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Abstract
We discuss some recent results on Thompson sam-
pling for nonparametric reinforcement learning in
countable classes of general stochastic environ-
ments. These environments can be non-Markovian,
non-ergodic, and partially observable. We show
that Thompson sampling learns the environment
class in the sense that (1) asymptotically its value
converges in mean to the optimal value and (2)
given a recoverability assumption regret is sublin-
ear. We conclude with a discussion about optimal-
ity in reinforcement learning.

1 Introduction
In reinforcement learning (RL) an agent interacts with an un-
known environment with the goal of maximizing rewards.
Recently reinforcement learning has received a surge of in-
terest, triggered by its success in applications such as simple
video games [Mnih et al., 2015]. However, theory is lag-
ging behind application and most theoretical analyses have
been done in the bandit framework and for Markov decision
processes (MDPs). These restricted environment classes fall
short of the full reinforcement learning problem and theoret-
ical results usually assume ergodicity and visiting every state
infinitely often. Needless to say, these assumptions are sat-
isfied only for the simplest applications. The goal of this
line of work is to lift these restrictions; we consider gen-
eral reinforcement learning [Hutter, 2005; Lattimore, 2013;
Leike, 2016b] with the aim to understand the fundamental
underlying problems in their generality. Our approach to gen-
eral RL is nonparametric: we only assume that the true en-
vironment belongs to a given countable environment class.
However, to provide insightful results we need to leave com-
putational considerations aside for now.

We are interested in agents that maximize rewards opti-
mally. Since the agent does not know the true environment
in advance, it is not obvious what optimality should mean.
We discuss two different notions of optimality: asymptotic
optimality and worst-case regret.

Asymptotic optimality in the sense of Lattimore and Hut-
ter [2011] requires that asymptotically the agent learns to act

∗This is an abriged version of Leike et al. [2016a]

optimally, i.e., that the discounted value of the agent’s policy
π converges to the optimal discounted value for every envi-
ronment from the environment class. Asymptotic optimality
can be achieved through an exploration component on top of
a Bayes-optimal agent [Lattimore, 2013, Ch. 5] or through
optimism [Sunehag and Hutter, 2015].

Asymptotic optimality in mean is essentially a qualitative
version of probably approximately correct (PAC) that comes
without a concrete convergence rate: for all ε > 0 and δ > 0
the probability that our policy is ε-suboptimal converges to
zero (at an unknown rate). Eventually this probability will be
less than δ forever thereafter. Since our environment class can
be very large and non-compact, concrete PAC/convergence
rates are likely impossible.

Regret is how many expected rewards the agent forfeits by
not following the best informed policy. Different problem
classes have different regret rates, depending on the struc-
ture and the difficulty of the problem class. Multi-armed
bandits provide a (problem-independent) worst-case regret
bound of Ω(

√
KT ) where K is the number of arms [Bubeck

and Bianchi, 2012]. In Markov decision processes (MDPs)
the lower bound is Ω(

√
DSAT ) where S is the number of

states, A the number of actions, and D the diameter of the
MDP [Auer et al., 2010]. For a countable class of environ-
ments given by state representation functions that map histo-
ries to MDP states, a regret of Õ(T 2/3) is achievable assum-
ing the resulting MDP is weakly communicating [Nguyen et
al., 2013]. A problem class is considered learnable if there is
an algorithm that has a sublinear regret guarantee.

This paper continues a narrative that started with the defini-
tion of the universal Bayesian agent AIXI [Hutter, 2000] and
the proof that it satisfies various optimality guarantees [Hut-
ter, 2002]. Recently it was revealed that these optimality
notions are subjective [Leike and Hutter, 2015]: a Bayesian
agent does not explore enough to lose the prior’s bias, and
a particularly bad prior can make the agent conform to any
arbitrarily bad policy as long as this policy yields some re-
wards. In particular, general Bayesian agents are not asymp-
totically optimal [Orseau, 2013]. These negative results put
the Bayesian approach to RL into question. We remedy the
situation by showing that using Bayesian techniques an agent
can indeed be optimal in an objective sense.

We report recent results on a strategy called Thomp-
son sampling, posterior sampling, or the Bayesian control
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rule [Thompson, 1933]. This strategy samples an environ-
ment ρ from the posterior, follows the ρ-optimal policy for a
while, and then repeats. We show that this policy is asymptot-
ically optimal in mean. Furthermore, using a recoverability
assumption on the environment, and some (minor) assump-
tions on the discount function, we prove that the worst-case
regret is sublinear.

Thompson sampling was originally proposed by Thomp-
son as a bandit algorithm [Thompson, 1933]. It is easy to
implement and often achieves quite good results [Chapelle
and Li, 2011]. In multi-armed bandits it attains optimal
regret [Agrawal and Goyal, 2011; Kaufmann et al., 2012].
Thompson sampling has also been considered for MDPs: as
model-free method relying on distributions over Q-functions
with convergence guarantee [Dearden et al., 1998], and as a
model-based algorithm without theoretical analysis [Strens,
2000]. Bayesian and frequentist regret bounds have also been
established [Osband et al., 2013; Osband and Van Roy, 2014;
Gopalan and Mannor, 2015]. PAC guarantees have been es-
tablished for an optimistic variant of Thompson sampling for
MDPs [Asmuth et al., 2009].

For general RL, Thompson sampling was first suggested by
Ortega and Braun [2010] with resampling at every time step.
The authors prove that the action probabilities of Thompson
sampling converge to the action probability of the optimal
policy almost surely, but require a finite environment class
and two (arguably quite strong) technical assumptions on the
behavior of the posterior distribution (akin to ergodicity) and
the similarity of environments in the class. Our convergence
results do not require these assumptions, but we rely on an
(unavoidable) recoverability assumption for our regret bound.

Thompson sampling can be viewed as inference over op-
timal policies [Ortega and Braun, 2012]. With each environ-
ment ν ∈ M we associate an optimal policy π∗ν . At time
step t conditional on history æ<t, the posterior belief over
environment ν is w(ν | æ<t). A Bayesian agent averages
over all environments by maximizing reward according to the
Bayesian mixture ξ(· | æ<t) =

∑
ν w(ν | æ<t)ν(· | æ<t).

In contrast, Thompson sampling averages over optimal poli-
cies and we get πT =

∑
ν w(ν | æ<t)π

∗
ν . This way no ex-

plicit reward structure is needed, only a mapping from envi-
ronment ν to optimal policy π∗ν .

Osband and van Roy [2016] show that Thompson sampling
is better than optimism because of the shape of the confidence
sets in tabular MDPs. However, it can be argued that this is
not an inherent flaw of the strategy of optimism, but rather of
the way that confidence bounds are typically calculated.

More generally, Lattimore and Szepesvári [2017] point out
that there seems to be something fundamentally flawed about
both Thompson sampling and optimism. This is exhibited in
a linear bandit where the most efficient exploration strategy
involves taking actions that can be confidently judged as sub-
optimal. Optimistic strategies refrain from taking actions they
know to be suboptimal even if they are informative. Thomp-
son sampling is similar in this respect: the posterior concen-
trates around the likely optimal actions, so sampling a pol-
icy that takes the suboptimal action is very unlikely. This
has been a known effect in the context of partial monitor-
ing problems [Bartók et al., 2014], that commonly involve

information that can only be gained by taking suboptimal ac-
tions. However, in the most common theoretical frameworks
for RL, multi-armed bandits and tabular MDPs, this problem
does not exist and thus has gone unnoticed so far by the the-
oretical literature.

2 Preliminaries and Notation
In reinforcement learning, an agent interacts with an environ-
ment in cycles: at time step t the agent chooses an action at
and receives a percept et = (ot, rt) consisting of an obser-
vation ot and a real-valued reward rt; the cycle then repeats
for time step t + 1. A history is a sequence of actions and
percepts: we use æ<t to denote a history of length t − 1. In
the following we assume that rewards are bounded in [0, 1].

In contrast to most of the literature on reinforcement learn-
ing, we are agnostic towards the discounting strategy. Our
goal is to maximize discounted rewards

∑∞
t=1 γtrt for a

fixed discount function γ : N → R with γt ≥ 0 and∑∞
t=1 γt < ∞. Geometric discounting (γt = γt for some

constant γ ∈ (0, 1)) is the most common form of discount-
ing, although other forms can be used [Lattimore and Hut-
ter, 2014]. The discount normalization factor is defined as
Γt :=

∑∞
k=t γk.

An ε-effective horizon Ht(ε) is a horizon that is long
enough to encompass all but a fraction ε of the discount func-
tion’s mass:

Ht(ε) := min{k | Γt+k/Γt ≤ ε} (1)

An ε-effective horizon is a central quantity in online rein-
forcement learning, and has a similar role to an episode in the
episodic setting. It is the amount of time that an agent needs
to plan ahead while losing only a fraction ε of the possible
value. It can be used to constrain the planning horizon to a fi-
nite number of steps regardless of the discount function used.
For geometric discounting, the horizon is dlogγ εe [Leike,
2016b, Tab. 4.1].

A policy is a function π(a | æ<t) specifying the probability
of taking action a after seeing the history æ<t. Likewise, an
environment is a function ν(e | æ<tat) specifying the prob-
ability of emitting percept e after seeing the history æ<t and
the action at. Together, a policy π and an environment ν gen-
erate a probability measure over histories denoted νπ . We use
Eπν to denote the expectation over the history æ<t drawn from
νπ .

The value of a policy π in an environment ν given history
æ<t is defined as

V πν (æ<t) :=
1

Γt
Eπν

[ ∞∑
k=t

γkrk

∣∣∣∣∣æ<t

]
.

The optimal value is defined as V ∗ν (h) := supπ V
π
ν (h), and

the optimal policy is π∗ν ∈ arg maxπ V
π
ν .

LetM denote a countable class of environments. We as-
sume thatM is large enough to contain the true environment,
e.g. the class of all computable environments [Hutter, 2005].
Let w be a prior probability distribution onM and let

ξ :=
∑
ν∈M

w(ν)ν
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Algorithm 1 Thompson sampling policy πT
Require: εt, a monotone decreasing sequence of positive re-

als with εt → 0 as t→∞.
1: while true do
2: sample ρ ∼ w( · | æ<t)
3: follow π∗ρ for Ht(εt) steps

denote the corresponding Bayesian mixture over the classM.
After observing the history æ<t the prior w is updated to the
posterior

w(ν | æ<t) := w(ν)
ν(æ<t)

ξ(æ<t)
.

Finally, the regret of a policy π in environment µ is how
much reward the agent has lost at time step m by not having
followed the optimal policy from the beginning:

Rm(π, µ) := sup
π′

Eπ
′

µ

[
m∑
t=1

rt

]
− Eπµ

[
m∑
t=1

rt

]
Note that regret is undiscounted and always nonnegative.
Moreover, the supremum is always attained by some policy,
which is usually not by the (Vµ-)optimal policy π∗µ because
that policy uses discounting.

3 Results
When introducing Thompson sampling for MDPs, Strens
proposes following the optimal policy for one episode or “re-
lated to the number of state transitions the agent is likely to
need to plan ahead” [Strens, 2000]. We follow Strens’ sug-
gestion and resample our policy at the effective horizon. The
Thompson sampling policy πT is defined in Algorithm 1. It
is a stochastic policy since it occasionally involves sampling
from a distribution. We prove the following main result.

Theorem 1 (Thompson Sampling is Asymptotically Optimal
in Mean [Leike et al., 2016a, Thm. 4]). The policy πT is
asymptotically optimal in mean, i.e., for all environments µ
from the countable classM,

EπTµ
[
V ∗µ (æ<t)− V πTµ (æ<t)

]
→ 0 as t→∞.

Note that in contrast to previous results [Lattimore and
Hutter, 2011] no assumptions on the discount function are
required.

In general environments classes worst-case regret is linear
because the agent can get caught in a trap and be unable to
recover [Hutter, 2005, Sec. 5.3.2]. To achieve sublinear regret
we need to ensure that the agent can recover from mistakes.
We introduce the following technical assumption.

Definition 2 (Recoverability). An environment ν satisfies the
recoverability assumption iff

sup
π

∣∣∣Eπ∗νν [V ∗ν (æ<t)]− Eπν [V ∗ν (æ<t)]
∣∣∣→ 0 as t→∞.

Recoverability compares following the worst policy π for
t − 1 time steps and then switching to the optimal policy π∗ν
to having followed π∗ν from the beginning. The recoverability

assumption states that switching to the optimal policy at any
time step enables the recovery of most of the value.

Our notion of recoverability demands that it becomes less
costly to recover from mistakes as time progresses. This
should be regarded as an effect of the discount function: if
the effective horizon grows, recovery becomes easier because
the optimal policy has more time to perform a recovery. For
growing effective horizons any weakly communicating finite
state partially observable MDP is recoverable. Moreover, re-
covery is performed on the optimal policy, in contrast to the
stronger notion of ergodicity in MDPs which demands return-
ing to a starting state regardless of the policy.

Theorem 3 (Sublinear Regret [Leike et al., 2016a, Thm. 11]).
Under suitable assumptions on the discount function, if the
environment µ ∈ M satisfies the recoverability assumption,
and π is asymptotically optimal in mean, then regret is sub-
linear: Rm(π, µ) ∈ o(m).

Together with Theorem 1 we get the following corollary.

Corollary 4 (Sublinear Regret for Thompson Sampling).
Under suitable assumptions on the discount function, if the
environment µ satisfies the recoverability assumption, then
Rm(πT , µ) ∈ o(m) for the Thompson sampling policy πT .

The assumptions on the discount function in Theorem 3
and Corollary 4 are satisfied for geometric discounting. How-
ever, since geometric discounting has a constant horizon, it
makes the recoverability assumption very strong: the envi-
ronment has to enable faster recovery as time progresses; in
this case weakly communicating partially observable MDPs
are not recoverable. An alternative discount function choice
that satisfies the aforementioned assumptions but has a grow-
ing horizon is γt := e−

√
t/
√
t [Lattimore, 2013, Sec. 2.3.1].

Our recoverability assumption is necessary: if it is not sat-
isfied, regret may be linear even on the optimal policy: the
optimal policy maximizes discounted rewards and this short-
sightedness might incur a tradeoff that leads to linear regret
later on if the environment does not allow for recovery.

4 Discussion
A policy is asymptotically optimal if the agent learns to act
optimally in any environment from the classM. Our main re-
sult is Theorem 1, proving that Thompson sampling is asymp-
totically optimal in mean. Similar to BayesExp which is
weakly asymptotically optimal if the effective horizon grows
sublinearly [Lattimore, 2013, Ch. 5], both policies commit to
exploration for several steps. This is necessary for optimal-
ity [Leike, 2016b, Ex. 5.19]:

To achieve asymptotic optimality, the agent needs
to explore infinitely often for the duration of an ef-
fective horizon.

Asymptotic optimality has to be taken with a grain of salt.
It provides no incentive to the agent to avoid traps in the en-
vironment. Once the agent gets caught in a trap, all actions
are equally bad and thus optimal: asymptotic optimality has
been achieved. Even worse, an asymptotically optimal agent
has to explore any trap because it could contain a hidden trea-
sure. Concisely, with the definition of recoverability from
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Definition 2, we can informally state the following impossi-
bility result for non-recoverable environment classes:

In general, either the agent gets caught in a trap or
it is not asymptotically optimal.

In contrast, Corollary 4 shows Thompson sampling gets sub-
linear regret in recoverable environments, which implies ev-
ery countable class of recoverable environments is learnable.

Note that for the notions of optimality considered here any
finite initial time segment is irrelevant (optimality is a tail
event): asymptotic optimality requires only convergence in
the limit and sublinear regret is about the asymptotic be-
haviour of regret as a function of the horizon m. Hence an
optimal agent can be arbitrarily lazy. Overall, there is a di-
chotomy between the asymptotic nature of optimality and the
use of discounting to prioritize the present over the future.
Ideally, we would want to give finite regret guarantees in-
stead, but without additional assumptions this is likely im-
possible in this general setting.

What we presented are first and foremost theoretical re-
sults. Yet our insights from these results can help guide prac-
tical algorithms. Deep reinforcement learning (DRL) is a
rapidly growing field combining general RL with deep neu-
ral networks. Yet the DRL literature has addressed partial
observability and non-recoverability only sparingly, but these
problems will have to be tackled eventually.

From the perspective of this paper, we also want to high-
light our insights on exploration, which is still an open
problem in DRL [Bellemare et al., 2016]. The exploration
performed by Thompson sampling is qualitatively different
from the exploration by BayesExp [Lattimore, 2013, Ch. 5].
BayesExp performs phases of exploration in which it maxi-
mizes the expected information gain. This explores the en-
vironment class completely, even achieving off-policy pre-
diction [Orseau et al., 2013, Thm. 7]. However, off-policy
prediction is too strong for reinforcement learning because it
does not take the reward structure into account: it requires
the agent to understand all parts of the environment, even the
ones that are known to have low reward. A reward-oriented
exploration strategy is information-directed sampling [Russo
and Van Roy, 2014]. This bandit strategy trades off rewards
with information gain about the optimal policy. However,
these two quantities are measured in two different units, mak-
ing the trade-off artificial. The exploration mechanism of
Thompson sampling is reward-oriented and does not lead to
off-policy prediction. As such, it leads to an exploration strat-
egy that is measured on the value scale. In fact, the explo-
ration potential proposed by Leike [2016a] is derived from
Thompson sampling and measures exploration on a value
scale, making it commensurable with reward.

Moreover, our results also provide the basis for new the-
oretical research. For example, Theorem 1 is used by Leike
et al. [2016b] to prove that in an arbitrary multi-agent en-
vironment, if all players use Thompson sampling and their
hypothesis class satisfies the grain of truth assumption, then
they converge to a Nash equilibrium. The grain of truth as-
sumption requires that the environment each player interacts
with (the game combined with the other players) is in their
hypothesis classM. However, the result is not tied to Thomp-

son sampling; the contribution of Leike et al. is to construct a
general class that satisfies the grain of truth assumption. This
class can then be combined with any asymptotically optimal
policy, e.g. from Lattimore and Hutter [2011]. However, the
lack of additional assumptions on the discount function in
Theorem 1 leads to a clean convergence theorem.

This paper only provides a brief introduction into general
reinforcement learning. All proofs and further details can be
found in Leike et al. [2016a]. The theory of general RL was
first developed by Hutter [2000; 2005]. For a more recent in-
troduction, in particular a longer discussion on optimality, we
refer the reader to Leike [2016b]. For an empirical illustra-
tion of these and related results, see Aslanides et al. [2017]
and Lamont et al. [2017].

Acknowledgements
We are grateful to Pedro Ortega for sharing his deep under-
standing of Thompson sampling and to Toby Ord for insight-
ful discussions about asymptotic optimality. This work was
in parts supported by ARC grant DP150104590.

References
[Agrawal and Goyal, 2011] Shipra Agrawal and Navin

Goyal. Analysis of Thompson sampling for the multi-
armed bandit problem. In Conference on Learning
Theory, 2011.

[Aslanides et al., 2017] John Aslanides, Jan Leike, and Mar-
cus Hutter. Universal reinforcement learning algorithms:
Survey and experiments. In International Joint Conference
on Artificial Intelligence, 2017.

[Asmuth et al., 2009] John Asmuth, Lihong Li, Michael L
Littman, Ali Nouri, and David Wingate. A Bayesian sam-
pling approach to exploration in reinforcement learning. In
Uncertainty in Artificial Intelligence, pages 19–26, 2009.

[Auer et al., 2010] Peter Auer, Thomas Jaksch, and Ronald
Ortner. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research,
11:1563–1600, 2010.
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[Lattimore and Szepesvári, 2017] Tor Lattimore and Csaba
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