0b]
diff b)y= — 5
1y (a,b) o, Q)
Where o is the standard deviation of feature f. If the values
of feature f follow a normal distribution then 95% of them are
expected to fall within a 40 distance range of each other.

4 Ensemble of Adaptations for Classification

Ensemble of Adaptations for Classification is an extension
to Ensemble of Adaptations for Regression (EAR), applying
the EAR approach to domains with categorical features and
target values. The EAR configuration questions on source
case selection and selecting cases from which to generate
adaptations, discussed in Section 2, apply to EAC as well.
In addition, EAC requires choosing the cases used to train
CaseVDHM and RuleVDHM.

EAC trains CaseVDHM by using every case in the case
base. To train Rule VDHM it only uses the generated rules,
comparing every case with its top nearest neighbors.

4.1 Estimating the Target Value with EAC

Algorithm 1 summarizes EAC’s value estimation process.
The CaseHVDM function is passed as an input to the algo-
rithm. NeighborhoodSelector and RankRules are the case and
rule retrieval methods respectively. HVDMRuleTrain is the
“Global cases-Local neighbors” alternative for learning the
distance between pairs of values of categorical features that
are the building blocks of the adaptation rules, and Filter-
Rules filters out the non-applicable rules from the set of gen-
erated rules by removing those whose first element of the con-
sequent pair does not match the value of the selected source
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Algorithm 1 EAC’s basic algorithm

Input:

Q: query

n: number of source cases to adapt to solve query
r: number of rules to be applied per source case
C B: case base

CaseHV DM: categorical value similarities
Output: Estimated solution value for Q

CasesToAdapt < NeighborhoodSelector(Q,n,C B,C'ase HV D M)
RuleHV DM < HVDMRuleTrain(C B)
NewRules: < RuleGenerator(Q,CasesToAdapt,C B)
for cin CasesToAdapt do
ApplicableRules < Filter(N ew Rules)
RankedRules «<— RankRules(Applicable Rules,c,Q,Rule HV D M)
SolutionEstimate(c) < MajorityRuleVote(RankedRules, ¢, 1)
end for
return MajorityVote(Ucc CasesToAdapt Solution Estimate(c))

Trained
CaseVDHM

——

Source case

-input
J Query pairs l

Rules to
apply

Top nearest
neighbors

Final

case base q
solution

Cases for
rule
generation

Trained
RuleVDHM

Figure 1: The EAC process

case. MajorityRuleVote returns the majority value of the sec-
ond element of the consequent pair of the retrieved rules and
MajorityVote returns the majority value of the adjusted source
cases’ values. Ties are broken arbitrarily.

4.2 EAC’s Process

Fig. 1 illustrates EAC’s process. At the fist step, EAC trains
CaseVDHDM for case retrieval. Next, it uses Case VDHM
to select the nearest neighbors of the input query and the
cases from which adaptation rules will be generated. After
generating the adaptation rules, EAC trains Rule VDHM to
learn the distance between pairs of pairs of categorical val-
ues. The newly trained Rule VDHM along with the differ-
ences between the input query and the source cases are used
to select the rules that should be applied. The value of each
source case is adapted by applying an ensemble of adaptation
rules and the final estimation will be generated by combining
the adjusted values of source cases using majority voting.

S Experiments

We conducted experiments to study the accuracy of EAC and
how it is affected by EAC’s ensemble-based approach and the
training to test data size ratio.

5.1 Experimental Design

EAC was implemented using Spark MLIib [Meng et al.,
2015], Apache Spark’s scalable machine learning library. It
provides classification methods, grid search for tuning pa-
rameters, and cross validation for testing. Experiments test
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Domain name EAC RF kNN-CYVDHM NB
Balance 15.98% | 16.76% 25.26% 44.51%
Bankruptcy 1.35% 2.05% 3.43% 13.51%
Car 3.95% 6.25% 6.50% 30.71%
Credit 15.64% | 17.10% 18.11% 30.81%

Table 1: Estimation error of EAC, kNN-CVDHM, RF, and NB meth-
ods in four sample domains

accuracy in four classification domains from UCI repository
[Lichman, 2013]: Balance, Bankruptcy, Car, and Credit.

The experiments compare the percent accuracy of EAC and
three baseline classification methods: Random Forest (RF),
Naive Bayes (NB), and kNN, using Apache Spark implemen-
tations of Random Forrest and Naive Bayes. The kNN ver-
sion used, kNN-CVDHM, is an implementation of kNN with
CaseVDHM as the similarity measure. kNN — CVDHM is
a special case of EAC in which no adaptation rule is applied.

5.2 Experimental Results

Comparative accuracy
Table 1 shows the accuracy of EAC and the other classifica-
tion methods on the four sample domains from Section 5.1.

As shown, EAC achieves the best accuracy and Random
Forest achieves second best in all domains. EAC shows 5%,
34%, 37%, and 8% decreases in estimation error over Ran-
dom Forest in the Balance, Bankruptcy, Car, and Credit do-
mains respectively.

EAC shows 37%, 60%, 38%, and 14% improvement
in estimation error over kNN — CVDHM in Balance,
Bankruptcy, Car, and Credit domains respectively. For do-
mains with only categorical features (i.e., all domains except
Credit), we note EAC’s gain over kNN — CVDHM is higher
when the curse of dimensionality is more severe. For the Bal-
ance and Car domains, on average there is one case per n-
dimensional unit of the problem specification space while this
decreases to 0.3 for Bankruptcy domain. However, the possi-
ble effect of dimensionality needs more investigation before
a general conclusion will be possible.

Effect of applying ensembles of adaptations

To assess the effect of using ensembles of adaptations, we im-
plemented an ablated version of EAC named EAC-a, which
applies a single adaptation to adjust the source case values.
Note that EAC-a only limits the number of adaptations to be
applied per source case and not the number of source cases
used for building the solution. Figure 2 depicts the percent-
age decrease in estimation error for EAC and EAC-a over
kNN — CVDHM, with identical tunings of EAC-a and EAC.
In all test domains EAC outperforms EAC-a. For the Car do-
main, applying a single adaptation (EAC-a), rather than an
ensemble of adaptations (EAC), results in average accuracy
slightly lower than that of kNN — CVDHM, which uses no
adaptations.

The effect of Test/Train Ratio on EAC’s performance

Figure 3 shows the percent improvement of EAC,
kNN — CVDHM, and RF over NB in the car evaluation do-
main for different ratios of training vs test data size. As the
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Figure 3: Percent improvement of EAC, RF, and kNN-CVDHM
over NB as function of training size to case base size ratio, for the
Car domain

training versus test size ratio increases, EAC best benefits
from the training data, with kNN — CVDHM second, but
fairly close to Random Forest. For smaller training sets, Ran-
dom Forest can outperform EAC (when training size ratio is
10% and 30%). Trends in other domains were similar.

6 Conclusions and Future Research

This paper presented Ensemble of Adaptations for Classifica-
tion, a method for automatic adaptation learning in domains
with categorical input features and target values. EAC ap-
plies the Generalized Case Difference Heuristic approach, an
extension to the case difference heuristic.

Future work includes exploring other categorical similarity
measures and other variations of EAC’s rule generation. To
help alleviate the processing cost of EAC, we are applying
ideas developed in BEAR [Jalali and Leake, 2015b] for in-
creased scalability of EAC for large case bases. As part of this
goal, we are developing Locality Sensitive Hashing methods
for domains with categorical input features [Jalali and Leake,
2017].
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